Search tips
Search criteria

Results 1-25 (1219238)

Clipboard (0)

Related Articles

1.  Artificial Induction of Sox21 Regulates Sensory Cell Formation in the Embryonic Chicken Inner Ear 
PLoS ONE  2012;7(10):e46387.
During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.
PMCID: PMC3468625  PMID: 23071561
2.  The Prosensory Function of Sox2 in the Chicken Inner Ear Relies on the Direct Regulation of Atoh1 
PLoS ONE  2012;7(1):e30871.
The proneural gene Atoh1 is crucial for the development of inner ear hair cells and it requires the function of the transcription factor Sox2 through yet unknown mechanisms. In the present work, we used the chicken embryo and HEK293T cells to explore the regulation of Atoh1 by Sox2. The results show that hair cells derive from Sox2-positive otic progenitors and that Sox2 directly activates Atoh1 through a transcriptional activator function that requires the integrity of Sox2 DNA binding domain. Atoh1 activation depends on Sox transcription factor binding sites (SoxTFBS) present in the Atoh1 3′ enhancer where Sox2 directly binds, as shown by site directed mutagenesis and chromatin immunoprecipitation (ChIP). In the inner ear, Atoh1 enhancer activity is detected in the neurosensory domain and it depends on Sox2. Dominant negative competition (Sox2HMG-Engrailed) and mutation of the SoxTFBS abolish the reporter activity in vivo. Moreover, ChIP assay in isolated otic vesicles shows that Sox2 is bound to the Atoh1 enhancer in vivo. However, besides activating Atoh1, Sox2 also promotes the expression of Atoh1 negative regulators and the temporal profile of Atoh1 activation by Sox2 is transient suggesting that Sox2 triggers an incoherent feed-forward loop. These results provide a mechanism for the prosensory function of Sox2 in the inner ear. We suggest that sensory competence is established early in otic development through the activation of Atoh1 by Sox2, however, hair cell differentiation is prevented until later stages by the parallel activation of negative regulators of Atoh1 function.
PMCID: PMC3264626  PMID: 22292066
3.  The Notch Ligand JAG1 Is Required for Sensory Progenitor Development in the Mammalian Inner Ear 
PLoS Genetics  2006;2(1):e4.
In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG) 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko) mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27kip1 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27kip1 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27kip1. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.
Deafness and adult-onset hearing loss are significant health problems. In most cases, deafness or vestibular dysfunction results when the sensory cells in the inner ear, known as hair cells, degenerate due to environmental or genetic causes. In the mammalian inner ear, the hair cells and their associated supporting cells can be found in six different patches that have particular functions related to hearing or balance. Unfortunately, unlike in birds or fish, mammalian hair cells show little ability to regenerate, resulting in a permanent hearing or balance disorder when damaged. Here, the authors show that a protein called JAG1, a ligand in the Notch signaling pathway, is required for the normal development of all six sensory regions in the mammalian inner ear. In ears that lacked JAG1, some of the sensory patches were missing completely, whereas others were small and lacked particular cell types. The authors showed that JAG1 is required by the sensory precursors, progenitor cells that give rise to both the hair cells and the supporting cells. By understanding how the sensory areas develop normally, it is hoped that molecular tools can be developed that will aid sensory regeneration in the mammalian inner ear.
PMCID: PMC1326221  PMID: 16410827
4.  Serial Analysis of Gene Expression in the Chicken Otocyst 
The inner ear arises from multipotent placodal precursors that are gradually committed to the otic fate and further differentiate into all inner ear cell types, with the exception of a few immigrating neural crest-derived cells. The otocyst plays a pivotal role during inner ear development: otic progenitor cells sub-compartmentalize into non-sensory and prosensory domains, giving rise to individual vestibular and auditory organs and their associated ganglia. The genes and pathways underlying this progressive subdivision and differentiation process are not entirely known. The goal of this study was to identify a comprehensive set of genes expressed in the chicken otocyst using the serial analysis of gene expression (SAGE) method. Our analysis revealed several hundred transcriptional regulators, potential signaling proteins, and receptors. We identified a substantial collection of genes that were previously known in the context of inner ear development, but we also found many new candidate genes, such as SOX4, SOX5, SOX7, SOX8, SOX11, and SOX18, which previously were not known to be expressed in the developing inner ear. Despite its limitation of not being all-inclusive, the generated otocyst SAGE library is a practical bioinformatics tool to study otocyst gene expression and to identify candidate genes for developmental studies.
Electronic supplementary material
The online version of this article (doi:10.1007/s10162-011-0286-z) contains supplementary material, which is available to authorized users.
PMCID: PMC3214236  PMID: 21853378
gene array; inner ear development; otic vesicle; SAGE; Sox
5.  C-MYC Transcriptionally Amplifies SOX2 Target Genes to Regulate Self-Renewal in Multipotent Otic Progenitor Cells 
Stem Cell Reports  2014;4(1):47-60.
