PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (342938)

Clipboard (0)
None

Related Articles

1.  Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice 
The Plant Journal  2010;64(2):204-214.
Chitin is a major molecular pattern for various fungi, and its fragments, chitin oligosaccharides, are known to induce various defense responses in plant cells. A plasma membrane glycoprotein, CEBiP (chitin elicitor binding protein) and a receptor kinase, CERK1 (chitin elicitor receptor kinase) (also known as LysM-RLK1), were identified as critical components for chitin signaling in rice and Arabidopsis, respectively. However, it is not known whether each plant species requires both of these two types of molecules for chitin signaling, nor the relationships between these molecules in membrane signaling. We report here that rice cells require a LysM receptor-like kinase, OsCERK1, in addition to CEBiP, for chitin signaling. Knockdown of OsCERK1 resulted in marked suppression of the defense responses induced by chitin oligosaccharides, indicating that OsCERK1 is essential for chitin signaling in rice. The results of a yeast two-hybrid assay indicated that both CEBiP and OsCERK1 have the potential to form hetero- or homo-oligomers. Immunoprecipitation using a membrane preparation from rice cells treated with chitin oligosaccharides suggested the ligand-induced formation of a receptor complex containing both CEBiP and OsCERK1. Blue native PAGE and chemical cross-linking experiments also suggested that a major portion of CEBiP exists as homo-oligomers even in the absence of chitin oligosaccharides.
doi:10.1111/j.1365-313X.2010.04324.x
PMCID: PMC2996852  PMID: 21070404
chitin elicitor; LysM receptor; receptor-like kinase; receptor complex; signal transduction; rice
2.  Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis 
Plant Signaling & Behavior  2013;8(9):e25345.
Plants have the ability to detect invading fungi through the perception of chitin fragments released from the fungal cell walls. Plant chitin receptor consists of two types of plasma membrane proteins, CEBiP and CERK1. However, the contribution of these proteins to chitin signaling is different between Arabidopsis and rice. In Arabidopsis, it seems CERK1 receptor kinase is enough for both ligand perception and signaling, whereas both CEBiP and OsCERK1 are required for chitin signaling in rice. Here we report that Arabidopsis CEBiP homolog, LYM2, is not involved in chitin signaling but contributes to resistance against a fungal pathogen, Alternaria brassicicola, indicating the presence of a novel disease resistance mechanism in Arabidopsis.
doi:10.4161/psb.25345
PMCID: PMC4002583  PMID: 23803749
chitin; receptor; disease resistance; Arabidopsis; Alternaria brassicicola
3.  Enhancement of MAMP signaling by chimeric receptors improves disease resistance in plants 
Plant Signaling & Behavior  2011;6(3):449-451.
Plants activate defense responses through the recognition of microbe-associated molecular patterns (MAMPs). Recently, several pattern-recognition receptors (PRRs) have been identified in plants, paving the way for manipulating MAMP signaling. CEBiP is a receptor for the chitin elicitor (CE) identified in the rice plasma membrane and XA21 is a member of the receptor-like protein kinase (RLK) family that confers disease resistance to rice bacterial leaf blight expressing the sulfated protein Ax21. To improve resistance to rice blast, the most serious fungal disease of rice, we aimed to create a defense system that combines high affinity of CEBiP for CE and the ability of XA21 to confer disease resistance. Cultured rice cells expressing the chimeric receptor CRXA, which consists of CEBiP and the intracellular region of XA21, induced cell death accompanied by an increased production of reactive oxygen and nitrogen species after exposure to CE. Rice plants expressing the chimeric receptor exhibited more resistance to rice blast. Engineering PRRs may be a new strategy in molecular breeding for achieving disease resistance.
doi:10.4161/psb.6.3.14655
PMCID: PMC3142436  PMID: 21364321
chimeric receptor; chitin signal; disease resistance; HR cell death; MAMP-induced resistance; rice blast fungus
4.  OsLYP4 and OsLYP6 play critical roles in rice defense signal transduction 
Plant Signaling & Behavior  2013;8(2):e22980.
Plant innate immunity relies on successful detection of trespassing pathogens through recognizing their microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) at the cell surface. We recently reported two rice lysin motif (LysM)-containing proteins, OsLYP4 and OsLYP6, as dual functional PRRs sensing bacterial peptidoglycan (PGN) and fungal chitin. Here we further demonstrated the important roles of OsLYP4 and OsLYP6 in rice defense signaling, as silencing of either LYP impaired the defense marker gene activation induced by either bacterial pathogen Xanthomonas oryzaecola or fungal pathogen Magnaporthe oryzae. Moreover, we found that OsLYP4 and OsLYP6 could form homo- and hetero-dimers, and could interact with CEBiP, suggesting an unexpected complexity of chitin perception in rice.
doi:10.4161/psb.22980
PMCID: PMC3656994  PMID: 23299421
lysin motif-containing proteins; rice; innate immunity; defense-related gene; pattern recognition receptors
5.  Different Chitin Synthase Genes Are Required for Various Developmental and Plant Infection Processes in the Rice Blast Fungus Magnaporthe oryzae 
PLoS Pathogens  2012;8(2):e1002526.
Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases.
Author Summary
Chitin is one of the major components of cell wall that plays vital roles in hyphal tip growth and fungal morphogenesis. Biosynthesis of chitin is catalyzed by chitin synthases, a well-known fungicide target. However, systematic characterization of chitin synthase genes has not yet been reported in plant pathogenic ascomycetes. To determine their roles in development and pathogenesis, in this study we functionally characterized all the seven chitin synthase genes (CHS1-CHS7) in Magnaporthe oryzae, a model for studying fungal development and pathogenesis. While CHS2, CHS3, CHS4, and CHS5 are dispensable for plant infection, CHS6 is essential for pathogenesis. The chs6 mutant failed to penetrate plant cells and develop infectious hyphae. Two other chitin synthase genes, CHS1 and CHS7, also are important for virulence. The chs1 and chs7 mutants caused only rare lesions on rice seedlings. Other than plant infection, CHS1 and CHS7 also play specific roles during conidiogenesis and appressorium formation, respectively. Interestingly, the chs7 mutant was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces but was normal by hyphal tips and on plant surfaces. Different chitin synthase genes may be involved during appressorium formation by different fungal tissues or on different surfaces in M. oryzae.
doi:10.1371/journal.ppat.1002526
PMCID: PMC3276572  PMID: 22346755
6.  Large-Scale Gene Disruption in Magnaporthe oryzae Identifies MC69, a Secreted Protein Required for Infection by Monocot and Dicot Fungal Pathogens 
PLoS Pathogens  2012;8(5):e1002711.
To search for virulence effector genes of the rice blast fungus, Magnaporthe oryzae, we carried out a large-scale targeted disruption of genes for 78 putative secreted proteins that are expressed during the early stages of infection of M. oryzae. Disruption of the majority of genes did not affect growth, conidiation, or pathogenicity of M. oryzae. One exception was the gene MC69. The mc69 mutant showed a severe reduction in blast symptoms on rice and barley, indicating the importance of MC69 for pathogenicity of M. oryzae. The mc69 mutant did not exhibit changes in saprophytic growth and conidiation. Microscopic analysis of infection behavior in the mc69 mutant revealed that MC69 is dispensable for appressorium formation. However, mc69 mutant failed to develop invasive hyphae after appressorium formation in rice leaf sheath, indicating a critical role of MC69 in interaction with host plants. MC69 encodes a hypothetical 54 amino acids protein with a signal peptide. Live-cell imaging suggested that fluorescently labeled MC69 was not translocated into rice cytoplasm. Site-directed mutagenesis of two conserved cysteine residues (Cys36 and Cys46) in the mature MC69 impaired function of MC69 without affecting its secretion, suggesting the importance of the disulfide bond in MC69 pathogenicity function. Furthermore, deletion of the MC69 orthologous gene reduced pathogenicity of the cucumber anthracnose fungus Colletotrichum orbiculare on both cucumber and Nicotiana benthamiana leaves. We conclude that MC69 is a secreted pathogenicity protein commonly required for infection of two different plant pathogenic fungi, M. oryzae and C. orbiculare pathogenic on monocot and dicot plants, respectively.
Author Summary
Magnaporthe oryzae causes the most devastating fungal disease in rice. M. oryzae secretes a plethora of effector proteins, including several avirulence proteins which are known to be recognized by host resistance proteins activating innate immunity. However, the effectors that are required for virulence activity have not been identified in M. oryzae to date except for an effector protein, Secreted LysM Protein 1 (Slp1) that was recently identified. We performed a large-scale disruption analysis of M. oryzae effector candidates and identified a small protein MC69, which is secreted by the fungus during infection. When MC69 is absent, pathogenicity is severely reduced after penetration into the host cells. Furthermore, deletion of the MC69 orthologous gene in Colletotrichum orbiculare reduced its pathogenicity in the host plants cucumber and Nicotiana benthamiana. Thus, MC69 is conserved in ascomycete fungi and is crucial for establishing compatibility. This is the first report of a single secreted protein that is indispensable for pathogenicity in both monocot and dicot pathogenic fungi. How MC69 contributes to pathogenicity or virulence is unknown but it could be required for the fungus to be a pathogen or might be a classical effector that acts on plant target molecules.
doi:10.1371/journal.ppat.1002711
PMCID: PMC3349759  PMID: 22589729
7.  Multiple Plant Surface Signals are Sensed by Different Mechanisms in the Rice Blast Fungus for Appressorium Formation 
PLoS Pathogens  2011;7(1):e1001261.
