PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (393473)

Clipboard (0)
None

Related Articles

1.  Comparative transcriptome analysis of green/white variegated sectors in Arabidopsis yellow variegated2: responses to oxidative and other stresses in white sectors 
Journal of Experimental Botany  2010;61(9):2433-2445.
The yellow variegated2 (var2) mutant in Arabidopsis thaliana has been studied as a typical leaf-variegated mutant whose defect results from the lack of FtsH2 metalloprotease in chloroplasts. The var2 green sectors suffer from photo-oxidative stress and accumulate high levels of reactive oxygen species (ROS) because of compromised Photosystem II repair. This study investigated and compared microarray-based expression profiles of green and white sectors of var2 leaves. Results suggest that ROS that accumulate in chloroplasts of var2 green sectors do not cause much significant change in the transcriptional profile related to ROS signalling and scavenging. By contrast, transcriptome in the white sectors apparently differs from those in the green sectors and wild type. Numerous genes related to photosynthesis and chloroplast functions were repressed in the white sectors. Furthermore, many genes related to oxidative stress were up-regulated. Among them, ROS scavenging genes were specifically examined, such as Cu/Zn superoxide dismutase 2 (CSD2), that were apparently up-regulated in white but not in the green sectors. Up-regulation of CSD2 appears to be partly attributable to the lack of a microRNA (miR398) in the white sectors. It was concluded that the white sectors exhibit a response to oxidative and other stresses, including CSD2 up-regulation, which might be commonly found in tissues with abnormal chloroplast differentiation.
doi:10.1093/jxb/erq075
PMCID: PMC2877895  PMID: 20400527
Arabidopsis; chloroplasts; miR398; plastids; reactive oxygen species (ROS); superoxide dismutase (SOD); yellow variegated2 (var2)
2.  Identification of a Mg-protoporphyrin IX monomethyl ester cyclase homologue, EaZIP, differentially expressed in variegated Epipremnum aureum ‘Golden Pothos’ is achieved through a unique method of comparative study using tissue regenerated plants 
Journal of Experimental Botany  2010;61(5):1483-1493.
Variegated plants provide a valuable tool for studying chloroplast biogenesis by allowing direct comparison between green and white/yellow sectors within the same leaf. While variegated plants are abundant in nature, the mechanism of leaf variegation remains largely unknown. Current studies are limited to a few mutants in model plant species, and are complicated by the potential for cross-contamination during dissection of leaf tissue into contrasting sectors. To overcome these obstacles, an alternative approach was explored using tissue-culture techniques to regenerate plantlets from unique sectors. Stable green and pale yellow plants were developed from a naturally variegated Epipremnum aureum ‘Golden Pothos’. By comparing the gene expression between green and pale yellow plants using suppression subtractive hybridization in conjunction with homologous sequence search, nine down-regulated and 18 up-regulated genes were identified in pale yellow plants. Transcript abundance for EaZIP (Epipremnum aureum leucine zipper), a nuclear gene homologue of tobacco NTZIP and Arabidopsis CHL27, was reduced more than 4000-fold in qRT-PCR analysis. EaZIP encodes the Mg-protoporphyrin IX monomethyl ester cyclase, one of the key enzymes in the chlorophyll biosynthesis pathway. Examination of EaZIP expression in naturally variegated ‘Golden Pothos’ confirmed that EaZIP transcript levels were correlated with leaf chlorophyll contents, suggesting that this gene plays a major role in the loss of chlorophyll in the pale yellow sectors of E. aureum ‘Golden Pothos’. This study further suggests that tissue-culture regeneration of plantlets from different coloured sectors of variegated leaves can be used to investigate the underlying mechanisms of variegation.
doi:10.1093/jxb/erq020
PMCID: PMC2914579  PMID: 20167611
Golden Pothos; Mg-protoporphyrin IX monomethyl ester cyclase; tissue culture; transcript abundance; variegation formation
3.  Leaf Variegation in the Rice zebra2 Mutant Is Caused by Photoperiodic Accumulation of Tetra-Cis-Lycopene and Singlet Oxygen 
Molecules and Cells  2011;33(1):87-97.
In field conditions, the zebra2 (z2) mutant in rice (Oryza sativa) produces leaves with transverse pale-green/yellow stripes. It was recently reported that ZEBRA2 encodes carotenoid isomerase (CRTISO) and that low levels of lutein, an essential carotenoid for non-photochemical quenching, cause leaf variegation in z2 mutants. However, we found that the z2 mutant phenotype was completely suppressed by growth under continuous light (CL; permissive) conditions, with concentrations of chlorophyll, carotenoids and chloroplast proteins at normal levels in z2 mutants under CL. In addition, three types of reactive oxygen species (ROS; superoxide [O2−], hydrogen peroxide [H2O2], and singlet oxygen [1O2]) accumulated to high levels in z2 mutants grown under short-day conditions (SD; alternate 10-h light/14-h dark; restrictive), but do not accumulate under CL conditions. However, the levels of lutein and zeaxanthin in z2 leaves were much lower than normal in both permissive CL and restrictive SD growth conditions, indicating that deficiency of these two carotenoids is not responsible for the leaf variegation phenotype. We found that the CRTISO substrate tetra-cis-lycopene accumulated during the dark periods under SD, but not under CL conditions. Its accumulation was also positively correlated with 1O2 levels generated during the light period, which consequently altered the expression of 1O2-responsive and cell death-related genes in the variegated z2 leaves. Taking these results together, we propose that the z2 leaf variegation can be largely attributed to photoperiodic accumulation of tetra-cis-lycopene and generation of excessive 1O2 under natural day-night conditions.
doi:10.1007/s10059-012-2218-0
PMCID: PMC3887748  PMID: 22134723
carotenoid isomerase; rice; singlet oxygen; tetra-cis-lycopene; zebra2
4.  Natural foliar variegation without costs? The case of Begonia 
Annals of Botany  2012;109(6):1065-1074.
