PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1259016)

Clipboard (0)
None

Related Articles

1.  Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression 
BMC Genomics  2004;5:16.
Background
Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions.
Results
We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI.
Conclusion
Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions.
doi:10.1186/1471-2164-5-16
PMCID: PMC375527  PMID: 15053842
promoter; tissue-specific gene expression; position weight matrix; regulatory motif
2.  Jaccard index based similarity measure to compare transcription factor binding site models 
Background
Positional weight matrix (PWM) remains the most popular for quantification of transcription factor (TF) binding. PWM supplied with a score threshold defines a set of putative transcription factor binding sites (TFBS), thus providing a TFBS model.
TF binding DNA fragments obtained by different experimental methods usually give similar but not identical PWMs. This is also common for different TFs from the same structural family. Thus it is often necessary to measure the similarity between PWMs. The popular tools compare PWMs directly using matrix elements. Yet, for log-odds PWMs, negative elements do not contribute to the scores of highly scoring TFBS and thus may be different without affecting the sets of the best recognized binding sites. Moreover, the two TFBS sets recognized by a given pair of PWMs can be more or less different depending on the score thresholds.
Results
We propose a practical approach for comparing two TFBS models, each consisting of a PWM and the respective scoring threshold. The proposed measure is a variant of the Jaccard index between two TFBS sets. The measure defines a metric space for TFBS models of all finite lengths. The algorithm can compare TFBS models constructed using substantially different approaches, like PWMs with raw positional counts and log-odds. We present the efficient software implementation: MACRO-APE (MAtrix CompaRisOn by Approximate P-value Estimation).
Conclusions
MACRO-APE can be effectively used to compute the Jaccard index based similarity for two TFBS models. A two-pass scanning algorithm is presented to scan a given collection of PWMs for PWMs similar to a given query.
Availability and implementation
MACRO-APE is implemented in ruby 1.9; software including source code and a manual is freely available at http://autosome.ru/macroape/ and in supplementary materials.
doi:10.1186/1748-7188-8-23
PMCID: PMC3851813  PMID: 24074225
Transcription factor binding site; TFBS; Transcription factor binding site model; Binding motif; Jaccard similarity; Position weight matrix; PWM; P-value; Position specific frequency matrix; PSFM; Macroape
3.  Optimized Position Weight Matrices in Prediction of Novel Putative Binding Sites for Transcription Factors in the Drosophila melanogaster Genome 
PLoS ONE  2013;8(8):e68712.
Position weight matrices (PWMs) have become a tool of choice for the identification of transcription factor binding sites in DNA sequences. DNA-binding proteins often show degeneracy in their binding requirement and thus the overall binding specificity of many proteins is unknown and remains an active area of research. Although existing PWMs are more reliable predictors than consensus string matching, they generally result in a high number of false positive hits. Our previous study introduced a promising approach to PWM refinement in which known motifs are used to computationally mine putative binding sites directly from aligned promoter regions using composition of similar sites. In the present study, we extended this technique originally tested on single examples of transcription factors (TFs) and showed its capability to optimize PWM performance to predict new binding sites in the fruit fly genome. We propose refined PWMs in mono- and dinucleotide versions similarly computed for a large variety of transcription factors of Drosophila melanogaster. Along with the addition of many auxiliary sites the optimization includes variation of the PWM motif length, the binding sites location on the promoters and the PWM score threshold. To assess the predictive performance of the refined PWMs we compared them to conventional TRANSFAC and JASPAR sources. The results have been verified using performed tests and literature review. Overall, the refined PWMs containing putative sites derived from real promoter content processed using optimized parameters had better general accuracy than conventional PWMs.
doi:10.1371/journal.pone.0068712
PMCID: PMC3735551  PMID: 23936309
4.  Increasing Coverage of Transcription Factor Position Weight Matrices through Domain-level Homology 
PLoS ONE  2012;7(8):e42779.
Transcription factor-DNA interactions, central to cellular regulation and control, are commonly described by position weight matrices (PWMs). These matrices are frequently used to predict transcription factor binding sites in regulatory regions of DNA to complement and guide further experimental investigation. The DNA sequence preferences of transcription factors, encoded in PWMs, are dictated primarily by select residues within the DNA binding domain(s) that interact directly with DNA. Therefore, the DNA binding properties of homologous transcription factors with identical DNA binding domains may be characterized by PWMs derived from different species. Accordingly, we have implemented a fully automated domain-level homology searching method for identical DNA binding sequences.
By applying the domain-level homology search to transcription factors with existing PWMs in the JASPAR and TRANSFAC databases, we were able to significantly increase coverage in terms of the total number of PWMs associated with a given species, assign PWMs to transcription factors that did not previously have any associations, and increase the number of represented species with PWMs over an order of magnitude. Additionally, using protein binding microarray (PBM) data, we have validated the domain-level method by demonstrating that transcription factor pairs with matching DNA binding domains exhibit comparable DNA binding specificity predictions to transcription factor pairs with completely identical sequences.