Sensorineural hearing loss is caused by the loss of sensory hair cells and neurons of the inner ear. Once lost, these cell types are not replaced. Two genes expressed in the developing inner ear are c-Myc and Sox2. We created immortalized multipotent otic progenitor (iMOP) cells, a fate-restricted cell type, by transient expression of C-MYC in SOX2-expressing otic progenitor cells. This activated the endogenous C-MYC and amplified existing SOX2-dependent transcripts to promote self-renewal. RNA-seq and ChIP-seq analyses revealed that C-MYC and SOX2 occupy over 85% of the same promoters. C-MYC and SOX2 target genes include cyclin-dependent kinases that regulate cell-cycle progression. iMOP cells continually divide but retain the ability to differentiate into functional hair cells and neurons. We propose that SOX2 and C-MYC regulate cell-cycle progression of these cells and that downregulation of C-MYC expression after growth factor withdrawal serves as a molecular switch for differentiation.
Graphical Abstract
•A single factor, C-MYC, induces self-renewal in SOX2-expressing otic progenitors•C-MYC transcriptionally amplifies SOX2 target genes•SOX2 modulates transcription of cell-cycle genes•Immortalized multipotent otic progenitors can differentiate into otic cell types
In this work, Kwan and colleagues generated an immortalized multipotent otic progenitor (iMOP) cell by transient expression of C-MYC in SOX2-expressing otic progenitor cells. The procedure activated endogenous C-MYC expression in the cells and amplified existing SOX2-dependent transcripts to promote self-renewal. Downregulation of C-MYC expression after growth factor withdrawal resulted in a molecular switch from self-renewal to otic differentiation.
PMCID: PMC4297878  PMID: 25497456
6.  Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis 
Cell and tissue research  2008;334(3):339-358.
At E8.5, the LIM-homeodomain factor Lmx1a is expressed throughout the otic placode but becomes developmentally restricted to non-sensory epithelia of the ear (endolymphatic duct, ductus reuniens, cochlea lateral wall). We confirm here that the ears of newborn dreher (Lmx1adr) mutants are dysmorphic. Hair cell markers such as Atoh1 and Myo7 reveal for the first time that newborn Lmx1a mutants have only three sensory epithelia: two enlarged canal cristae and one fused epithelium comprising an amalgamation of the cochlea, saccule and utricle, a “cochlear-gravistatic” endorgan. The enlarged anterior canal crista develops by fusion of horizontal and anterior crista whereas the posterior crista fuses with an enlarged papilla neglecta that may extend into the cochlear lateral wall. In the fused endorgan the cochlear region is distinguished from the vestibular region by markers such as Gata3, the presence of a tectorial membrane and cochlea-specific innervation. The cochlea-like apex displays minor disorganization of the hair and supporting cells. This contrasts with the basal half of the cochlear region which shows a vestibular epithelium-like organization of hair cells and supporting cells. The dismorphic features of the cochlea are also reflected in altered gene expression patterns. Fgf8 expression expands from inner hair cells in the apex to most hair cells in the base. Two supporting cell marker proteins, Sox2 and Prox1, also differ in their cellular distribution between the base and the apex. Sox2 expression expands in mutant canal cristae prior to their enlargement and fusion and displays a more diffuse and widespread expression in the base of the cochlear region whereas Prox1 is not detected in the base. These changes in Sox2 and Prox1 expression suggest that Lmx1a expression restricts and sharpens Sox2 expression thereby defining non-sensory and sensory epithelium. The adult Lmx1a mutant organ of Corti showed a loss of cochlear hair cells, suggesting that long term hair cell maintenance is also disrupted in these mutants.
PMCID: PMC2654344  PMID: 18985389
dreher; Lmx1a; ear; mouse; hair cell maintenance; sensory epithelium formation
7.  Continued Expression of GATA3 Is Necessary for Cochlear Neurosensory Development 
PLoS ONE  2013;8(4):e62046.
Hair cells of the developing mammalian inner ear are progressively defined through cell fate restriction. This process culminates in the expression of the bHLH transcription factor Atoh1, which is necessary for differentiation of hair cells, but not for their specification. Loss of several genes will disrupt ear morphogenesis or arrest of neurosensory epithelia development. We previously showed in null mutants that the loss of the transcription factor, Gata3, results specifically in the loss of all cochlear neurosensory development. Temporal expression of Gata3 is broad from the otic placode stage through the postnatal ear. It therefore remains unclear at which stage in development Gata3 exerts its effect. To better understand the stage specific effects of Gata3, we investigated the role of Gata3 in cochlear neurosensory specification and differentiation utilizing a LoxP targeted Gata3 line and two Cre lines. Foxg1Cre∶Gata3f/f mice show recombination of Gata3 around E8.5 but continue to develop a cochlear duct without differentiated hair cells and spiral ganglion neurons. qRT-PCR data show that Atoh1 was down-regulated but not absent in the duct whereas other hair cell specific genes such as Pou4f3 were completely absent. In addition, while Sox2 levels were lower in the Foxg1Cre:Gata3f/f cochlea, Eya1 levels remained normal. We conclude that Eya1 is unable to fully upregulate Atoh1 or Pou4f3, and drive differentiation of hair cells without Gata3. Pax2-Cre∶Gata3f/f mice show a delayed recombination of Gata3 in the ear relative to Foxg1Cre:Gata3f/f. These mice exhibited a cochlear duct containing patches of partially differentiated hair cells and developed only few and incorrectly projecting spiral ganglion neurons. Our conditional deletion studies reveal a major role of Gata3 in the signaling of prosensory genes and in the differentiation of cochlear neurosenory cells. We suggest that Gata3 may act in combination with Eya1, Six1, and Sox2 in cochlear prosensory gene signaling.