Surface recognition and penetration are among the most critical plant infection processes in foliar pathogens. In Magnaporthe oryzae, the Pmk1 MAP kinase regulates appressorium formation and penetration. Its orthologs also are known to be required for various plant infection processes in other phytopathogenic fungi. Although a number of upstream components of this important pathway have been characterized, the upstream sensors for surface signals have not been well characterized. Pmk1 is orthologous to Kss1 in yeast that functions downstream from Msb2 and Sho1 for filamentous growth. Because of the conserved nature of the Pmk1 and Kss1 pathways and reduced expression of MoMSB2 in the pmk1 mutant, in this study we functionally characterized the MoMSB2 and MoSHO1 genes. Whereas the Momsb2 mutant was significantly reduced in appressorium formation and virulence, the Mosho1 mutant was only slightly reduced. The Mosho1 Momsb2 double mutant rarely formed appressoria on artificial hydrophobic surfaces, had a reduced Pmk1 phosphorylation level, and was nonresponsive to cutin monomers. However, it still formed appressoria and caused rare, restricted lesions on rice leaves. On artificial hydrophilic surfaces, leaf surface waxes and primary alcohols-but not paraffin waxes and alkanes- stimulated appressorium formation in the Mosho1 Momsb2 mutant, but more efficiently in the Momsb2 mutant. Furthermore, expression of a dominant active MST7 allele partially suppressed the defects of the Momsb2 mutant. These results indicate that, besides surface hydrophobicity and cutin monomers, primary alcohols, a major component of epicuticular leaf waxes in grasses, are recognized by M. oryzae as signals for appressorium formation. Our data also suggest that MoMsb2 and MoSho1 may have overlapping functions in recognizing various surface signals for Pmk1 activation and appressorium formation. While MoMsb2 is critical for sensing surface hydrophobicity and cutin monomers, MoSho1 may play a more important role in recognizing rice leaf waxes.
Author Summary
The rice blast fungus is a major pathogen of rice and a model for studying fungal-plant interactions. Like many other fungal pathogens, it can recognize physical and chemical signals present on the rice leaf surface and form a highly specialized infection structure known as appressorium. A well conserved signal transduction pathway involving the protein kinase gene PMK1 is known to regulate appressorium formation and plant penetration in this pathogen. However, it is not clear about the sensor genes that are involved in recognizing various plant surface signals. In this study we functionally characterize two putative sensor genes called MoMSB2 and MoSHO1. Genetic and biochemical analyses indicated that these two genes have overlapping functions in recognizing different physical and chemical signals present on the rice leaf surface for the activation of the Pmk1 pathway and appressorium formation. We found that primary alcohols, a major component of leaf waxes in grasses, can be recognized by the rice blast fungus as chemical cues. While MoMSB2 is critical for sensing hydrophobicity and precursors of cutin molecules of rice leaves, MoSHO1 appears to be more important than MoMSB2 for recognizing wax components.
doi:10.1371/journal.ppat.1001261
PMCID: PMC3024261  PMID: 21283781
8.  Surface α-1,3-Glucan Facilitates Fungal Stealth Infection by Interfering with Innate Immunity in Plants 
PLoS Pathogens  2012;8(8):e1002882.
Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant's defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is nondegradable in plants, it is reasonable that many fungal plant pathogens utilize α-1,3-glucan in the innate immune evasion mechanism and some in maintaining the structures.
Author Summary
Magnaporthe oryzae, Cochlioborus miyabeanus, and Rhizoctonia solani are the top three fungal pathogens that are responsible for devastating damage to the production of rice, a staple cereal for half of the world's population. These fungal pathogens infect host plants despite the plants' innate immunity, which is activated upon recognition of a conserved cell wall component in fungi, such as chitin. Fungal pathogens seem to have evading mechanism(s) against the host innate immunity; however, the mechanisms are still unclear. In this study, we discovered a novel mechanism that is commonly used by fungal pathogens to prevent host innate immunity. In this mechanism, fungal pathogens mask the cell wall surfaces with α-1,3-glucan, a polysaccharide that plants cannot degrade. In fact, a transgenic rice secreting a bacterial α-1,3-glucanase, which is able to remove α-1,3-glucan on the fungal surfaces, obtained strong resistance to all of those fungal pathogens. We also showed that plants rapidly activated defense responses against fungi (even before the fungal penetration) when α-1,3-glucan on the fungal surfaces were damaged or removed. Our study suggests that fungal surface α-1,3-glucan interferes with host immunity in many fungal pathogens and that α-1,3-glucan is a potential target for controlling various fungal diseases in plants.
doi:10.1371/journal.ppat.1002882
PMCID: PMC3426526  PMID: 22927818
9.  Expression of Magnaporthe grisea Avirulence Gene ACE1 Is Connected to the Initiation of Appressorium-Mediated Penetration▿  
Eukaryotic Cell  2006;6(3):546-554.
Magnaporthe grisea is responsible for a devastating fungal disease of rice called blast. Current control of this disease relies on resistant rice cultivars that recognize M. grisea signals corresponding to specific secreted proteins encoded by avirulence genes. The M. grisea ACE1 avirulence gene differs from others, since it controls the biosynthesis of a secondary metabolite likely recognized by rice cultivars carrying the Pi33 resistance gene. Using a transcriptional fusion between ACE1 promoter and eGFP, we showed that ACE1 is only expressed in appressoria during fungal penetration into rice and barley leaves, onion skin, and cellophane membranes. ACE1 is almost not expressed in appressoria differentiated on Teflon and Mylar artificial membranes. ACE1 expression is not induced by cellophane and plant cell wall components, demonstrating that it does not require typical host plant compounds. Cyclic AMP (cAMP) signaling mutants ΔcpkA and Δmac1 sum1-99 and tetraspanin mutant Δpls1::hph differentiate melanized appressoria with normal turgor but are unable to penetrate host plant leaves. ACE1 is normally expressed in these mutants, suggesting that it does not require cAMP signaling or a successful penetration event. ACE1 is not expressed in appressoria of the buf1::hph mutant defective for melanin biosynthesis and appressorial turgor. The addition of hyperosmotic solutes to buf1::hph appressoria restores appressorial development and ACE1 expression. Treatments of young wild-type appressoria with actin and tubulin inhibitors reduce both fungal penetration and ACE1 expression. These experiments suggest that ACE1 appressorium-specific expression does not depend on host plant signals but is connected to the onset of appressorium-mediated penetration.