The increased coverage achieved herein demonstrates the potential for more thorough species-associated investigation of protein-DNA interactions using existing resources. The PWM scanning results highlight the challenging nature of transcription factors that contain multiple DNA binding domains, as well as the impact of motif discovery on the ability to predict DNA binding properties. The method is additionally suitable for identifying domain-level homology mappings to enable utilization of additional information sources in the study of transcription factors. The domain-level homology search method, resulting PWM mappings, web-based user interface, and web API are publicly available at http://dodoma.systemsbiology.netdodoma.systemsbiology.net.
doi:10.1371/journal.pone.0042779
PMCID: PMC3428306  PMID: 22952610
5.  Efficient and accurate P-value computation for Position Weight Matrices 
Background
Position Weight Matrices (PWMs) are probabilistic representations of signals in sequences. They are widely used to model approximate patterns in DNA or in protein sequences. The usage of PWMs needs as a prerequisite to knowing the statistical significance of a word according to its score. This is done by defining the P-value of a score, which is the probability that the background model can achieve a score larger than or equal to the observed value. This gives rise to the following problem: Given a P-value, find the corresponding score threshold. Existing methods rely on dynamic programming or probability generating functions. For many examples of PWMs, they fail to give accurate results in a reasonable amount of time.
Results
The contribution of this paper is two fold. First, we study the theoretical complexity of the problem, and we prove that it is NP-hard. Then, we describe a novel algorithm that solves the P-value problem efficiently. The main idea is to use a series of discretized score distributions that improves the final result step by step until some convergence criterion is met. Moreover, the algorithm is capable of calculating the exact P-value without any error, even for matrices with non-integer coefficient values. The same approach is also used to devise an accurate algorithm for the reverse problem: finding the P-value for a given score. Both methods are implemented in a software called TFM-PVALUE, that is freely available.
Conclusion
We have tested TFM-PVALUE on a large set of PWMs representing transcription factor binding sites. Experimental results show that it achieves better performance in terms of computational time and precision than existing tools.
doi:10.1186/1748-7188-2-15
PMCID: PMC2238751  PMID: 18072973
6.  Creating PWMs of transcription factors using 3D structure-based computation of protein-DNA free binding energies 
BMC Bioinformatics  2010;11:225.
Background
Knowledge of transcription factor-DNA binding patterns is crucial for understanding gene transcription. Numerous DNA-binding proteins are annotated as transcription factors in the literature, however, for many of them the corresponding DNA-binding motifs remain uncharacterized.
Results
The position weight matrices (PWMs) of transcription factors from different structural classes have been determined using a knowledge-based statistical potential. The scoring function calibrated against crystallographic data on protein-DNA contacts recovered PWMs of various members of widely studied transcription factor families such as p53 and NF-κB. Where it was possible, extensive comparison to experimental binding affinity data and other physical models was made. Although the p50p50, p50RelB, and p50p65 dimers belong to the same family, particular differences in their PWMs were detected, thereby suggesting possibly different in vivo binding modes. The PWMs of p63 and p73 were computed on the basis of homology modeling and their performance was studied using upstream sequences of 85 p53/p73-regulated human genes. Interestingly, about half of the p63 and p73 hits reported by the Match algorithm in the altogether 126 promoters lay more than 2 kb upstream of the corresponding transcription start sites, which deviates from the common assumption that most regulatory sites are located more proximal to the TSS. The fact that in most of the cases the binding sites of p63 and p73 did not overlap with the p53 sites suggests that p63 and p73 could influence the p53 transcriptional activity cooperatively. The newly computed p50p50 PWM recovered 5 more experimental binding sites than the corresponding TRANSFAC matrix, while both PWMs showed comparable receiver operator characteristics.
Conclusions
A novel algorithm was developed to calculate position weight matrices from protein-DNA complex structures. The proposed algorithm was extensively validated against experimental data. The method was further combined with Homology Modeling to obtain PWMs of factors for which crystallographic complexes with DNA are not yet available. The performance of PWMs obtained in this work in comparison to traditionally constructed matrices demonstrates that the structure-based approach presents a promising alternative to experimental determination of transcription factor binding properties.
doi:10.1186/1471-2105-11-225
PMCID: PMC2879287  PMID: 20438625
7.  PiDNA: predicting protein–DNA interactions with structural models 
Nucleic Acids Research  2013;41(Web Server issue):W523-W530.