PMCID: PMC3628701  PMID: 23614009
8.  Pax2/8 proteins coordinate sequential induction of otic and epibranchial placodes through differential regulation of foxi1, sox3 and fgf24 
Developmental biology  2011;351(1):90-98.
Vertebrate cranial placodes contribute vitally to development of sensory structures of the head. Amongst posterior placodes, the otic placode forms the inner ear whereas nearby epibranchial placodes produce sensory ganglia within branchial clefts. Though diverse in fate, these placodes show striking similarities in their early regulation. In zebrafish, both are initiated by localized Fgf signaling plus the ubiquitous competence factor Foxi1, and both express pax8 and sox3 in response. It has been suggested that Fgf initially induces a common otic/epibranchial field, which later subdivides in response to other signals. However, we find that otic and epibranchial placodes form at different times and by distinct mechanisms. Initially, Fgf from surrounding tissues induces otic expression of pax8 and sox3, which cooperate synergistically to establish otic fate. Subsequently, pax8 works with related genes pax2a/pax2b to downregulate otic expression of foxi1, a necessary step for further otic development. Additionally, pax2/8 activate otic expression of fgf24, which induces epibranchial expression of sox3. Knockdown of fgf24 or sox3 causes severe epibranchial deficiencies but has little effect on otic development. These findings clarify the roles of pax8 and sox3 and support a model whereby the otic placode forms first and induces epibranchial placodes through an Fgf-relay.
PMCID: PMC3039053  PMID: 21215261
zebrafish; heat shock; Fgf; Pax2/5/8; SoxB1
9.  FGFR1-Frs2/3 Signalling Maintains Sensory Progenitors during Inner Ear Hair Cell Formation 
PLoS Genetics  2014;10(1):e1004118.
Inner ear mechanosensory hair cells transduce sound and balance information. Auditory hair cells emerge from a Sox2-positive sensory patch in the inner ear epithelium, which is progressively restricted during development. This restriction depends on the action of signaling molecules. Fibroblast growth factor (FGF) signalling is important during sensory specification: attenuation of Fgfr1 disrupts cochlear hair cell formation; however, the underlying mechanisms remain unknown. Here we report that in the absence of FGFR1 signaling, the expression of Sox2 within the sensory patch is not maintained. Despite the down-regulation of the prosensory domain markers, p27Kip1, Hey2, and Hes5, progenitors can still exit the cell cycle to form the zone of non-proliferating cells (ZNPC), however the number of cells that form sensory cells is reduced. Analysis of a mutant Fgfr1 allele, unable to bind to the adaptor protein, Frs2/3, indicates that Sox2 maintenance can be regulated by MAP kinase. We suggest that FGF signaling, through the activation of MAP kinase, is necessary for the maintenance of sensory progenitors and commits precursors to sensory cell differentiation in the mammalian cochlea.
Author Summary
The ability of our brain to perceive sound depends on its conversion into electrical impulses within the cochlea of the inner ear. The cochlea has dedicated specialized cells, called inner ear hair cells, which register sound energy. Environmental effects, genetic disorders or just the passage of time can damage these cells, and the damage impairs our ability to hear. If we could understand how these cells develop, we might be able to exploit this knowledge to generate new hair cells. In this study we address an old problem: how do signals from the fibroblast growth factor (FGF) family control hair cell number? We used mice in which one of the receptors for FGF (Fgfr1) is mutated and found that the expression of a stem cell protein, Sox2 is not maintained. Sox2 generally acts to keep precursors in the cochlea in a pre-hair cell state. However, in mutant mice Sox2 expression is transient, diminishing the ability of precursors to commit to a hair cell fate. These findings suggest that it may be possible to amplify the number of hair cell progenitors in culture by tuning FGF activity, providing a route to replace damaged inner ear hair cells.
PMCID: PMC3900395  PMID: 24465223
10.  Sox2 and Fgf interact with Atoh1 to promote sensory competence throughout the zebrafish inner ear 
Developmental biology  2011;358(1):113-121.
Atoh1 is required for differentiation of sensory hair cells in the vertebrate inner ear. Moreover, misexpression of Atoh1 is sufficient to establish ectopic sensory epithelia, making Atoh1 a good candidate for gene therapy to restore hearing. However, competence to form sensory epithelia appears to be limited to discrete regions of the inner ear. To better understand the developmental factors influencing sensory-competence, we examined the effects of misexpressing atoh1a in zebrafish embryos under various developmental conditions. Activation of a heat shock-inducible transgene, hs:atoh1a, resulted in ectopic expression of early markers of sensory development within 2 hours, and mature hair cells marked by brn3c:GFP began to accumulate 9 hours after heat shock. The ability of atoh1a to induce ectopic sensory epithelia was maximal when activated during placodal or early otic vesicle stages but declined rapidly thereafter. At no stage was atoh1a sufficient to induce sensory development in dorsal or lateral non-sensory regions of the otic vesicle. However, co-misexpression of atoh1a with fgf3, fgf8 or sox2, genes normally acting in the same gene network with atoh1a, stimulated sensory development in all regions of the otic vesicle. Thus, expression of fgf3, fgf8 or sox2 strongly enhances competence to respond to Atoh1.