doi:10.1128/EC.00330-05
PMCID: PMC1828936  PMID: 17142568
10.  Ectoparasitic growth of Magnaporthe on barley triggers expression of the putative barley wax biosynthesis gene CYP96B22 which is involved in penetration resistance 
BMC Plant Biology  2014;14:26.
Background
Head blast caused by the fungal plant pathogen Magnaporthe oryzae is an upcoming threat for wheat and barley cultivation. We investigated the nonhost response of barley to an isolate of the Magnaporthe species complex which is pathogenic on Pennisetum spp. as a potential source for novel resistance traits.
Results
Array experiments identified a barley gene encoding a putative cytochrome P450 monooxygenase whose transcripts accumulate to a higher concentration in the nonhost as compared to the host interaction. The gene clusters within the CYP96 clade of the P450 plant gene family and is designated as CYP96B22. Expression of CYP96B22 was triggered during the ectoparasitic growth of the pathogen on the outside of the leaf. Usage of a fungicidal treatment and a Magnaporthe mutant confirmed that penetration was not necessary for this early activation of CYP96B22. Transcriptional silencing of CYP96B22 using Barley stripe mosaic virus led to a decrease in penetration resistance of barley plants to Magnaporthe host and nonhost isolates. This phenotype seems to be specific for the barley-Magnaporthe interaction, since penetration of the adapted barley powdery mildew fungus was not altered in similarly treated plants.
Conclusion
Taken together our results suggest a cross-talk between barley and Magnaporthe isolates across the plant surface. Since members of the plant CYP96 family are known to be involved in synthesis of epicuticular waxes, these substances or their derivatives might act as signal components. We propose a functional overlap of CYP96B22 in the execution of penetration resistance during basal and nonhost resistance of barley against different Magnaporthe species.
doi:10.1186/1471-2229-14-26
PMCID: PMC3897914  PMID: 24423145
Nonhost resistance; Magnaporthe oryzae; Head blast; Cytochrome P450; Wax; Cuticle; Penetration; BSMV-VIGS
11.  Chitosan as a MAMP, searching for a PRR 
Plant Signaling & Behavior  2009;4(1):66-68.
Chitosan, a deacetylated chitin derivative, behaves like a general elicitor, inducing a non-host resistance and priming a systemic acquired immunity. The defence responses elicited by chitosan include rising of cytosolic H+ and Ca2+, activation of MAP-kinases, callose apposition, oxidative burst, hypersensitive response (HR), synthesis of abscissic acid (ABA), jasmonate, phytoalexins and pathogenesis related (PR) proteins. Putative receptors for chitosan are a chitosan-binding protein, recently isolated, and possibly the chitin elicitor-binding protein (CEBiP). Nevertheless, it must be pointed out that biological activity of chitosan, besides the plant model, strictly depends on its physicochemical properties (deacetylation degree, molecular weight and viscosity), and that there is a threshold for chitosan concentration able to switch the induction of a cell death programme into necrotic cell death (cytotoxicity).
PMCID: PMC2634077  PMID: 19704712
chitosan; induced resistance; MAMP; PAMP; PCD; PRR; SAR
12.  Abc3-Mediated Efflux of an Endogenous Digoxin-like Steroidal Glycoside by Magnaporthe oryzae Is Necessary for Host Invasion during Blast Disease 
PLoS Pathogens  2012;8(8):e1002888.
Magnaporthe oryzae, which causes the devastating rice-blast disease, invades its host plants via a specialized infection structure called the appressorium. Previously, we showed that the ATP-Binding Cassette 3 transporter is necessary for appressorial function (host penetration) in M. oryzae. However, thus far, the molecular basis underlying impaired appressorial function in the abc3Δ remains elusive. We hypothesized that the abc3Δ appressoria accumulate excessive amounts of specific efflux substrate(s) of the Abc3 transporter in M. oryzae. We devised an innovative yeast-based strategy and identified Abc3 Transporter efflux Substrate (ATS) to be a digoxin-like endogenous steroidal glycoside that accumulates to inhibitory levels in M. oryzae abc3Δ appressoria. Exogenous ATS altered cell wall biogenesis and viability in wild-type Schizosaccharomyces pombe, but not in S. pombe expressing M. oryzae Abc3. We show that ATS associates with the Translation Elongation factor Tef2 in M. oryzae, and propose that ATS regulates ion homeostasis during pathogenesis. Excessive ATS accumulation, either intracellularly due to impaired efflux in the abc3Δ or when added exogenously to the wild type, renders M. oryzae nonpathogenic. Furthermore, we demonstrate that the host penetration defects in the abc3Δ are due to aberrant F-actin dynamics as a result of altered Tef2 function and/or ion homeostasis defects caused by excess accumulation of ATS therein. Rather surprisingly, excessive exogenous ATS or digoxin elicited the hypersensitive response in rice, even in the absence of the blast fungus. Lastly, reduced disease symptoms in the inoculated host plants in the presence of excessive digoxin suggest a potential use for such related steroidal glycosides in controlling rice-blast disease.