Predicting binding sites of a transcription factor in the genome is an important, but challenging, issue in studying gene regulation. In the past decade, a large number of protein–DNA co-crystallized structures available in the Protein Data Bank have facilitated the understanding of interacting mechanisms between transcription factors and their binding sites. Recent studies have shown that both physics-based and knowledge-based potential functions can be applied to protein–DNA complex structures to deliver position weight matrices (PWMs) that are consistent with the experimental data. To further use the available structural models, the proposed Web server, PiDNA, aims at first constructing reliable PWMs by applying an atomic-level knowledge-based scoring function on numerous in silico mutated complex structures, and then using the PWM constructed by the structure models with small energy changes to predict the interaction between proteins and DNA sequences. With PiDNA, the users can easily predict the relative preference of all the DNA sequences with limited mutations from the native sequence co-crystallized in the model in a single run. More predictions on sequences with unlimited mutations can be realized by additional requests or file uploading. Three types of information can be downloaded after prediction: (i) the ranked list of mutated sequences, (ii) the PWM constructed by the favourable mutated structures, and (iii) any mutated protein–DNA complex structure models specified by the user. This study first shows that the constructed PWMs are similar to the annotated PWMs collected from databases or literature. Second, the prediction accuracy of PiDNA in detecting relatively high-specificity sites is evaluated by comparing the ranked lists against in vitro experiments from protein-binding microarrays. Finally, PiDNA is shown to be able to select the experimentally validated binding sites from 10 000 random sites with high accuracy. With PiDNA, the users can design biological experiments based on the predicted sequence specificity and/or request mutated structure models for further protein design. As well, it is expected that PiDNA can be incorporated with chromatin immunoprecipitation data to refine large-scale inference of in vivo protein–DNA interactions. PiDNA is available at: http://dna.bime.ntu.edu.tw/pidna.
doi:10.1093/nar/gkt388
PMCID: PMC3692134  PMID: 23703214
8.  A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription Factor Binding Sites 
PLoS ONE  2014;9(6):e99015.
The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond PWMs.
doi:10.1371/journal.pone.0099015
PMCID: PMC4057186  PMID: 24926895
9.  Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions 
BMC Bioinformatics  2007;8:481.
Background
Reliable transcription factor binding site (TFBS) prediction methods are essential for computer annotation of large amount of genome sequence data. However, current methods to predict TFBSs are hampered by the high false-positive rates that occur when only sequence conservation at the core binding-sites is considered.
Results
To improve this situation, we have quantified the performance of several Position Weight Matrix (PWM) algorithms, using exhaustive approaches to find their optimal length and position. We applied these approaches to bio-medically important TFBSs involved in the regulation of cell growth and proliferation as well as in inflammatory, immune, and antiviral responses (NF-κB, ISGF3, IRF1, STAT1), obesity and lipid metabolism (PPAR, SREBP, HNF4), regulation of the steroidogenic (SF-1) and cell cycle (E2F) genes expression. We have also gained extra specificity using a method, entitled SiteGA, which takes into account structural interactions within TFBS core and flanking regions, using a genetic algorithm (GA) with a discriminant function of locally positioned dinucleotide (LPD) frequencies.
To ensure a higher confidence in our approach, we applied resampling-jackknife and bootstrap tests for the comparison, it appears that, optimized PWM and SiteGA have shown similar recognition performances. Then we applied SiteGA and optimized PWMs (both separately and together) to sequences in the Eukaryotic Promoter Database (EPD). The resulting SiteGA recognition models can now be used to search sequences for BSs using the web tool, SiteGA.
Analysis of dependencies between close and distant LPDs revealed by SiteGA models has shown that the most significant correlations are between close LPDs, and are generally located in the core (footprint) region. A greater number of less significant correlations are mainly between distant LPDs, which spanned both core and flanking regions. When SiteGA and optimized PWM models were applied together, this substantially reduced false positives at least at higher stringencies.
Conclusion
Based on this analysis, SiteGA adds substantial specificity even to optimized PWMs and may be considered for large-scale genome analysis. It adds to the range of techniques available for TFBS prediction, and EPD analysis has led to a list of genes which appear to be regulated by the above TFs.
doi:10.1186/1471-2105-8-481
PMCID: PMC2265442  PMID: 18093302
10.  Position Weight Matrix, Gibbs Sampler, and the Associated Significance Tests in Motif Characterization and Prediction 
Scientifica  2012;2012:917540.
Position weight matrix (PWM) is not only one of the most widely used bioinformatic methods, but also a key component in more advanced computational algorithms (e.g., Gibbs sampler) for characterizing and discovering motifs in nucleotide or amino acid sequences. However, few generally applicable statistical tests are available for evaluating the significance of site patterns, PWM, and PWM scores (PWMS) of putative motifs. Statistical significance tests of the PWM output, that is, site-specific frequencies, PWM itself, and PWMS, are in disparate sources and have never been collected in a single paper, with the consequence that many implementations of PWM do not include any significance test. Here I review PWM-based methods used in motif characterization and prediction (including a detailed illustration of the Gibbs sampler for de novo motif discovery), present statistical and probabilistic rationales behind statistical significance tests relevant to PWM, and illustrate their application with real data. The multiple comparison problem associated with the test of site-specific frequencies is best handled by false discovery rate methods. The test of PWM, due to the use of pseudocounts, is best done by resampling methods. The test of individual PWMS for each sequence segment should be based on the extreme value distribution.
doi:10.6064/2012/917540
PMCID: PMC3820676  PMID: 24278755
11.  Metamotifs - a generative model for building families of nucleotide position weight matrices 
BMC Bioinformatics  2010;11:348.
Background
Development of high-throughput methods for measuring DNA interactions of transcription factors together with computational advances in short motif inference algorithms is expanding our understanding of transcription factor binding site motifs. The consequential growth of sequence motif data sets makes it important to systematically group and categorise regulatory motifs. It has been shown that there are familial tendencies in DNA sequence motifs that are predictive of the family of factors that binds them. Further development of methods that detect and describe familial motif trends has the potential to help in measuring the similarity of novel computational motif predictions to previously known data and sensitively detecting regulatory motifs similar to previously known ones from novel sequence.