Background and Aims
Foliar variegation is recognized as arising from two major mechanisms: leaf structure and pigment-related variegation. Begonia has species with a variety of natural foliar variegation patterns, providing diverse examples of this phenomenon. The aims of this work are to elucidate the mechanisms underlying different foliar variegation patterns in Begonia and to determine their physiological consequences.
Methods
Six species and one cultivar of Begonia were investigated. Light and electron microscopy revealed the leaf structure and ultrastructure of chloroplasts in green and light areas of variegated leaves. Maximum quantum yields of photosystem II were measured by chlorophyll fluorescence. Comparison with a cultivar of Ficus revealed key features distinguishing variegation mechanisms.
Key Results
Intercellular space above the chlorenchyma is the mechanism of variegation in these Begonia. This intercellular space can be located (a) below the adaxial epidermis or (b) below the adaxial water storage tissue (the first report for any taxa), creating light areas on a leaf. In addition, chlorenchyma cell shape and chloroplast distribution within chlorenchyma cells differ between light and green areas. Chloroplasts from both areas showed dense stacking of grana and stroma thylakoid membranes. The maximum quantum yield did not differ significantly between these areas, suggesting minimal loss of function with variegation. However, the absence of chloroplasts in light areas of leaves in the Ficus cultivar led to an extremely low quantum yield.
Conclusions
Variegation in these Begonia is structural, where light areas are created by internal reflection between air spaces and cells in a leaf. Two forms of air space structural variegation occur, distinguished by the location of the air spaces. Both forms may have a common origin in development where dermal tissue becomes loosely connected to mesophyll. Photosynthetic functioning is retained in light areas, and these areas do not include primary veins, potentially limiting the costs of variegation.
doi:10.1093/aob/mcs025
PMCID: PMC3336944  PMID: 22362664
Begonia; chlorenchyma; chlorophyll fluorescence; chloroplast; Ficus pumila ‘Sonny’; intercellular space; internal reflection; ultrastructure; variegation
5.  A high proportion of genes involved in position effect variegation also affect chromosome inheritance 
Chromosoma  2004;112(6):269-276.
Suppressors and enhancers of position effect variegation (PEV) have been linked to the establishment and maintenance of heterochromatin. The presence of centromeres and other inheritance elements in hetero-chromatic regions suggests that suppressors and enhancers of PEV, Su(var) s and E(var)s [collectively termed Mod(var)s], may be required for chromosome inheritance. In order to test this hypothesis, we screened 59 ethyl methanesulfonate-generated Drosophila Mod (var)s for dominant effects on the partially compromised inheritance of a minichromosome (J21A) missing a portion of the genetically defined centromere. Nearly half of these Mod(var)s significantly increased or decreased the transmission of J21A. Analyses of homozygous mutant larval neuroblasts suggest that these mutations affect cell cycle progression and native chromosome morphology. Five out of six complementation groups tested displayed mitotic abnormalities, including phenotypes such as telomere fusions, overcondensed chromosomes, and low mitotic index. We conclude that Mod (var)s as a group are highly enriched for genes that encode essential inheritance functions. We propose that a primary function of Mod(var)s is to promote chromosome inheritance, and that the gene silencing phenotype associated with PEV may be a secondary consequence of the heterochromatic structures required to carry out these functions.
doi:10.1007/s00412-003-0272-2
PMCID: PMC3116012  PMID: 14767778
6.  The Mechanism of Variegation in immutans Provides Insight into Chloroplast Biogenesis 
The immutans (im) variegation mutant of Arabidopsis has green and white-sectored leaves due to the absence of fully functional plastid terminal oxidase (PTOX), a plastoquinol oxidase in thylakoid membranes. PTOX appears to be at the nexus of a growing number of biochemical pathways in the plastid, including carotenoid biosynthesis, PSI cyclic electron flow, and chlororespiration. During the early steps of chloroplast biogenesis, PTOX serves as an alternate electron sink and is a prime determinant of the redox poise of the developing photosynthetic apparatus. Whereas a lack of PTOX causes the formation of photooxidized plastids in the white sectors of im, compensating mechanisms allow the green sectors to escape the effects of the mutation. This manuscript provides an update on PTOX, the mechanism of im variegation, and findings about im compensatory mechanisms.
doi:10.3389/fpls.2012.00260
PMCID: PMC3506963  PMID: 23205022
IMMUTANS; PTOX; variegation; chloroplast; photosynthesis; carotenoids; chloroplast biogenesis; retrograde signaling
7.  CpLEPA Is Critical for Chloroplast Protein Synthesis Under Suboptimal Conditions in Arabidopsis thaliana 
PLoS ONE  2012;7(11):e49746.