Author Summary
Magnaporthe oryzae, the causal fungus of the devastating blast disease in rice, invades its host via specialized infection structures called appressoria. Previously, we showed that ATP-Binding Cassette 3 (Abc3) transporter is indispensable for appresssorial function of host penetration in M. oryzae. However, the cause of inviable appressoria and impaired host entry in the abc3Δ remained unclear. ABC transporters are known to efflux xenobiotic or toxic molecules to the cell exterior. Therefore, we hypothesized that the loss of Abc3 pump leads to excessive accumulation of its physiological substrate to likely inhibitory levels resulting in appressorial dysfunction. We devised an innovative yeast-based strategy to successfully purify the Abc3 Transporter Substrate (ATS). We show that ATS is a digoxin-like endogenous steroidal glycoside primarily involved in modulating ion homeostasis and host colonization in M. oryzae. Furthermore, we identified Translational Elongation Factor 2 (Tef2) as the target for ATS, and find a mechanistic link between ATS, ion homeostasis, Tef2 function, and F-actin dynamics during M. oryzae pathogenesis. We uncover a unique ability of ATS to induce the hypersensitive response and consequently disease resistance in host plants. Lastly, digoxin-like steroidal glycosides promise to be novel antifungal agents to combat the destructive blast disease in crop plants.
doi:10.1371/journal.ppat.1002888
PMCID: PMC3426555  PMID: 22927822
13.  The Barley Mutant emr1 was Identified in a Mutational Screen for Resistance Against Magnaporthe oryzae 
Plant Signaling & Behavior  2007;2(4):278-279.
Barley plants can be colonized by the fungus Magnaporthe oryzae, a pathogen initially known from rice plant cultivation. A mutational screen was performed in the barley mlo-genetic background which is, in comparison to wild-type MLO-genotypes, hypersusceptible against this fungus. This led to the identification of a mutant, referred to as emr1 (enhanced Magnaporthe resistance), that showed partially restored resistance. Disease symptoms on leaves of emr1 were significantly less severe than on mlo5-genotypes but still more than on wt MLO-barley plants.
Segregation analysis showed that emr1 was inherited as a single recessive trait. Insight into the mode of action of emr1-dependent resistance against M. oryzae was gained by microscopic analysis. The results of these experiments revealed that mutant emr1 blocked penetration by M. oryzae by the formation of effective papillae in approximately half of all incidences. At about 30% of the interaction sites fungal growth was arrested effectively by an HR in the epidermal cell. Only a low frequency of fungal infection sites proceed into the mesophyll where fungal invasion resulted in the onset of a hypersensitive response (HR)-like cell death. Here, we report further evidence that barley shows a mesophyll HR in response to colonisation by M. oryzae. The possibility that the fungus turns this ostensible defence reaction to its own advantage and profits from the dead host tissue by switching to a necrotrophic lifestyle is discussed.
PMCID: PMC2634149  PMID: 19704680
barley; hypersensitive response; Magnaporthe; MLO; mutational analysis; papillae; penetration; Hin1
14.  Abscisic acid negatively interferes with basal defence of barley against Magnaporthe oryzae 
BMC Plant Biology  2015;15:7.
Background
Plant hormones are well known regulators which balance plant responses to abiotic and biotic stresses. We investigated the role of abscisic acid (ABA) in resistance of barley (Hordeum vulgare L.) against the plant pathogenic fungus Magnaporthe oryzae.
Results
Exogenous application of ABA prior to inoculation with M. oryzae led to more disease symptoms on barley leaves. This result contrasted the finding that ABA application enhances resistance of barley against the powdery mildew fungus. Microscopic analysis identified diminished penetration resistance as cause for enhanced susceptibility. Consistently, the barley mutant Az34, impaired in ABA biosynthesis, was less susceptible to infection by M. oryzae and displayed elevated penetration resistance as compared to the isogenic wild type cultivar Steptoe. Chemical complementation of Az34 mutant plants by exogenous application of ABA re-established disease severity to the wild type level. The role of ABA in susceptibility of barley against M. oryzae was corroborated by showing that ABA application led to increased disease severity in all barley cultivars under investigation except for the most susceptible cultivar Pallas. Interestingly, endogenous ABA concentrations did not significantly change after infection of barley with M. oryzae.