Results
We propose a probabilistic model for position weight matrix (PWM) sequence motif families. The model, which we call the 'metamotif' describes recurring familial patterns in a set of motifs. The metamotif framework models variation within a family of sequence motifs. It allows for simultaneous estimation of a series of independent metamotifs from input position weight matrix (PWM) motif data and does not assume that all input motif columns contribute to a familial pattern. We describe an algorithm for inferring metamotifs from weight matrix data. We then demonstrate the use of the model in two practical tasks: in the Bayesian NestedMICA model inference algorithm as a PWM prior to enhance motif inference sensitivity, and in a motif classification task where motifs are labelled according to their interacting DNA binding domain.
Conclusions
We show that metamotifs can be used as PWM priors in the NestedMICA motif inference algorithm to dramatically increase the sensitivity to infer motifs. Metamotifs were also successfully applied to a motif classification problem where sequence motif features were used to predict the family of protein DNA binding domains that would interact with it. The metamotif based classifier is shown to compare favourably to previous related methods. The metamotif has great potential for further use in machine learning tasks related to especially de novo computational sequence motif inference. The metamotif methods presented have been incorporated into the NestedMICA suite.
doi:10.1186/1471-2105-11-348
PMCID: PMC2906491  PMID: 20579334
12.  Protein-coding gene promoters in Methanocaldococcus (Methanococcus) jannaschii 
Nucleic Acids Research  2009;37(11):3588-3601.
Although Methanocaldococcus (Methanococcus) jannaschii was the first archaeon to have its genome sequenced, little is known about the promoters of its protein-coding genes. To expand our knowledge, we have experimentally identified 131 promoters for 107 protein-coding genes in this genome by mapping their transcription start sites. Compared to previously identified promoters, more than half of which are from genes for stable RNAs, the protein-coding gene promoters are qualitatively similar in overall sequence pattern, but statistically different at several positions due to greater variation among their sequences. Relative binding affinity for general transcription factors was measured for 12 of these promoters by competition electrophoretic mobility shift assays. These promoters bind the factors less tightly than do most tRNA gene promoters. When a position weight matrix (PWM) was constructed from the protein gene promoters, factor binding affinities correlated with corresponding promoter PWM scores. We show that the PWM based on our data more accurately predicts promoters in the genome and transcription start sites than could be done with the previously available data. We also introduce a PWM logo, which visually displays the implications of observing a given base at a position in a sequence.
doi:10.1093/nar/gkp213
PMCID: PMC2699501  PMID: 19359364
13.  The Next Generation of Transcription Factor Binding Site Prediction 
PLoS Computational Biology  2013;9(9):e1003214.
Finding where transcription factors (TFs) bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs) is based on basic position weight matrices (PWMs) which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs) to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA-protein interactions, while providing a single unified framework suitable for the next generation of TFBS prediction.
Author Summary
Transcription factors are critical proteins for sequence-specific control of transcriptional regulation. Finding where these proteins bind to DNA is of key importance for global efforts to decipher the complex mechanisms of gene regulation. Greater understanding of the regulation of transcription promises to improve human genetic analysis by specifying critical gene components that have eluded investigators. Classically, computational prediction of transcription factor binding sites (TFBS) is based on models giving weights to each nucleotide at each position. We introduce a novel statistical model for the prediction of TFBS tolerant of a broader range of TFBS configurations than can be conveniently accommodated by existing methods. The new models are designed to address the confounding properties of nucleotide composition, inter-positional sequence dependence and variable lengths (e.g. variable spacing between half-sites) observed in the more comprehensive experimental data now emerging. The new models generate scores consistent with DNA-protein affinities measured experimentally and can be represented graphically, retaining desirable attributes of past methods. It demonstrates the capacity of the new approach to accurately assess DNA-protein interactions. With the rich experimental data generated from chromatin immunoprecipitation experiments, a greater diversity of TFBS properties has emerged that can now be accommodated within a single predictive approach.
doi:10.1371/journal.pcbi.1003214
PMCID: PMC3764009  PMID: 24039567
14.  Optimizing the GATA-3 position weight matrix to improve the identification of novel binding sites 
BMC Genomics  2012;13:416.
Background
The identifying of binding sites for transcription factors is a key component of gene regulatory network analysis. This is often done using position-weight matrices (PWMs). Because of the importance of in silico mapping of tentative binding sites, we previously developed an approach for PWM optimization that substantially improves the accuracy of such mapping.
Results
The present work implements the optimization algorithm applied to the existing PWM for GATA-3 transcription factor and builds a new di-nucleotide PWM. The existing available PWM is based on experimental data adopted from Jaspar. The optimized PWM substantially improves the sensitivity and specificity of the TF mapping compared to the conventional applications. The refined PWM also facilitates in silico identification of novel binding sites that are supported by experimental data. We also describe uncommon positioning of binding motifs for several T-cell lineage specific factors in human promoters.