LEPA is one of the most conserved translation factors and is found from bacteria to higher plants. However, the physiological function of the chloroplast LEPA homolog in higher plants remains unknown. Herein, we demonstrate the physiological role of cpLEPA in enabling efficient photosynthesis in higher plants. The cplepa-1 mutant displays slightly high chlorophyll fluorescence and pale green phenotypes under normal growth conditions. The growth of the cplepa-1 mutant is reduced when grown on soil, and greater reduction is observed under intense light illumination. Photosynthetic activity is impaired in the cplepa-1 mutants, which is reflected in the decreased steady-state levels of chloroplast proteins. In vivo protein labeling experiments explained the decrease in the steady-state levels of chloroplast proteins. An abnormal association of the chloroplast-encoded mRNAs with ribosomes suggests that the protein synthesis deficiencies in cplepa-1 are due to defects in translation initiation in the chloroplasts. The cpLEPA protein appears to be an essential translation factor that promotes the efficiency of chloroplast protein synthesis.
doi:10.1371/journal.pone.0049746
PMCID: PMC3499520  PMID: 23166764
8.  Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat 
Breeding Science  2013;63(2):169-175.
The yellow-green leaf mutant has a non-lethal chlorophyll-deficient mutation that can be exploited in photosynthesis and plant development research. A novel yellow-green mutant derived from Triticum durum var. Cappelli displays a yellow-green leaf color from the seedling stage to the mature stage. Examination of the mutant chloroplasts with transmission electron microscopy revealed that the shape of chloroplast changed, grana stacks in the stroma were highly variable in size and disorganized. The pigment content, including chlorophyll a, chlorophyll b, total chlorophyll and carotene, was decreased in the mutant. In contrast, the chla/chlb ratio of the mutants was increased in comparison with the normal green leaves. We also found a reduction in the photosynthetic rate, fluorescence kinetic parameters and yield-related agronomic traits of the mutant. A genetic analysis revealed that two nuclear recessive genes controlled the expression of this trait. The genes were designated ygld1 and ygld2. Two molecular markers co-segregated with these genes. ygld 1 co-segregated with the SSR marker wmc110 on chromosome 5AL and ygld 2 co-segregated with the SSR marker wmc28 on chromosome 5BL. These results will contribute to the gene cloning and the understanding of the mechanisms underlying chlorophyll metabolism and chloroplast development in wheat.
doi:10.1270/jsbbs.63.169
PMCID: PMC3688378  PMID: 23853511
durum wheat; yellow-green leaf mutant; genetic mapping; agronomic traits
9.  RNR1, a 3′–5′ exoribonuclease belonging to the RNR superfamily, catalyzes 3′ maturation of chloroplast ribosomal RNAs in Arabidopsis thaliana  
Nucleic Acids Research  2005;33(8):2751-2763.
Arabidopsis thaliana chloroplasts contain at least two 3′ to 5′ exoribonucleases, polynucleotide phosphorylase (PNPase) and an RNase R homolog (RNR1). PNPase has been implicated in both mRNA and 23S rRNA 3′ processing. However, the observed maturation defects do not affect chloroplast translation, suggesting that the overall role of PNPase in maturation of chloroplast rRNA is not essential. Here, we show that this role can be largely ascribed to RNR1, for which homozygous mutants germinate only on sucrose-containing media, and have white cotyledons and pale green rosette leaves. Accumulation of chloroplast-encoded mRNAs and tRNAs is unaffected in such mutants, suggesting that RNR1 activity is either unnecessary or redundant for their processing and turnover. However, accumulation of several chloroplast rRNA species is severely affected. High-resolution RNA gel blot analysis, and mapping of 5′ and 3′ ends, revealed that RNR1 is involved in the maturation of 23S, 16S and 5S rRNAs. The 3′ extensions of the accumulating 5S rRNA precursors can be efficiently removed in vitro by purified RNR1, consistent with this view. Our data suggest that decreased accumulation of mature chloroplast ribosomal RNAs leads to a reduction in the number of translating ribosomes, ultimately compromising chloroplast protein abundance and thus plant growth and development.
doi:10.1093/nar/gki576
PMCID: PMC1110743  PMID: 15891117
10.  Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling 
Molecular Microbiology  2012;84(2):243-259.
Summary
The Plasmodium falciparum genome is equipped with several subtelomeric gene families that are implicated in parasite virulence and immune evasion. Members of these families are uniformly positioned within heterochromatic domains and are thus subject to variegated expression. The best-studied example is that of the var family encoding the major parasite virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 undergoes antigenic variation through switches in mutually exclusive var gene transcription. var promoters function as crucial regulatory elements in the underlying epigenetic control strategy. Here, we analysed promoters of upsA, upsB and upsC var, rifA1-type rif, stevor, phist and pfmc-2tm genes and investigated their role in endogenous gene transcription by comparative genome-wide expression profiling of transgenic parasite lines. We find that the three major var promoter types are functionally equal and play an essential role in singular gene choice. Unlike var promoters, promoters of non-var families are not silenced by default, and transcription of non-var families is not subject to the same mode of mutually exclusive transcription as has been observed for var genes. Our findings identified a differential logic in the regulation of var and other subtelomeric virulence gene families, which will have important implications for our understanding and future analyses of phenotypic variation in malaria parasites.
doi:10.1111/j.1365-2958.2012.08019.x
PMCID: PMC3491689  PMID: 22435676
11.  Reactive oxygen species derived from impaired quality control of photosystem II are irrelevant to plasma-membrane NADPH oxidases 
Plant Signaling & Behavior  2010;5(3):264-266.