Conclusion
Our results revealed that elevated ABA levels led to a higher disease severity on barley leaves to M. oryzae. This supports earlier reports on the role of ABA in enhancing susceptibility of rice to the same pathogen and thereby demonstrates a host plant-independent function of this phytohormone in pathogenicity of monocotyledonous plants against M. oryzae.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-014-0409-x) contains supplementary material, which is available to authorized users.
doi:10.1186/s12870-014-0409-x
PMCID: PMC4307682  PMID: 25604965
Penetration resistance; Rice blast; Head blast; Quantitative microscopy; Biotic stress
15.  Genome-wide Transcriptional Profiling of Appressorium Development by the Rice Blast Fungus Magnaporthe oryzae 
PLoS Pathogens  2012;8(2):e1002514.
The rice blast fungus Magnaporthe oryzae is one of the most significant pathogens affecting global food security. To cause rice blast disease the fungus elaborates a specialised infection structure called an appressorium. Here, we report genome wide transcriptional profile analysis of appressorium development using next generation sequencing (NGS). We performed both RNA-Seq and High-Throughput SuperSAGE analysis to compare the utility of these procedures for identifying differential gene expression in M. oryzae. We then analysed global patterns of gene expression during appressorium development. We show evidence for large-scale gene expression changes, highlighting the role of autophagy, lipid metabolism and melanin biosynthesis in appressorium differentiation. We reveal the role of the Pmk1 MAP kinase as a key global regulator of appressorium-associated gene expression. We also provide evidence for differential expression of transporter-encoding gene families and specific high level expression of genes involved in quinate uptake and utilization, consistent with pathogen-mediated perturbation of host metabolism during plant infection. When considered together, these data provide a comprehensive high-resolution analysis of gene expression changes associated with cellular differentiation that will provide a key resource for understanding the biology of rice blast disease.
Author Summary
The fungus Magnaporthe oryzae causes a disease of rice, known as rice blast. Half the world's population depends on rice as a staple food source and rice blast disease destroys 18% of the rice harvest annually. It is therefore important to develop methods to control blast as a means of ensuring global food security. The rice blast fungus spreads rapidly from infected to uninfected plants using a spore known as a conidium. When a conidium lands on the surface of a rice leaf, it develops a specialised structure called an appressorium which is used to penetrate the tough outer cuticle of the rice leaf, enabling the fungus to enter plant tissue. In this study, we have used new sequencing technologies to identify genes that are actively expressed during appressorium formation by looking at relative levels of their transcripts. We have also compared levels of gene expression in a wild-type strain of the fungus to a mutant that is unable to make appressoria and therefore cannot infect plants. The study has enabled us to identify key metabolic processes that are activated during appressorium formation and to understand how fungal metabolism and physiology are dramatically altered during infection-related development.
doi:10.1371/journal.ppat.1002514
PMCID: PMC3276559  PMID: 22346750
16.  A Novel Pathogenicity Gene Is Required in the Rice Blast Fungus to Suppress the Basal Defenses of the Host 
PLoS Pathogens  2009;5(4):e1000401.
For successful colonization and further reproduction in host plants, pathogens need to overcome the innate defenses of the plant. We demonstrate that a novel pathogenicity gene, DES1, in Magnaporthe oryzae regulates counter-defenses against host basal resistance. The DES1 gene was identified by screening for pathogenicity-defective mutants in a T-DNA insertional mutant library. Bioinformatic analysis revealed that this gene encodes a serine-rich protein that has unknown biochemical properties, and its homologs are strictly conserved in filamentous Ascomycetes. Targeted gene deletion of DES1 had no apparent effect on developmental morphogenesis, including vegetative growth, conidial germination, appressorium formation, and appressorium-mediated penetration. Conidial size of the mutant became smaller than that of the wild type, but the mutant displayed no defects on cell wall integrity. The Δdes1 mutant was hypersensitive to exogenous oxidative stress and the activity and transcription level of extracellular enzymes including peroxidases and laccases were severely decreased in the mutant. In addition, ferrous ion leakage was observed in the Δdes1 mutant. In the interaction with a susceptible rice cultivar, rice cells inoculated with the Δdes1 mutant exhibited strong defense responses accompanied by brown granules in primary infected cells, the accumulation of reactive oxygen species (ROS), the generation of autofluorescent materials, and PR gene induction in neighboring tissues. The Δdes1 mutant displayed a significant reduction in infectious hyphal extension, which caused a decrease in pathogenicity. Notably, the suppression of ROS generation by treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, resulted in a significant reduction in the defense responses in plant tissues challenged with the Δdes1 mutant. Furthermore, the Δdes1 mutant recovered its normal infectious growth in DPI-treated plant tissues. These results suggest that DES1 functions as a novel pathogenicity gene that regulates the activity of fungal proteins, compromising ROS-mediated plant defense.