Conclusion
Our proposed di-nucleotide PWM approach outperforms the conventional mono-nucleotide PWM approach with respect to GATA-3. Therefore our new di-nucleotide PWM provides new insight into plausible transcriptional regulatory interactions in human promoters.
doi:10.1186/1471-2164-13-416
PMCID: PMC3481455  PMID: 22913572
Transcription factor; Binding sites; GATA-3; Human promoter; Position weight matrix; Optimization
15.  Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data 
BMC Genomics  2014;15:80.
Background
ChIP-Seq is widely used to detect genomic segments bound by transcription factors (TF), either directly at DNA binding sites (BSs) or indirectly via other proteins. Currently, there are many software tools implementing different approaches to identify TFBSs within ChIP-Seq peaks. However, their use for the interpretation of ChIP-Seq data is usually complicated by the absence of direct experimental verification, making it difficult both to set a threshold to avoid recognition of too many false-positive BSs, and to compare the actual performance of different models.
Results
Using ChIP-Seq data for FoxA2 binding loci in mouse adult liver and human HepG2 cells we compared FoxA binding-site predictions for four computational models of two fundamental classes: pattern matching based on existing training set of experimentally confirmed TFBSs (oPWM and SiteGA) and de novo motif discovery (ChIPMunk and diChIPMunk). To properly select prediction thresholds for the models, we experimentally evaluated affinity of 64 predicted FoxA BSs using EMSA that allows safely distinguishing sequences able to bind TF. As a result we identified thousands of reliable FoxA BSs within ChIP-Seq loci from mouse liver and human HepG2 cells. It was found that the performance of conventional position weight matrix (PWM) models was inferior with the highest false positive rate. On the contrary, the best recognition efficiency was achieved by the combination of SiteGA & diChIPMunk/ChIPMunk models, properly identifying FoxA BSs in up to 90% of loci for both mouse and human ChIP-Seq datasets.
Conclusions
The experimental study of TF binding to oligonucleotides corresponding to predicted sites increases the reliability of computational methods for TFBS-recognition in ChIP-Seq data analysis. Regarding ChIP-Seq data interpretation, basic PWMs have inferior TFBS recognition quality compared to the more sophisticated SiteGA and de novo motif discovery methods. A combination of models from different principles allowed identification of proper TFBSs.
doi:10.1186/1471-2164-15-80
PMCID: PMC4234207  PMID: 24472686
ChIP-Seq; EMSA; Transcription factor binding sites; FoxA; SiteGA; PWM; Transcription factor binding model; Dinucleotide frequencies
16.  ScerTF: a comprehensive database of benchmarked position weight matrices for Saccharomyces species 
Nucleic Acids Research  2011;40(Database issue):D162-D168.
Saccharomyces cerevisiae is a primary model for studies of transcriptional control, and the specificities of most yeast transcription factors (TFs) have been determined by multiple methods. However, it is unclear which position weight matrices (PWMs) are most useful; for the roughly 200 TFs in yeast, there are over 1200 PWMs in the literature. To address this issue, we created ScerTF, a comprehensive database of 1226 motifs from 11 different sources. We identified a single matrix for each TF that best predicts in vivo data by benchmarking matrices against chromatin immunoprecipitation and TF deletion experiments. We also used in vivo data to optimize thresholds for identifying regulatory sites with each matrix. To correct for biases from different methods, we developed a strategy to combine matrices. These aligned matrices outperform the best available matrix for several TFs. We used the matrices to predict co-occurring regulatory elements in the genome and identified many known TF combinations. In addition, we predict new combinations and provide evidence of combinatorial regulation from gene expression data. The database is available through a web interface at http://ural.wustl.edu/ScerTF. The site allows users to search the database with a regulatory site or matrix to identify the TFs most likely to bind the input sequence.
doi:10.1093/nar/gkr1180
PMCID: PMC3245033  PMID: 22140105
17.  DBD2BS: connecting a DNA-binding protein with its binding sites 
Nucleic Acids Research  2012;40(Web Server issue):W173-W179.
By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein–DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD–DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein–DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies.
Available at: http://dbd2bs.csie.ntu.edu.tw/, http://dbd2bs.csbb.ntu.edu.tw/, and http://dbd2bs.ee.ncku.edu.tw.
doi:10.1093/nar/gks564
PMCID: PMC3394304  PMID: 22693214
18.  Identification of thyroid hormone receptor binding sites in developing mouse cerebellum 
BMC Genomics  2013;14:341.
Background
Thyroid hormones play an essential role in early vertebrate development as well as other key processes. One of its modes of action is to bind to the thyroid hormone receptor (TR) which, in turn, binds to thyroid response elements (TREs) in promoter regions of target genes. The sequence motif for TREs remains largely undefined as does the precise chromosomal location of the TR binding sites. A chromatin immunoprecipitation on microarray (ChIP-chip) experiment was conducted using mouse cerebellum post natal day (PND) 4 and PND15 for the thyroid hormone receptor (TR) beta 1 to map its binding sites on over 5000 gene promoter regions. We have performed a detailed computational analysis of these data.