Protein quality control plays an important role in the photosynthetic apparatus because its components receive excess light energy and are susceptible to photooxidative damage. In chloroplasts, photodamage is targeted to the D1 protein of Photosystem II (PSII). The coordinated PSII repair cycle (PSII disassembly, D1 degradation and synthesis, and PSII reassembly) is necessary to mitigate photoinhibition. A thylakoid protease FtsH, which is formed predominantly as a heteromeric complex with two isoforms of FtsH2 and FtsH5 in Arabidopsis, is the major protease involved in PSII repair. A mutant lacking FtsH2 (termed var2) shows compromised D1 degradation. Furthermore, var2 accumulates high levels of chloroplastic reactive oxygen species (cpROS), reflecting photooxidative stress without functional PSII repair. To examine if the cpROS produced in var2 are connected to a ROS signaling pathway mediated by plasma membrane NADPH oxidase (encoded by AtRbohD or AtRbohF), we generated mutants in which either Rboh gene was inactivated under var2 background. Lack of NADPH oxidases had little or no impact on cpROS accumulation. It seems unlikely that cpROS in var2 activate plasma membrane NADPH oxidases to enhance ROS production and the signaling pathway. Mutants that are defective in PSII repair might be valuable for investigating cpROS and their physiological roles.
PMCID: PMC2881273  PMID: 20023407
reactive oxygen species (ROS); photosystem II repair cycle; chloroplast; FtsH; NADPH oxidase; D1 protein; protein turnover
12.  Effects of chloroplast dysfunction on mitochondria: white sectors in variegated leaves have higher mitochondrial DNA levels and lower dark respiration rates than green sectors 
Protoplasma  2011;249(3):805-817.
Co-ordination between plastids and mitochondria is so essential that there should be extensive inter-organellar crosstalk during development of plant cells. Indeed, chloroplast dysfunction in white leaves of plastid ribosome-deficient mutant barley, albostrians, is reportedly accompanied by increases in the levels of mitochondrial DNA and mitochondrial transcripts, suggesting that (i) developmental/physiological status of plastids (or heterotrophic growth condition of albino leaves) can affect the status of mitochondrial genome, and (ii) the function of the affected mitochondria may also be up-regulated accordingly. However, functional aspects of the mitochondria affected by chloroplast dysfunction have not yet been examined in detail. Here, we examined the effects of chloroplast dysfunction on mitochondrial DNA level and dark respiration rate, by comparing white and green sectors within individual variegated leaves, using 12 ornamental plants as experimental materials. The pattern of leaf variegation differed from species to species, suggesting that different mechanisms were involved in the formation of white sectors in different species. Quantitative hybridization analysis revealed that mitochondrial DNA levels were generally higher in white sectors than in green sectors. In spite of the elevated mitochondrial DNA levels, however, dark respiration rates in white sectors were generally lower than those in green sectors. Several possible mechanisms for elevation of mitochondrial DNA level and suppression of dark respiration rates in white sectors are discussed.
Electronic supplementary material
The online version of this article (doi:10.1007/s00709-011-0325-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s00709-011-0325-y
PMCID: PMC3382374  PMID: 21984314
Chloroplast dysfunction; Inter-organellar crosstalk; Leaf variegation; Mitochondrial DNA; Ornamental plant; Respiration
13.  The tetratricopeptide repeat-containing protein slow green1 is required for chloroplast development in Arabidopsis  
Journal of Experimental Botany  2014;65(4):1111-1123.
Summary
A chloroplast-localized tetratricopeptide repeat-containing protein, SG1, was identified through a slow-greening mutant in Arabidopsis. SG1 is required for proplastid to chloroplast transition and its mutation disrupted the transcriptions of chloroplast-related genes. It also genetically interacts with GUN1 or GUN4.
A new gene, SG1, was identified in a slow-greening mutant (sg1) isolated from an ethylmethanesulphonate-mutagenized population of Arabidopsis thaliana. The newly formed leaves of sg1 were initially albino, but gradually became pale green. After 3 weeks, the leaves of the mutant were as green as those of the wild-type plants. Transmission electron microscopic observations revealed that the mutant displayed delayed proplastid to chloroplast transition. The results of map-based cloning showed that SG1 encodes a chloroplast-localized tetratricopeptide repeat-containing protein. Quantitative real-time reverse transcription–PCR data demonstrated the presence of SG1 gene expression in all tissues, particularly young green tissues. The sg1 mutation disrupted the expression levels of several genes associated with chloroplast development, photosynthesis, and chlorophyll biosynthesis. The results of genetic analysis indicated that gun1 and gun4 partially restored the expression patterns of the previously detected chloroplast-associated genes, thereby ameliorating the slow-greening phenotype of sg1. Taken together, the results suggest that the newly identified protein, SG1, is required for chloroplast development in Arabidopsis.
doi:10.1093/jxb/ert463
PMCID: PMC3935568  PMID: 24420572
Albino; Arabidopsis thaliana; chloroplast development; proplastid to chloroplast transition; slow greening; tetratricopeptide repeat-containing protein.