PMCID: PMC3171634  PMID: 21801718
zebrafish; atoh1a/b; sox2; fgf3; fgf8; hair cell; support cell; heat shock
11.  Mapping of Wnt, Frizzled and Wnt inhibitor gene expression domains in the avian otic primordium 
Wnt signaling activates at least three different pathways involved in development and disease. Interactions of secreted ligands and inhibitors with cell-surface receptors result in the activation or regulation of particular downstream intracellular cascades. During the developmental stages of otic vesicle closure and beginning morphogenesis, the forming inner ear transcribes a plethora of Wnt-related genes. We report expression of 23 genes out of 25 tested in situ hybridization probes on tissue serial sections. Sensory primordia and Frizzled gene expression share domains, with Fzd1 being a continuous marker. Prospective nonsensory domains express Wnts, whose transcripts mainly flank prosensory regions. Finally, Wnt inhibitor domains are superimposed over both prosensory and nonsensory otic regions. Three Wnt antagonists, Dkk1, SFRP2, and Frzb are prominent. Their gene expression patterns partly overlap and change over time, which adds to the diversity of molecular micro-environments. Strikingly, prosensory domains express Wnts transiently. This includes (1) the prosensory otic region of high proliferation, neuroblast delamination, and programmed cell death at stage 20/21 (Wnt3, -5b, -7b, -8b, -9a, -11), and (2) sensory primordia at stage 25 (Wnt7a, Wnt9a). In summary, robust Wnt-related gene expression shows both spatial and temporal tuning during inner ear development as the otic vesicle initiates morphogenesis and prosensory cell fate determination.
PMCID: PMC3004361  PMID: 19842206
inner ear; otic vesicle; hearing; vestibular; sensory primordia; Wnts; Fzd; Wnt-antagonists
12.  Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti 
Hearing research  2010;275(1-2):66-80.
Atonal homolog1 (Atoh1, formerly Math1) is a crucial bHLH transcription factor for inner ear hair cell differentiation. Its absence in embryos results in complete absence of mature hair cells at birth and its misexpression can generate extra hair cells. Thus Atoh1 may be both necessary and sufficient for hair cell differentiation in the ear. Atoh1 null mice die at birth and have some undifferentiated cells in sensory epithelia carrying Atoh1 markers. The fate of these undifferentiated cells in neonates is unknown due to lethality. We use Tg(Pax2-Cre) to delete floxed Atoh1 in the inner ear. This generates viable conditional knockout (CKO) mice for studying the postnatal development of the inner ear without differentiated hair cells. Using in situ hybridization we find that Tg(Pax2-Cre) recombines the floxed Atoh1 prior to detectable Atoh1 expression. Only the posterior canal crista has Atoh1 expressing hair cells due to incomplete recombination. Most of the organ of Corti cells are lost in CKO mice via late embryonic cell deaths. Marker genes indicate that the organ of Corti is reduced to two rows of cells wedged between flanking markers of the organ of Corti (Fgf10 and Bmp4). These two rows of cells (instead of five rows of supporting cells) are positive for Prox1 in neonates. By postnatal day 14 (P14), most of the developing organ of Corti is lost through embryonic cell deaths, with the remaining cells transformed into a flat epithelium with no distinction of any specific cell type. However, some of the remaining organ of Corti cells express Myo7a at late postnatal stages and are innervated by remaining afferent fibers. Initial growth of afferents and efferents in embryos shows no difference between control mice and Tg(Pax2-Cre)::Atoh1 CKO mice. Most afferents and efferents are lost in the CKO mutant before birth, leaving only few basal and a more prominent apical innervation. Afferents focus their projections on patches that express the prosensory specifying gene, Sox2. This pattern of innervation by sensory neurons is maintained at least until P14, but fibers target the few Myo7a positive cells found in later stages.