Results
By analysing a recent spike-in study, the optimal normalization and peak identification approaches were determined for our dataset. Application of these techniques led to the identification of 211 ChIP-chip peaks enriched for TR binding in cerebellum samples. ChIP-PCR validation of 25 peaks led to the identification of 16 true positive TREs. Following a detailed literature review to identify all known mouse TREs, a position weight matrix (PWM) was created representing the classic TRE sequence motif. Various classes of promoter regions were investigated for the presence of this PWM, including permuted sequences, randomly selected promoter sequences, and genes known to be regulated by TH. We found that while the occurrence of the TRE motif is strongly correlated with gene regulation by TH for some genes, other TH-regulated genes do not exhibit an increased density of TRE half-site motifs. Furthermore, we demonstrate that an increase in the rate of occurrence of the half-site motifs does not always indicate the specific location of the TRE within the promoter region. To account for the fact that TR often operates as a dimer, we introduce a novel dual-threshold PWM scanning approach for identifying TREs with a true positive rate of 0.73 and a false positive rate of 0.2. Application of this approach to ChIP-chip peak regions revealed the presence of 85 putative TREs suitable for further in vitro validation.
Conclusions
This study further elucidates TRβ gene regulation in mouse cerebellum, with 211 promoter regions identified to bind to TR. While we have identified 85 putative TREs within these regions, future work will study other mechanisms of action that may mediate the remaining observed TR-binding activity.
doi:10.1186/1471-2164-14-341
PMCID: PMC3716714  PMID: 23701648
19.  Dinucleotide Weight Matrices for Predicting Transcription Factor Binding Sites: Generalizing the Position Weight Matrix 
PLoS ONE  2010;5(3):e9722.
Background
Identifying transcription factor binding sites (TFBS) in silico is key in understanding gene regulation. TFBS are string patterns that exhibit some variability, commonly modelled as “position weight matrices” (PWMs). Though convenient, the PWM has significant limitations, in particular the assumed independence of positions within the binding motif; and predictions based on PWMs are usually not very specific to known functional sites. Analysis here on binding sites in yeast suggests that correlation of dinucleotides is not limited to near-neighbours, but can extend over considerable gaps.
Methodology/Principal Findings
I describe a straightforward generalization of the PWM model, that considers frequencies of dinucleotides instead of individual nucleotides. Unlike previous efforts, this method considers all dinucleotides within an extended binding region, and does not make an attempt to determine a priori the significance of particular dinucleotide correlations. I describe how to use a “dinucleotide weight matrix” (DWM) to predict binding sites, dealing in particular with the complication that its entries are not independent probabilities. Benchmarks show, for many factors, a dramatic improvement over PWMs in precision of predicting known targets. In most cases, significant further improvement arises by extending the commonly defined “core motifs” by about 10bp on either side. Though this flanking sequence shows no strong motif at the nucleotide level, the predictive power of the dinucleotide model suggests that the “signature” in DNA sequence of protein-binding affinity extends beyond the core protein-DNA contact region.
Conclusion/Significance
While computationally more demanding and slower than PWM-based approaches, this dinucleotide method is straightforward, both conceptually and in implementation, and can serve as a basis for future improvements.
doi:10.1371/journal.pone.0009722
PMCID: PMC2842295  PMID: 20339533
20.  Mutual enrichment in ranked lists and the statistical assessment of position weight matrix motifs 
Background
Statistics in ranked lists is useful in analysing molecular biology measurement data, such as differential expression, resulting in ranked lists of genes, or ChIP-Seq, which yields ranked lists of genomic sequences. State of the art methods study fixed motifs in ranked lists of sequences. More flexible models such as position weight matrix (PWM) motifs are more challenging in this context, partially because it is not clear how to avoid the use of arbitrary thresholds.
Results
To assess the enrichment of a PWM motif in a ranked list we use a second ranking on the same set of elements induced by the PWM. Possible orders of one ranked list relative to another can be modelled as permutations. Due to sample space complexity, it is difficult to accurately characterize tail distributions in the group of permutations. In this paper we develop tight upper bounds on tail distributions of the size of the intersection of the top parts of two uniformly and independently drawn permutations. We further demonstrate advantages of this approach using our software implementation, mmHG-Finder, which is publicly available, to study PWM motifs in several datasets. In addition to validating known motifs, we found GC-rich strings to be enriched amongst the promoter sequences of long non-coding RNAs that are specifically expressed in thyroid and prostate tissue samples and observed a statistical association with tissue specific CpG hypo-methylation.
Conclusions
We develop tight bounds that can be calculated in polynomial time. We demonstrate utility of mutual enrichment in motif search and assess performance for synthetic and biological datasets. We suggest that thyroid and prostate-specific long non-coding RNAs are regulated by transcription factors that bind GC-rich sequences, such as EGR1, SP1 and E2F3. We further suggest that this regulation is associated with DNA hypo-methylation.
doi:10.1186/1748-7188-9-11
PMCID: PMC4021615  PMID: 24708618
Statistical enrichment; Position weight matrices; High-throughput sequencing data analysis; Tissue specific methylation patterns; lncRNA
21.  CSI-Tree: a regression tree approach for modeling binding properties of DNA-binding molecules based on cognate site identification (CSI) data 
Nucleic Acids Research  2008;36(10):3171-3184.