14.  Mutations in CG8878, a Novel Putative Protein Kinase, Enhance P Element Dependent Silencing (PDS) and Position Effect Variegation (PEV) in Drosophila melanogaster 
PLoS ONE  2014;9(3):e71695.
Genes in multicellular organisms are expressed as part of a developmental program that is largely dependent on self-perpetuating higher-order chromatin states. The mechanism of establishing and maintaining these epigenetic events is well studied in Drosophila. The first known example of an epigenetic effect was that of (PEV) in Drosophila, which has been shown to be due to gene silencing via heterochromatin formation. We are investigating a process similar to Position Effect Variegation (PEV) using a mini-w transgene, called Pci, inserted in the upstream regulatory region of ci. The mini-white+ transgene in Pci is expressed throughout the adult eye; however, when other P or KP elements are present, a variegated eye phenotype results indicating random w+ silencing during development. This P element dependent silencing (PDS) can be modified by the haplo-suppressors/triplo-enhancers, Su(var)205 and Su(var)3–7, indicating that these heterochromatic modifiers also act dose dependently in PDS. Here we use a spontaneous derivative mutation of Pci called PciE1 (E1) that variegates like PDS in the absence of P elements, presumably due to an adjacent gypsy element insertion, to screen for second-site modifier mutations that enhance variable silencing of white+ in E1. We isolated 7 mutations in CG8878, an essential gene, that enhance the E1 variegated phenotype. CG8878, a previously uncharacterized gene, potentially encodes a serine/threonine kinase whose closest Drosophila paralogue, ballchen (nhk-1), phosphorylates histones. These mutant alleles enhance both PDS at E1 and Position Effect Variegation (PEV) at wm4, indicating a previously unknown common silencing mechanism between the two.
doi:10.1371/journal.pone.0071695
PMCID: PMC3948951  PMID: 24614804
15.  Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. 
Molecular and Cellular Biology  1995;15(6):3003-3011.
The occurrence of homologous DNA recombination in chloroplasts is well documented, but little is known about the molecular mechanisms involved or their biological significance. The endosymbiotic origin of plastids and the recent finding of an Arabidopsis nuclear gene, encoding a chloroplast-localized protein homologous to Escherichia coli RecA, suggest that the plastid recombination system is related to its eubacterial counterpart. Therefore, we examined whether dominant negative mutants of the E. coli RecA protein can interfere with the activity of their putative homolog in the chloroplast of the unicellular green alga Chlamydomonas reinhardtii. Transformants expressing these mutant RecA proteins showed reduced survival rates when exposed to DNA-damaging agents, deficient repair of chloroplast DNA, and diminished plastid DNA recombination. These results strongly support the existence of a RecA-mediated recombination system in chloroplasts. We also found that the wild-type E. coli RecA protein enhances the frequency of plastid DNA recombination over 15-fold, although it has no effect on DNA repair or cell survival. Thus, chloroplast DNA recombination appears to be limited by the availability of enzymes involved in strand exchange rather than by the level of initiating DNA substrates. Our observations suggest that a primary biological role of the recombination system in plastids is in the repair of their DNA, most likely needed to cope with damage due to photooxidation and other environmental stresses. This hypothesis could explain the evolutionary conservation of DNA recombination in chloroplasts despite the predominantly uniparental inheritance of their genomes.
PMCID: PMC230531  PMID: 7760798
16.  Sumoylation of Drosophila SU(VAR)3-7 is required for its heterochromatic function 
Nucleic Acids Research  2010;38(13):4254-4262.
In Drosophila, SU(VAR)3-7 is an essential heterochromatin component. It is required for proper chromatin condensation, and changing its dose modifies position-effect variegation. Sumoylation is a post-translational modification shown to play a role in diverse biological processes. Here, we demonstrate that sumoylation is essential for proper heterochromatin function in Drosophila through modification of SU(VAR)3-7. Indeed, SU(VAR)3-7 is sumoylated at lysine K839; this modification is required for localization of SU(VAR)3-7 at pericentric heterochromatin, chromosome 4, and telomeres. In addition, sumoylation of SU(VAR)3-7 is a prerequisite for its ability to enhance position-effect variegation. Thus, these results show that the heterochromatic function of SU(VAR)3-7 depends on its own sumoylation, and unveil a role for sumoylation in Drosophila heterochromatin.
doi:10.1093/nar/gkq168
PMCID: PMC2910048  PMID: 20299342
17.  Structure-Function Analysis of SUV39H1 Reveals a Dominant Role in Heterochromatin Organization, Chromosome Segregation, and Mitotic Progression 
Molecular and Cellular Biology  2000;20(10):3728-3741.