PMCID: PMC3065550  PMID: 21146598
hair cell differentiation; flat epithelium; organ of Corti; innervation of the ear; conditional deletion; mouse ear mutants
13.  Regulation of p27Kip1 by Sox2 maintains quiescence of inner pillar cells in the murine auditory sensory epithelium 
Sox2 plays critical roles in cell fate specification during development and in stem cell formation; however, its role in postmitotic cells is largely unknown. Sox2 is highly expressed in supporting cells (SCs) of the postnatal mammalian auditory sensory epithelium, which unlike non-mammalian vertebrates remains quiescent even after sensory hair cell damage. Here, we induced the ablation of Sox2, specifically in SCs at three different postnatal ages (neonatal, juvenile and adult) in mice. In neonatal mice, Sox2-null inner pillar cells (IPCs, a subtype of SCs) proliferated and generated daughter cells, while other SC subtypes remained quiescent. Furthermore, p27Kip1, a cell cycle inhibitor, was absent in Sox2-null IPCs. Similarly, upon direct deletion of p27Kip1, p27Kip1-null IPCs also proliferated but retained Sox2 expression. Interestingly, cell cycle control of IPCs by Sox2-mediated expression of p27Kip1 gradually declined with age. In addition, deletion of Sox2 or p27Kip1 did not cause a cell fate change. Finally, chromatin immunoprecipitation with Sox2 antibodies and luciferase reporter assays with the p27Kip1 promoter support that Sox2 directly activates p27Kip1 transcription in postmitotic IPCs. Hence, in contrast to the well-known activity of Sox2 in promoting proliferation and cell fate determination, our data demonstrate that Sox2 plays a novel role as a key upstream regulator of p27Kip1 to maintain the quiescent state of postmitotic IPCs. Our studies suggest that manipulating Sox2 or p27Kip1 expression is an effective approach to inducing proliferation of neonatal auditory IPCs, an initial but necessary step toward restoring hearing in mammals.
PMCID: PMC3427024  PMID: 22855803
14.  Regulation of p27Kip1 by Sox2 maintains quiescence of inner pillar cells in the murine auditory sensory epithelium 
Sox2 plays critical roles in cell fate specification during development and in stem cell formation; however, its role in postmitotic cells is largely unknown. Sox2 is highly expressed in supporting cells (SCs) of the postnatal mammalian auditory sensory epithelium, which unlike non-mammalian vertebrates remains quiescent even after sensory hair cell damage. Here, we induced the ablation of Sox2, specifically in SCs at three different postnatal ages (neonatal, juvenile and adult) in mice. In neonatal mice, Sox2-null inner pillar cells (IPCs, a subtype of SCs) proliferated and generated daughter cells, while other SC subtypes remained quiescent. Furthermore, p27Kip1, a cell cycle inhibitor, was absent in Sox2-null IPCs. Similarly, upon direct deletion of p27Kip1, p27Kip1-null IPCs also proliferated but retained Sox2 expression. Interestingly, cell cycle control of IPCs by Sox2-mediated expression of p27Kip1 gradually declined with age. In addition, deletion of Sox2 or p27Kip1 did not cause a cell fate change. Finally, chromatin immunoprecipitation with Sox2 antibodies and luciferase reporter assays with the p27Kip1 promoter support that Sox2 directly activates p27Kip1 transcription in postmitotic IPCs. Hence, in contrast to the well-known activity of Sox2 in promoting proliferation and cell fate determination, our data demonstrate that Sox2 plays a novel role as a key upstream regulator of p27Kip1 to maintain the quiescent state of postmitotic IPCs. Our studies suggest that manipulating Sox2 or p27Kip1 expression is an effective approach to inducing proliferation of neonatal auditory IPCs, an initial but necessary step toward restoring hearing in mammals.
PMCID: PMC3427024  PMID: 22855803
15.  Sox2 induces neuronal formation in the developing mammalian cochlea 
In the cochlea, spiral ganglion neurons play a critical role in hearing as they form the relay between mechanosensory hair cells in the inner ear and cochlear nuclei in the brainstem. The proneural basic helix-loop-helix (bHLH) transcription factors Neurogenin1 (Neurog1) and NeuroD1 have been shown to be essential for the development of otocyst-derived inner ear sensory neurons. Here we show neural competence of non-sensory epithelial cells in the cochlea as ectopic expression of either Neurog1 or NeuroD1 results in the formation of neuronal cells. Since the high-mobility-group type (HMG) transcription factor Sox2, which is also known to play a role in neurogenesis, is expressed in otocyst-derived neural precursor cells and later in the spiral ganglion neurons along with Neurog1 and NeuroD1, we utilized both gain- and loss-of-function experiments to examine the role of Sox2 in spiral ganglion neuron formation. We demonstrate that overexpression of Sox2 results in the production of neurons, suggesting that Sox2 is sufficient for the induction of neuronal fate in non-sensory epithelial cells. Furthermore, spiral ganglion neurons are absent in cochleae from Sox2Lcc/Lcc mice, indicating that Sox2 is also required for neuronal formation in the cochlea. Our results indicate that Sox2, along with Neurog1 and NeuroD1, are sufficient to induce a neuronal fate in non-sensory regions of the cochlea. Finally, we demonstrate that non-sensory cells within the cochlea retain neural competence through at least the early postnatal period.
PMCID: PMC2835399  PMID: 20071536
neurogenesis; proneural; Neurog1; NeuroD1; SoxB1; bHLH; neuron
16.  MYC Gene Delivery to Adult Mouse Utricles Stimulates Proliferation of Postmitotic Supporting Cells In Vitro 
PLoS ONE  2012;7(10):e48704.