The identification and characterization of binding sites of DNA-binding molecules, including transcription factors (TFs), is a critical problem at the interface of chemistry, biology and molecular medicine. The Cognate Site Identification (CSI) array is a high-throughput microarray platform for measuring comprehensive recognition profiles of DNA-binding molecules. This technique produces datasets that are useful not only for identifying binding sites of previously uncharacterized TFs but also for elucidating dependencies, both local and nonlocal, between the nucleotides at different positions of the recognition sites. We have developed a regression tree technique, CSI-Tree, for exploring the spectrum of binding sites of DNA-binding molecules. Our approach constructs regression trees utilizing the CSI data of unaligned sequences. The resulting model partitions the binding spectrum into homogeneous regions of position specific nucleotide effects. Each homogeneous partition is then summarized by a position weight matrix (PWM). Hence, the final outcome is a binding intensity rank-ordered collection of PWMs each of which spans a different region in the binding spectrum. Nodes of the regression tree depict the critical position/nucleotide combinations. We analyze the CSI data of the eukaryotic TF Nkx-2.5 and two engineered small molecule DNA ligands and obtain unique insights into their binding properties. The CSI tree for Nkx-2.5 reveals an interaction between two positions of the binding profile and elucidates how different nucleotide combinations at these two positions lead to different binding affinities. The CSI trees for the engineered DNA ligands exhibit a common preference for the dinucleotide AA in the first two positions, which is consistent with preference for a narrow and relatively flat minor groove. We carry out a reanalysis of these data with a mixture of PWMs approach. This approach is an advancement over the simple PWM model and accommodates position dependencies based on only sequence data. Our analysis indicates that the dependencies revealed by the CSI-Tree are challenging to discover without the actual binding intensities. Moreover, such a mixture model is highly sensitive to the number and length of the sequences analyzed. In contrast, CSI-Tree provides interpretable and concise summaries of the complete recognition profiles of DNA-binding molecules by utilizing binding affinities.
doi:10.1093/nar/gkn057
PMCID: PMC2425502  PMID: 18411210
22.  Modeling the specificity of protein-DNA interactions 
Quantitative biology  2013;1(2):115-130.
The specificity of protein-DNA interactions is most commonly modeled using position weight matrices (PWMs). First introduced in 1982, they have been adapted to many new types of data and many different approaches have been developed to determine the parameters of the PWM. New high-throughput technologies provide a large amount of data rapidly and offer an unprecedented opportunity to determine accurately the specificities of many transcription factors (TFs). But taking full advantage of the new data requires advanced algorithms that take into account the biophysical processes involved in generating the data. The new large datasets can also aid in determining when the PWM model is inadequate and must be extended to provide accurate predictions of binding sites. This article provides a general mathematical description of a PWM and how it is used to score potential binding sites, a brief history of the approaches that have been developed and the types of data that are used with an emphasis on algorithms that we have developed for analyzing high-throughput datasets from several new technologies. It also describes extensions that can be added when the simple PWM model is inadequate and further enhancements that may be necessary. It briefly describes some applications of PWMs in the discovery and modeling of in vivo regulatory networks.
doi:10.1007/s40484-013-0012-4
PMCID: PMC4101922  PMID: 25045190
23.  Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites 
Nucleic Acids Research  2005;33(7):2290-2301.
Position-weight matrices (PWMs) are broadly used to locate transcription factor binding sites in DNA sequences. The majority of existing PWMs provide a low level of both sensitivity and specificity. We present a new computational algorithm, a modification of the Staden–Bucher approach, that improves the PWM. We applied the proposed technique on the PWM of the GC-box, binding site for Sp1. The comparison of old and new PWMs shows that the latter increase both sensitivity and specificity. The statistical parameters of GC-box distribution in promoter regions and in the human genome, as well as in each chromosome, are presented. The majority of commonly used PWMs are the 4-row mononucleotide matrices, although 16-row dinucleotide matrices are known to be more informative. The algorithm efficiently determines the 16-row matrices and preliminary results show that such matrices provide better results than 4-row matrices.
doi:10.1093/nar/gki519
PMCID: PMC1084321  PMID: 15849315
24.  The multiple-specificity landscape of modular peptide recognition domains 
Using large scale experimental datasets, the authors show how modular protein interaction domains such as PDZ, SH3 or WW domains, frequently display unexpected multiple binding specificity. The observed multiple specificity leads to new structural insights and accurately predicts new protein interactions.
Modular protein domains interacting with short linear peptides, such as PDZ, SH3 or WW domains, display a rich binding specificity with significant interplay (or correlation) between ligand residues.The binding specificity of these domains is more accurately described with a multiple specificity model.The multiple specificity reveals new structural insights and predicts new protein interactions.
Modular protein domains have a central role in the complex network of signaling pathways that governs cellular processes. Many of them, called peptide recognition domains, bind short linear regions in their target proteins, such as the well-known SH3 or PDZ domains. These domain–peptide interactions are the predominant form of protein interaction in signaling pathways.