SUV39H1, a human homologue of the Drosophila position effect variegation modifier Su(var)3-9 and of the Schizosaccharomyces pombe silencing factor clr4, encodes a novel heterochromatic protein that transiently accumulates at centromeric positions during mitosis. Using a detailed structure-function analysis of SUV39H1 mutant proteins in transfected cells, we now show that deregulated SUV39H1 interferes at multiple levels with mammalian higher-order chromatin organization. First, forced expression of full-length SUV39H1 (412 amino acids) redistributes endogenous M31 (HP1β) and induces abundant associations with inter- and metaphase chromatin. These properties depend on the C-terminal SET domain, although the major portion of the SUV39H1 protein (amino acids 89 to 412) does not display affinity for nuclear chromatin. By contrast, the M31 interaction surface, which was mapped to the first 44 N-terminal amino acids, together with the immediately adjacent chromo domain, directs specific accumulation at heterochromatin. Second, cells overexpressing full-length SUV39H1 display severe defects in mitotic progression and chromosome segregation. Surprisingly, whereas localization of centromere proteins is unaltered, the focal, G2-specific distribution of phosphorylated histone H3 at serine 10 (phosH3) is dispersed in these cells. This phosH3 shift is not observed with C-terminally truncated mutant SUV39H1 proteins or with deregulated M31. Together, our data reveal a dominant role(s) for the SET domain of SUV39H1 in the distribution of prominent heterochromatic proteins and suggest a possible link between a chromosomal SU(VAR) protein and histone H3.
PMCID: PMC85674  PMID: 10779362
18.  cis- and trans-Acting Determinants for Translation of psbD mRNA in Chlamydomonas reinhardtii 
Molecular and Cellular Biology  2000;20(21):8134-8142.
Chloroplast translation is mediated by nucleus-encoded factors that interact with distinct cis-acting RNA elements. A U-rich sequence within the 5′ untranslated region of the psbD mRNA has previously been shown to be required for its translation in Chlamydomonas reinhardtii. By using UV cross-linking assays, we have identified a 40-kDa RNA binding protein, which binds to the wild-type psbD leader, but is unable to recognize a nonfunctional leader mutant lacking the U-rich motif. RNA binding is restored in a chloroplast cis-acting suppressor. The functions of several site-directed psbD leader mutants were analyzed with transgenic C. reinhardtii chloroplasts and the in vitro RNA binding assay. A clear correlation between photosynthetic activity and the capability to bind RNA by the 40-kDa protein was observed. Furthermore, the data obtained suggest that the poly(U) region serves as a molecular spacer between two previously characterized cis-acting elements, which are involved in RNA stabilization and translation. RNA-protein complex formation depends on the nuclear Nac2 gene product that is part of a protein complex required for the stabilization of the psbD mRNA. The sedimentation properties of the 40-kDa RNA binding protein suggest that it interacts directly with this Nac2 complex and, as a result, links processes of chloroplast RNA metabolism and translation.
PMCID: PMC86423  PMID: 11027283
19.  Characterization of Tbc2, a nucleus-encoded factor specifically required for translation of the chloroplast psbC mRNA in Chlamydomonas reinhardtii 
The Journal of Cell Biology  2002;157(6):953-962.
Genetic analysis has revealed that the three nucleus-encoded factors Tbc1, Tbc2, and Tbc3 are involved in the translation of the chloroplast psbC mRNA of the eukaryotic green alga Chlamydomonas reinhardtii. In this study we report the isolation and phenotypic characterization of two new tbc2 mutant alleles and their use for cloning and characterizing the Tbc2 gene by genomic complementation. TBC2 encodes a protein of 1,115 residues containing nine copies of a novel degenerate 38–40 amino acid repeat with a quasiconserved PPPEW motif near its COOH-terminal end. The middle part of the Tbc2 protein displays partial amino acid sequence identity with Crp1, a protein from Zea mays that is implicated in the processing and translation of the chloroplast petA and petD RNAs. The Tbc2 protein is enriched in chloroplast stromal subfractions and is associated with a 400-kD protein complex that appears to play a role in the translation of specifically the psbC mRNA.
doi:10.1083/jcb.200201060
PMCID: PMC2174033  PMID: 12045185
chloroplast; translation; Chlamydomonas; photosynthetic mutant; protein complex
20.  The Hetero-Hexameric Nature of a Chloroplast AAA+ FtsH Protease Contributes to Its Thermodynamic Stability 
PLoS ONE  2012;7(4):e36008.