The inner ears of adult humans and other mammals possess a limited capacity for regenerating sensory hair cells, which can lead to permanent auditory and vestibular deficits. During development and regeneration, undifferentiated supporting cells within inner ear sensory epithelia can self-renew and give rise to new hair cells; however, these otic progenitors become depleted postnatally. Therefore, reprogramming differentiated supporting cells into otic progenitors is a potential strategy for restoring regenerative potential to the ear. Transient expression of the induced pluripotency transcription factors, Oct3/4, Klf4, Sox2, and c-Myc reprograms fibroblasts into neural progenitors under neural-promoting culture conditions, so as a first step, we explored whether ectopic expression of these factors can reverse supporting cell quiescence in whole organ cultures of adult mouse utricles. Co-infection of utricles with adenoviral vectors separately encoding Oct3/4, Klf4, Sox2, and the degradation-resistant T58A mutant of c-Myc (c-MycT58A) triggered significant levels of supporting cell S-phase entry as assessed by continuous BrdU labeling. Of the four factors, c-MycT58A alone was both necessary and sufficient for the proliferative response. The number of BrdU-labeled cells plateaued between 5–7 days after infection, and then decreased ∼60% by 3 weeks, as many cycling cells appeared to enter apoptosis. Switching to differentiation-promoting culture medium at 5 days after ectopic expression of c-MycT58A temporarily attenuated the loss of BrdU-labeled cells and accompanied a very modest but significant expansion of the sensory epithelium. A small number of the proliferating cells in these cultures labeled for the hair cell marker, myosin VIIA, suggesting they had begun differentiating towards a hair cell fate. The results indicate that ectopic expression of c-MycT58A in combination with methods for promoting cell survival and differentiation may restore regenerative potential to supporting cells within the adult mammalian inner ear.
PMCID: PMC3484123  PMID: 23119091
17.  B1 SOX Coordinate Cell Specification with Patterning and Morphogenesis in the Early Zebrafish Embryo 
PLoS Genetics  2010;6(5):e1000936.
The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through in situ hybridization, RT–PCR, and microarray analyses. Importantly, these phenotypic analyses revealed that the B1 SOX proteins regulate the following distinct processes: (1) early dorsoventral patterning by controlling bmp2b/7; (2) gastrulation movements via the regulation of pcdh18a/18b and wnt11, a non-canonical Wnt ligand gene; (3) neural differentiation by regulating the Hes-class bHLH gene her3 and the proneural-class bHLH genes neurog1 (positively) and ascl1a (negatively), and regional transcription factor genes, e.g., hesx1, zic1, and rx3; and (4) neural patterning by regulating signaling pathway genes, cyp26a1 in RA signaling, oep in Nodal signaling, shh, and mdkb. Chromatin immunoprecipitation analysis of the her3, hesx1, neurog1, pcdh18a, and cyp26a1 genes further suggests a direct regulation of these genes by B1 SOX. We also found an interesting overlap between the early phenotypes of the B1 sox quadruple knockdown embryos and the maternal-zygotic spg embryos that are devoid of pou5f1 activity. These findings indicate that the B1 SOX proteins control a wide range of developmental regulators in the early embryo through partnering in part with Pou5f1 and possibly with other factors, and suggest that the B1 sox functions are central to coordinating cell fate specification with patterning and morphogenetic processes occurring in the early embryo.
Author Summary
In the developing embryo, various processes such as cell fate specification, embryo patterning, and morphogenesis take place concurrently. The embryo must control gene expression in order to coordinate these processes and thereby enable the proper organization of its structures. The B1 sox transcription factor genes, exemplified by the “stem cell gene” sox2, are thought to play a key role in these embryonic processes from the blastoderm stage to the neural stage. However, the precise regulatory functions of these genes are largely unknown due to the lack of loss-of-function studies. In our current study, we took advantage of the zebrafish system and successfully depleted B1 sox activity from the early embryo using antisense knockdown technology. This approach enabled us to further uncover the regulatory functions of B1 sox in early embryos. We found that the activity of the B1 sox genes is required for the expression of a wide range of developmental regulators including transcription factors, signaling pathway components, and cell adhesion molecules. These findings suggest that the B1 sox functions are central to coordinating diverse embryonic processes, particularly those that occur during the development of the primordium of the central nervous system.
PMCID: PMC2865518  PMID: 20463883
18.  Sox2 is required for maintenance and regeneration, but not initial development, of hair cells in the zebrafish inner ear 
Developmental biology  2009;338(2):262.
Sox2 has been variously implicated in maintenance of pluripotent stem cells or, alternatively, early stages of cell differentiation, depending on context. In the developing inner ear, Sox2 initially marks all cells in the nascent sensory epithelium and, in mouse, is required for sensory epithelium formation. Sox2 is eventually downregulated in hair cells but is maintained in support cells, the functional significance of which is unknown. Here we describe regulation and function of sox2 in the zebrafish inner ear. Expression of sox2 begins after the onset of sensory epithelium development and is regulated by Atoh1a/b, Fgf and Notch. Knockdown of sox2 does not prevent hair cell production, but the rate of accumulation is reduced due to sporadic death of differentiated hair cells. We next tested the capacity for hair cell regeneration following laser-ablation of mature brn3c:gfp-labeled hair cells. In control embryos, regeneration of lost hair cells begins by 12 hours post-ablation and involves transdifferentiation of support cells rather than asymmetric cell division. In contrast, regeneration does not occur in sox2-depleted embryos. These data show that zebrafish sox2 is required for hair cell survival, as well as for transdifferentiation of support cells into hair cells during regeneration.