Because of the relative simplicity of the interaction, their binding specificity is generally represented using a simple model, analogous to transcription factor binding: the domain binds a short stretch of amino acids and at each position some amino acids are preferred over other ones. Thus, for each position, a probability can be assigned to each amino acid and these probabilities are often grouped into a matrix called position weight matrix (PWM) or position-specific scoring matrix. Such a matrix can then be represented in a highly intuitive manner as a so-called sequence logo (see Figure 1).
A main shortcoming of this specificity model is that, although intuitive and interpretable, it inherently assumes that all residues in the peptide contribute independently to binding. On the basis of statistical analyses of large data sets of peptides binding to PDZ, SH3 and WW domains, we show that for most domains, this is not the case. Indeed, there is complex and highly significant interplay between the ligand residues. To overcome this issue, we develop a computational model that can both take into account such correlations and also preserve the advantages of PWMs, namely its straightforward interpretability.
Briefly, our method detects whether the domain is capable of binding its targets not only with a single specificity but also with multiple specificities. If so, it will determine all the relevant specificities (see Figure 1). This is accomplished by using a machine learning algorithm based on mixture models, and the results can be effectively visualized as multiple sequence logos. In other words, based on experimentally derived data sets of binding peptides, we determine for every domain, in addition to the known specificity, one or more new specificities. As such, we capture more real information, and our model performs better than previous models of binding specificity.
A crucial question is what these new specificities correspond to: are they simply mathematical artifacts coming out of some algorithm or do they represent something we can understand on a biophysical or structural level? Overall, the new specificities provide us with substantial new intuitive insight about the structural basis of binding for these domains. We can roughly identify two cases.
First, we have neighboring (or very close in sequence) amino acids in the ligand that show significant correlations. These usually correspond to amino acids whose side chains point in the same directions and often occupy the same physical space, and therefore can directly influence each other.
In other cases, we observe that multiple specificities found for a single domain are very different from each other. They correspond to different ways that the domain accommodates its binders. Often, conformational changes are required to switch from one binding mode to another. In almost all cases, only one canonical binding mode was previously known, and our analysis enables us to predict several interesting non-canonical ones. Specifically, we discuss one example in detail in Figure 5. In a PDZ domain of DLG1, we identify a novel binding specificity that differs from the canonical one by the presence of an additional tryptophan at the C terminus of the ligand. From a structural point of view, this would require a flexible loop to move out of the way to accommodate this rather large side chain. We find evidence of this predicted new binding mode based on both existing crystal structures and structural modeling.
Finally, our model of binding specificity leads to predictions of many new and previously unknown protein interactions. We validate a number of these using the membrane yeast two-hybrid approach.
In summary, we show here that multiple specificity is a general and underappreciated phenomenon for modular peptide recognition domains and that it leads to substantial new insight into the basis of protein interactions.
Modular protein interaction domains form the building blocks of eukaryotic signaling pathways. Many of them, known as peptide recognition domains, mediate protein interactions by recognizing short, linear amino acid stretches on the surface of their cognate partners with high specificity. Residues in these stretches are usually assumed to contribute independently to binding, which has led to a simplified understanding of protein interactions. Conversely, we observe in large binding peptide data sets that different residue positions display highly significant correlations for many domains in three distinct families (PDZ, SH3 and WW). These correlation patterns reveal a widespread occurrence of multiple binding specificities and give novel structural insights into protein interactions. For example, we predict a new binding mode of PDZ domains and structurally rationalize it for DLG1 PDZ1. We show that multiple specificity more accurately predicts protein interactions and experimentally validate some of the predictions for the human proteins DLG1 and SCRIB. Overall, our results reveal a rich specificity landscape in peptide recognition domains, suggesting new ways of encoding specificity in protein interaction networks.
doi:10.1038/msb.2011.18
PMCID: PMC3097085  PMID: 21525870
binding specificity; peptide recognition domains; PDZ; phage display; residue correlations
25.  Factors Affecting Splicing Strength of Yeast Genes 
Accurate and efficient splicing is of crucial importance for highly-transcribed intron-containing genes (ICGs) in rapidly replicating unicellular eukaryotes such as the budding yeast Saccharomyces cerevisiae. We characterize the 5′ and 3′ splice sites (ss) by position weight matrix scores (PWMSs), which is the highest for the consensus sequence and the lowest for splice sites differing most from the consensus sequence and used PWMS as a proxy for splicing strength. HAC1, which is known to be spliced by a nonspliceosomal mechanism, has the most negative PWMS for both its 5′ ss and 3′ ss. Several genes under strong splicing regulation and requiring additional splicing factors for their splicing also have small or negative PWMS values. Splicing strength is higher for highly transcribed ICGs than for lowly transcribed ICGs and higher for transcripts that bind strongly to spliceosomes than those that bind weakly. The 3′ splice site features a prominent poly-U tract before the 3′AG. Our results suggest the potential of using PWMS as a screening tool for ICGs that are either spliced by a nonspliceosome mechanism or under strong splicing regulation in yeast and other fungal species.
doi:10.1155/2011/212146
PMCID: PMC3226532  PMID: 22162666

Results 1-25 (1259016)