Author Summary
Coevolution of plants and microbial pathogens leads to interactions that resemble a molecular war. Pathogens generate effector molecules to infect their hosts, and plants produce defense molecules against pathogen attacks. Interactions between these molecules results in plant immunity or disease. Plant disease could be likened to a complex and delicate matter of balance, where a number of molecules are involved in the battlefield. Discovering and understanding the tipping points in the battle are vital for developing disease-free crops. In the interaction of rice and rice blast fungus, a microbe sensor on rice stimulates the generation of reactive oxygen species (ROS) at the site of infection. ROS is known as an antimicrobial material and a stimulator for defense signaling that is important for preparing reinforcement in neighboring tissues. This paper presents the counter-defense mechanism of the fungus against plant-driven ROS. We found that a pathogenicity factor from rice blast fungus, DES1 (Defense Suppressor 1), is involved in overcoming oxidative stress for the counter-defense mechanism, suggesting that this gene is required for fungal pathogenicity.
doi:10.1371/journal.ppat.1000401
PMCID: PMC2668191  PMID: 19390617
17.  Homeobox Transcription Factors Are Required for Conidiation and Appressorium Development in the Rice Blast Fungus Magnaporthe oryzae 
PLoS Genetics  2009;5(12):e1000757.
The appropriate development of conidia and appressoria is critical in the disease cycle of many fungal pathogens, including Magnaporthe oryzae. A total of eight genes (MoHOX1 to MoHOX8) encoding putative homeobox transcription factors (TFs) were identified from the M. oryzae genome. Knockout mutants for each MoHOX gene were obtained via homology-dependent gene replacement. Two mutants, ΔMohox3 and ΔMohox5, exhibited no difference to wild-type in growth, conidiation, conidium size, conidial germination, appressorium formation, and pathogenicity. However, the ΔMohox1 showed a dramatic reduction in hyphal growth and increase in melanin pigmentation, compared to those in wild-type. ΔMohox4 and ΔMohox6 showed significantly reduced conidium size and hyphal growth, respectively. ΔMohox8 formed normal appressoria, but failed in pathogenicity, probably due to defects in the development of penetration peg and invasive growth. It is most notable that asexual reproduction was completely abolished in ΔMohox2, in which no conidia formed. ΔMohox2 was still pathogenic through hypha-driven appressoria in a manner similar to that of the wild-type. However, ΔMohox7 was unable to form appressoria either on conidial germ tubes, or at hyphal tips, being non-pathogenic. These factors indicate that M. oryzae is able to cause foliar disease via hyphal appressorium-mediated penetration, and MoHOX7 is mutually required to drive appressorium formation from hyphae and germ tubes. Transcriptional analyses suggest that the functioning of M. oryzae homeobox TFs is mediated through the regulation of gene expression and is affected by cAMP and Ca2+ signaling and/or MAPK pathways. The divergent roles of this gene set may help reveal how the genome and regulatory pathways evolved within the rice blast pathogen and close relatives.
Author Summary
Pathogens have evolved diverse strategies to cause disease. Magnaporthe oryzae is the fungal phytopathogen that causes rice blast and is considered an important model for understanding mechanisms in fungal development and pathogenicity. Asexual reproduction and infection-related development play key roles in M. oryzae disease development. The conidium of M. oryzae differentiates a specialized structure, an appressorium. The appressorium generates turgor pressure that allows penetration through the mechanical rupture of host cuticle layers. After colonizing host cells, the fungus produces massive conidia via conidiogenesis, serving as secondary propagules for the polycyclic disease. To elucidate molecular mechanisms in asexual reproduction and appressorium-mediated disease development, we identified eight homeobox transcription factors through a genome-wide in silico analysis. Characterization using deletion mutants revealed that each homeobox TF functions as a stage-specific regulator for conidial shape, hyphal growth, conidiation, appressorium development, and invasive growth during M. oryzae development. Notably, conidiation and appressorium development were entirely abolished in ΔMohox2 and ΔMohox7, respectively. This study also provides evidence that M. oryzae is able to cause rice blast by means of hypha-driven appressoria upon responses to host signaling factors. This study will aid in the understanding of regulatory networks associated with fungal development and pathogenicity.
doi:10.1371/journal.pgen.1000757
PMCID: PMC2779367  PMID: 19997500
18.  Evidence for a Transketolase-Mediated Metabolic Checkpoint Governing Biotrophic Growth in Rice Cells by the Blast Fungus Magnaporthe oryzae 
PLoS Pathogens  2014;10(9):e1004354.
The blast fungus Magnaporthe oryzae threatens global food security through the widespread destruction of cultivated rice. Foliar infection requires a specialized cell called an appressorium that generates turgor to force a thin penetration hypha through the rice cuticle and into the underlying epidermal cells, where the fungus grows for the first days of infection as a symptomless biotroph. Understanding what controls biotrophic growth could open new avenues for developing sustainable blast intervention programs. Here, using molecular genetics and live-cell imaging, we dismantled M. oryzae glucose-metabolizing pathways to reveal that the transketolase enzyme, encoded by TKL1, plays an essential role in facilitating host colonization during rice blast disease. In the absence of transketolase, Δtkl1 mutant strains formed functional appressoria that penetrated rice cuticles successfully and developed invasive hyphae (IH) in rice cells from primary hyphae. However, Δtkl1 could not undertake sustained biotrophic growth or cell-to-cell movement. Transcript data and observations using fluorescently labeled histone H1:RFP fusion proteins indicated Δtkl1 mutant strains were alive in host cells but were delayed in mitosis. Mitotic delay could be reversed and IH growth restored by the addition of exogenous ATP, a metabolite depleted in Δtkl1 mutant strains. We show that ATP might act via the TOR signaling pathway, and TOR is likely a downstream target of activation for TKL1. TKL1 is also involved in controlling the migration of appressorial nuclei into primary hyphae in host cells. When taken together, our results indicate transketolase has a novel role in mediating - via ATP and TOR signaling - an in planta-specific metabolic checkpoint that controls nuclear migration from appressoria into primary hyphae, prevents mitotic delay in early IH and promotes biotrophic growth. This work thus provides new information about the metabolic strategies employed by M. oryzae to enable rice cell colonization.