PMCID: PMC2815045  PMID: 20025865
regeneration; hair cell; support cell; zebrafish; heat shock; atoh1a; Fgf; Notch; laser ablation
19.  Sox2 and Jagged1 Expression in Normal and Drug-Damaged Adult Mouse Inner Ear 
Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear.
PMCID: PMC2536811  PMID: 18157569
ototoxicity; aminoglycoside; cochlea; vestibular; supporting cell; hair cell
20.  Activated Notch Causes Deafness by Promoting a Supporting Cell Phenotype in Developing Auditory Hair Cells 
PLoS ONE  2014;9(9):e108160.
To determine whether activated Notch can promote a supporting cell fate during sensory cell differentiation in the inner ear.
An activated form of the Notch1 receptor (NICD) was expressed in early differentiating hair cells using a Gfi1-Cre mouse allele. To determine the effects of activated Notch on developing hair cells, Gfi1-NICD animals and their littermate controls were assessed at 5 weeks for hearing by measuring auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). The differentiation of NICD-expressing hair cells was assessed at postnatal day (P) 6, 11 and 20, using histological and molecular markers for hair cells, as well as supporting cells/progenitor cells. We also examined whether the effects of Notch were mediated by SOX2, a gene expressed in supporting cells and a likely downstream target of Notch, by crossing an inducible form of SOX2 to the Gfi1-Cre.
Activation of Notch1 in developing auditory hair cells causes profound deafness. The NICD-expressing hair cells switch off a number of hair cell markers and lose their characteristic morphology. Instead, NICD-expressing hair cells adopt a morphology resembling supporting cells and upregulate a number of supporting cell markers. These effects do not appear to be mediated by SOX2, because although expression of SOX2 caused some hearing impairment, the SOX2-expressing hair cells did not downregulate hair cell markers nor exhibit a supporting cell-like phenotype.
Our data show that Notch signaling inhibits hair cell differentiation and promotes a supporting cell-like phenotype, and that these effects are unlikely to be mediated by SOX2.
PMCID: PMC4180070  PMID: 25264928
21.  sox9b Is a Key Regulator of Pancreaticobiliary Ductal System Development 
PLoS Genetics  2012;8(6):e1002754.
The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9bfh313, to dissect its function in the morphogenesis of this structure. Strikingly, sox9bfh313 homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9bfh313 mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9bfh313 mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9bfh313 mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies.
Author Summary
The liver and pancreas function as exocrine glands that secrete bile and pancreatic juice, respectively, to aid the digestion and absorption of nutrients. These fluids reach the intestine via the pancreaticobiliary ductal system, a complex network of ducts. Despite its pivotal role, the development of this ductal system is poorly understood. We have discovered that the zebrafish transcription factor gene sox9b, like its mammalian ortholog, is specifically expressed in the pancreaticobiliary ductal system. The perinatal lethality of Sox9 heterozygous mice makes the analysis of SOX9 function challenging; thus, we turned to the zebrafish to analyze the role of SOX9 in pancreaticobiliary ductal system development. We found that zebrafish sox9b mutants, which survive to adulthood, display defects in the morphogenesis of this ductal network: the intrahepatic and intrapancreatic ducts fail to form a branched network, whereas the ducts connecting the liver and pancreas to the intestine are malformed. These ductal defects affect bile transport and lead to cholestasis in adult mutant fish. At the molecular level, Sox9b interacts with the Notch signaling pathway to regulate the development of the intrahepatic biliary network. Therefore, our work in zebrafish reveals a broad and complex role for SOX9 in pancreaticobiliary ductal system morphogenesis.
PMCID: PMC3375260  PMID: 22719264
22.  Notch Prosensory Effects in the Mammalian Cochlea Are Partially Mediated by Fgf20 
Hearing loss is becoming an increasingly prevalent problem affecting more than 250 million people worldwide. During development, fibroblast growth factors (FGFs) are required for inner ear development as well as hair cell formation in the mammalian cochlea and thus make attractive therapeutic candidates for the regeneration of sensory cells. Previous findings showed that Fgfr1 conditional knock out mice exhibited hair cell and support cell formation defects. Immunoblocking with Fgf20 antibody in vitro produced a similar phenotype. While hair cell differentiation in mice starts at embryonic day (E)14.5, beginning with the inner hair cells, Fgf20 expression precedes hair cell differentiation at E13.5 in the cochlea. This suggests a potential role for Fgf20 in priming the sensory epithelium for hair cell formation. Treatment of explants with a gamma-secretase inhibitor, DAPT, decreased Fgf20 mRNA, suggesting that Notch is upstream of Fgf20. Notch signaling also plays an early role in prosensory formation during cochlear development. In this report we show that during development, Notch-mediated regulation of prosensory formation in the cochlea occurs via Fgf20. Addition of exogenous FGF20 compensated for the block in Notch signaling and rescued Sox2, a prosensory marker, and Gfi1, an early hair cell marker in explant cultures. We hypothesized that Fgf20 plays a role in specification, amplification, or maintenance of Sox2 expression in prosensory progenitors of the developing mammalian cochlea.