FtsH is an evolutionary conserved membrane-bound metalloprotease complex. While in most prokaryotes FtsH is encoded by a single gene, multiple FtsH genes are found in eukaryotes. Genetic and biochemical data suggest that the Arabidopsis chloroplast FtsH is a hetero-hexamer. This raises the question why photosynthetic organisms require a heteromeric complex, whereas in most bacteria a homomeric one is sufficient. To gain structural information of the possible complexes, the Arabidopsis FtsH2 (type B) and FtsH5 (type A) were modeled. An in silico study with mixed models of FtsH2/5 suggests that heteromeric hexamer structure with ratio of 4∶2 is more likely to exists. Specifically, calculation of the buried surface area at the interfaces between neighboring subunits revealed that a hetero-complex should be thermodynamically more stable than a homo-hexamer, due to the presence of additional hydrophobic and hydrophilic interactions. To biochemically assess this model, we generated Arabidopsis transgenic plants, expressing epitope-tagged FtsH2 and immuno-purified the protein. Mass-spectrometry analysis showed that FtsH2 is associated with FtsH1, FtsH5 and FtsH8. Interestingly, we found that ‘type B’ subunits (FtsH2 and FtsH8) were 2–3 fold more abundant than ‘type A’ (FtsH1 and FtsH5). The biochemical data corroborate the in silico model and suggest that the thylakoid FtsH hexamer is composed of two ‘type A’ and four ‘type B’ subunits.
doi:10.1371/journal.pone.0036008
PMCID: PMC3339871  PMID: 22558304
21.  Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum 
Cellular Microbiology  2013;15(5):718-726.
Phenotypic variation in genetically identical malaria parasites is an emerging topic. Although antigenic variation is only part of a more global parasite strategy to create adaptation through epigenetically controlled transcriptional variability, it is the central mechanism enabling immune evasion and promoting pathogenesis. The var gene family is the best-studied example in a wide range of clonally variant gene families in Plasmodium falciparum. It is unique in its strict selection of a single member for activation, a process termed monoallelic expression. The conceptual advances that have emerged from studying var genes show striking common epigenetic features with many other clonally variant gene families or even single-copy genes that show a variegated expression in parasite populations. However, major mechanistic questions, such as the existence of a potential expression site and the identity of transcription factors or genetic elements driving singular gene choice, are still unanswered. In this review we discuss the recent findings in the molecular processes essential for clonal variation, namely silencing, activation, poising and switching. Integrating findings about all clonally variant gene families and other mutually exclusive expression systems will hopefully drive mechanistic understanding of antigenic variation.
doi:10.1111/cmi.12115
PMCID: PMC3654561  PMID: 23351305
22.  Telomeric Trans-Silencing: An Epigenetic Repression Combining RNA Silencing and Heterochromatin Formation 
PLoS Genetics  2007;3(9):e158.
The study of P-element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a repression mechanism by which a transposon or a transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequence or TAS) has the capacity to repress in trans in the female germline, a homologous transposon, or transgene located in euchromatin. TSE shows variegation among egg chambers in ovaries when silencing is incomplete. Here, we report that TSE displays an epigenetic transmission through meiosis, which involves an extrachromosomal maternally transmitted factor. We show that this silencing is highly sensitive to mutations affecting both heterochromatin formation (Su(var)205 encoding Heterochromatin Protein 1 and Su(var)3–7) and the repeat-associated small interfering RNA (or rasiRNA) silencing pathway (aubergine, homeless, armitage, and piwi). In contrast, TSE is not sensitive to mutations affecting r2d2, which is involved in the small interfering RNA (or siRNA) silencing pathway, nor is it sensitive to a mutation in loquacious, which is involved in the micro RNA (or miRNA) silencing pathway. These results, taken together with the recent discovery of TAS homologous small RNAs associated to PIWI proteins, support the proposition that TSE involves a repeat-associated small interfering RNA pathway linked to heterochromatin formation, which was co-opted by the P element to establish repression of its own transposition after its recent invasion of the D. melanogaster genome. Therefore, the study of TSE provides insight into the genetic properties of a germline-specific small RNA silencing pathway.
Author Summary
The genome of the fruitfly was invaded in the last century by a mobile DNA element called the P element. After a transient period of genetic disorders due to P mobility, the P element established a repressive state for its transposition. We have shown that a major component of this repression comes from P copies inserted close to telomeres, the ends of linear chromosomes. One or two P copies inserted in subtelomeric heterochromatin (the DNA region highly compacted by protein complexes) can stabilize around 80 P copies. This finding allowed the discovery of a more general phenomenon called the “Trans-silencing effect” in which a transgene inserted in this subtelomeric heterochromatin represses, in the female germline, a homologous transgene, irrespective of the genetic location of the latter. We show that Trans-silencing requires not only the chromosomal copy of the telomeric silencer, but also a maternally transmitted factor whose influence can persist over generations. We have found that this epigenetic silencing is sensitive to mutations in genes involved in heterochromatin formation and in a recently discovered silencing pathway based on small RNAs. Trans-silencing thus provides a tool for mechanistic analysis of gene repression on the basis of chromatin changes combined with small RNA pathways in the germline.
doi:10.1371/journal.pgen.0030158
PMCID: PMC1976332  PMID: 17941712
23.  Telomeric Trans-Silencing: An Epigenetic Repression Combining RNA Silencing and Heterochromatin Formation 
PLoS Genetics  2007;3(9):e158.