PMCID: PMC3525448  PMID: 22973011
Multipotent progenitor cells in the otic placode give rise to the specialized cell types of the inner ear, including neurons, supporting cells and hair cells. The mechanisms governing acquisition of specific fates by the cells that form the cochleovestibular organs remain poorly characterized. Here we show that whereas blocking Notch signaling with a γ-secretase inhibitor increased the conversion of inner ear stem cells to hair cells by a mechanism that involved the upregulation of bHLH transcription factor, Math1 (mouse Atoh1), differentiation to a neuronal lineage was increased by expression of the Notch intracellular domain. The shift to a neuronal lineage could be attributed in part to the continued cell proliferation in cells that did not undergo sensory cell differentiation due to the high Notch signaling, but also involved upregulation of Ngn1. The Notch intracellular domain influenced Ngn1 indirectly by upregulation of Sox2, a transcription factor expressed in many neural progenitor cells, and directly by an interaction with an RBP-J binding site in the Ngn1 promoter/enhancer. The induction of Ngn1 was blocked partially by mutation of the RBP-J site and nearly completely when the mutation was combined with inhibition of Sox2 expression. Thus Notch signaling had a significant role in the fate specification of neurons and hair cells from inner ear stem cells, and decisions about cell fate were mediated in part by a differential effect of combinatorial signaling by Notch and Sox2 on the expression of bHLH transcription factors.
PMCID: PMC3136123  PMID: 21653840
Neurogenesis; Hair Cells; Transcription Factor; Stem Cells; Auditory; Vestibular
24.  Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica 
EvoDevo  2011;2:12.
The Sox genes are important regulators of animal development belonging to the HMG domain-containing class of transcription factors. Studies in bilaterian models have notably highlighted their pivotal role in controlling progression along cell lineages, various Sox family members being involved at one side or the other of the critical balance between self-renewing stem cells/proliferating progenitors, and cells undergoing differentiation.
We have investigated the expression of 10 Sox genes in the cnidarian Clytia hemisphaerica. Our phylogenetic analyses allocated most of these Clytia genes to previously-identified Sox groups: SoxB (CheSox2, CheSox3, CheSox10, CheSox13, CheSox14), SoxC (CheSox12), SoxE (CheSox1, CheSox5) and SoxF (CheSox11), one gene (CheSox15) remaining unclassified. In the planula larva and in the medusa, the SoxF orthologue was expressed throughout the endoderm. The other genes were expressed either in stem cells/undifferentiated progenitors, or in differentiating (-ed) cells with a neuro-sensory identity (nematocytes or neurons). In addition, most of them were expressed in the female germline, with their maternal transcripts either localised to the animal region of the egg, or homogeneously distributed.
Comparison with other cnidarians, ctenophores and bilaterians suggest ancient evolutionary conservation of some aspects of gene expression/function at the Sox family level: (i) many Sox genes are expressed in stem cells and/or undifferentiated progenitors; (ii) other genes, or the same under different contexts, are associated with neuro-sensory cell differentiation; (iii) Sox genes are commonly expressed in the germline; (iv) SoxF group genes are associated with endodermal derivatives. Strikingly, total lack of correlation between a given Sox orthology group and expression/function in stem cells/progenitors vs. in differentiating cells implies that Sox genes can easily switch from one side to the other of the balance between these fundamental cellular states in the course of evolution.
PMCID: PMC3120710  PMID: 21631916
25.  Neurosensory development and cell fate determination in the human cochlea 
Neural Development  2013;8:20.
Hearing depends on correct functioning of the cochlear hair cells, and their innervation by spiral ganglion neurons. Most of the insight into the embryological and molecular development of this sensory system has been derived from animal studies. In contrast, little is known about the molecular expression patterns and dynamics of signaling molecules during normal fetal development of the human cochlea. In this study, we investigated the onset of hair cell differentiation and innervation in the human fetal cochlea at various stages of development.
At 10 weeks of gestation, we observed a prosensory domain expressing SOX2 and SOX9/SOX10 within the cochlear duct epithelium. In this domain, hair cell differentiation was consistently present from 12 weeks, coinciding with downregulation of SOX9/SOX10, to be followed several weeks later by downregulation of SOX2. Outgrowing neurites from spiral ganglion neurons were found penetrating into the cochlear duct epithelium prior to hair cell differentiation, and directly targeted the hair cells as they developed. Ubiquitous Peripherin expression by spiral ganglion neurons gradually diminished and became restricted to the type II spiral ganglion neurons by 18 weeks. At 20 weeks, when the onset of human hearing is thought to take place, the expression profiles in hair cells and spiral ganglion neurons matched the expression patterns of the adult mammalian cochleae.
Our study provides new insights into the fetal development of the human cochlea, contributing to our understanding of deafness and to the development of new therapeutic strategies to restore hearing.
PMCID: PMC3854452  PMID: 24131517
Human; Fetus; Cochlea; SOX transcription factors; Hair cells; Spiral ganglion; Innervation; Peripherin

Results 1-25 (1219238)