The study of P-element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a repression mechanism by which a transposon or a transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequence or TAS) has the capacity to repress in trans in the female germline, a homologous transposon, or transgene located in euchromatin. TSE shows variegation among egg chambers in ovaries when silencing is incomplete. Here, we report that TSE displays an epigenetic transmission through meiosis, which involves an extrachromosomal maternally transmitted factor. We show that this silencing is highly sensitive to mutations affecting both heterochromatin formation (Su(var)205 encoding Heterochromatin Protein 1 and Su(var)3–7) and the repeat-associated small interfering RNA (or rasiRNA) silencing pathway (aubergine, homeless, armitage, and piwi). In contrast, TSE is not sensitive to mutations affecting r2d2, which is involved in the small interfering RNA (or siRNA) silencing pathway, nor is it sensitive to a mutation in loquacious, which is involved in the micro RNA (or miRNA) silencing pathway. These results, taken together with the recent discovery of TAS homologous small RNAs associated to PIWI proteins, support the proposition that TSE involves a repeat-associated small interfering RNA pathway linked to heterochromatin formation, which was co-opted by the P element to establish repression of its own transposition after its recent invasion of the D. melanogaster genome. Therefore, the study of TSE provides insight into the genetic properties of a germline-specific small RNA silencing pathway.
Author Summary
The genome of the fruitfly was invaded in the last century by a mobile DNA element called the P element. After a transient period of genetic disorders due to P mobility, the P element established a repressive state for its transposition. We have shown that a major component of this repression comes from P copies inserted close to telomeres, the ends of linear chromosomes. One or two P copies inserted in subtelomeric heterochromatin (the DNA region highly compacted by protein complexes) can stabilize around 80 P copies. This finding allowed the discovery of a more general phenomenon called the “Trans-silencing effect” in which a transgene inserted in this subtelomeric heterochromatin represses, in the female germline, a homologous transgene, irrespective of the genetic location of the latter. We show that Trans-silencing requires not only the chromosomal copy of the telomeric silencer, but also a maternally transmitted factor whose influence can persist over generations. We have found that this epigenetic silencing is sensitive to mutations in genes involved in heterochromatin formation and in a recently discovered silencing pathway based on small RNAs. Trans-silencing thus provides a tool for mechanistic analysis of gene repression on the basis of chromatin changes combined with small RNA pathways in the germline.
doi:10.1371/journal.pgen.0030158
PMCID: PMC1976332  PMID: 17941712
24.  New ABA-Hypersensitive Arabidopsis Mutants Are Affected in Loci Mediating Responses to Water Deficit and Dickeya dadantii Infection 
PLoS ONE  2011;6(5):e20243.
On water deficit, abscisic acid (ABA) induces stomata closure to reduce water loss by transpiration. To identify Arabidopsis thaliana mutants which transpire less on drought, infrared thermal imaging of leaf temperature has been used to screen for suppressors of an ABA-deficient mutant (aba3-1) cold-leaf phenotype. Three novel mutants, called hot ABA-deficiency suppressor (has), have been identified with hot-leaf phenotypes in the absence of the aba3 mutation. The defective genes imparted no apparent modification to ABA production on water deficit, were inherited recessively and enhanced ABA responses indicating that the proteins encoded are negative regulators of ABA signalling. All three mutants showed ABA-hypersensitive stomata closure and inhibition of root elongation with little modification of growth and development in non-stressed conditions. The has2 mutant also exhibited increased germination inhibition by ABA, while ABA-inducible gene expression was not modified on dehydration, indicating the mutated gene affects early ABA-signalling responses that do not modify transcript levels. In contrast, weak ABA-hypersensitivity relative to mutant developmental phenotypes suggests that HAS3 regulates drought responses by both ABA-dependent and independent pathways. has1 mutant phenotypes were only apparent on stress or ABA treatments, and included reduced water loss on rapid dehydration. The HAS1 locus thus has the required characteristics for a targeted approach to improving resistance to water deficit. In contrast to has2, has1 exhibited only minor changes in susceptibility to Dickeya dadantii despite similar ABA-hypersensitivity, indicating that crosstalk between ABA responses to this pathogen and drought stress can occur through more than one point in the signalling pathway.
doi:10.1371/journal.pone.0020243
PMCID: PMC3102102  PMID: 21633512
25.  Disruption of the Rice Plastid Ribosomal Protein S20 Leads to Chloroplast Developmental Defects and Seedling Lethality 
G3: Genes|Genomes|Genetics  2013;3(10):1769-1777.
Plastid ribosomal proteins (PRPs) are essential for ribosome biogenesis, plastid protein biosynthesis, chloroplast differentiation, and early chloroplast development. This study identifies the first rice PRP mutant, asl1 (albino seedling lethality1), which exhibits an albino lethal phenotype at the seedling stage. This albino phenotype was associated with altered chlorophyll (Chl) content and chloroplast development. Map-based cloning revealed that ASL1 encodes PRP S20 (PRPS20), which localizes to the chloroplast. ASL1 showed tissue-specific expression, as it was highly expressed in plumule and young seedlings but expressed at much lower levels in other tissues. In addition, ASL1 expression was regulated by light. The transcript levels of nuclear genes for Chl biosynthesis and chloroplast development were strongly affected in asl1 mutants; transcripts of some plastid genes for photosynthesis were undetectable. Our findings indicate that nuclear-encoded PRPS20 plays an important role in chloroplast development in rice.
doi:10.1534/g3.113.007856
PMCID: PMC3789801  PMID: 23979931
albino; chloroplast development; lethality; Oryza sativa; plastid ribosomal protein (PRP)

Results 1-25 (393473)