Author Summary
The blast fungus Magnaporthe oryzae destroys rice and wheat harvests and could compromise global food security. Following penetration into the rice cell, M. oryzae elaborates bulbous invasive hyphae that grow in living rice cells for most of the infection cycle without causing disease symptoms. Little is known about the physiological processes governing this important biotrophic stage of fungal growth. Here, we used gene functional analysis to show how the primary metabolic enzyme transketolase is essential for hyphal growth in rice cells. Loss of transketolase did not affect the ability of the fungus to gain entry into rice cells, but invasive hyphal growth was curtailed in transketolase null mutants. Biotrophic growth was restored in transketolase mutants by the addition of exogenous ATP. We conclude that M. oryzae metabolism is dedicated to metabolizing glucose through transketolase in planta in order to provide ATP as a trigger for biotrophic growth and infection. This work is significant because it reveals important—but previously unknown—metabolic strategies employed by M. oryzae to facilitate rice infection. These strategies might be open to abrogation by chemical or biological means and are likely relevant to other rapidly proliferating intracellular pathogens.
doi:10.1371/journal.ppat.1004354
PMCID: PMC4154871  PMID: 25188286
19.  HYR1-Mediated Detoxification of Reactive Oxygen Species Is Required for Full Virulence in the Rice Blast Fungus 
PLoS Pathogens  2011;7(4):e1001335.
During plant-pathogen interactions, the plant may mount several types of defense responses to either block the pathogen completely or ameliorate the amount of disease. Such responses include release of reactive oxygen species (ROS) to attack the pathogen, as well as formation of cell wall appositions (CWAs) to physically block pathogen penetration. A successful pathogen will likely have its own ROS detoxification mechanisms to cope with this inhospitable environment. Here, we report one such candidate mechanism in the rice blast fungus, Magnaporthe oryzae, governed by a gene we refer to as MoHYR1. This gene (MGG_07460) encodes a glutathione peroxidase (GSHPx) domain, and its homologue in yeast was reported to specifically detoxify phospholipid peroxides. To characterize this gene in M. oryzae, we generated a deletion mutantΔhyr1 which showed growth inhibition with increased amounts of hydrogen peroxide (H2O2). Moreover, we observed that the fungal mutants had a decreased ability to tolerate ROS generated by a susceptible plant, including ROS found associated with CWAs. Ultimately, this resulted in significantly smaller lesion sizes on both barley and rice. In order to determine how this gene interacts with other (ROS) scavenging-related genes in M. oryzae, we compared expression levels of ten genes in mutant versus wild type with and without H2O2. Our results indicated that the HYR1 gene was important for allowing the fungus to tolerate H2O2 in vitro and in planta and that this ability was directly related to fungal virulence.
Author Summary
Reactive oxygen species (ROS) are antimicrobial compounds and also serve as stimulators and products of plant defense reactions. ROS appear to be active in the critical zone where pathogens and plants come in contact. Therefore, understanding the source, the role, and the destination of ROS in each interacting partner will be crucial for understanding the pathogen-host molecular battle. In this study, we focused on one potential fungal mechanism for ameliorating effects of plant-produced ROS during the early stages of infection. Characterizing the MoHYR1 gene from the rice blast fungus Magnaporthe oryzae, suggested that MoHYR1 was involved in overcoming plant defense-generated ROS. The deletion of this gene caused a virulence defect in M. oryzae, which we believe was associated with the mutant's inability to detoxify plant-generated ROS. Together, our data suggested that HYR1 is a virulence factor in the rice blast pathogen, and its role in virulence was directly related to sensing and managing plant-generated ROS during early infection events. HYR1 is part of a ROS scavenging and sensing pathway that is well characterized in yeast, and our study is the first to examine this important gene in filamentous fungi.
doi:10.1371/journal.ppat.1001335
PMCID: PMC3077360  PMID: 21533213
20.  A Pmk1-Interacting Gene Is Involved in Appressorium Differentiation and Plant Infection in Magnaporthe oryzae ▿ 
Eukaryotic Cell  2011;10(8):1062-1070.
In the rice blast fungus Magnaporthe oryzae, the PMK1 mitogen-activated protein (MAP) kinase gene regulates appressorium formation and infectious growth. Its homologs in many other fungi also play critical roles in fungal development and pathogenicity. However, the targets of this important MAP kinase and its interacting genes are not well characterized. In this study, we constructed two yeast two-hybrid libraries of M. oryzae and screened for Pmk1-interacting proteins. Among the nine Pmk1-interacting clones (PICs) identified, two of them, PIC1 and PIC5, were selected for further characterization. Pic1 has one putative nuclear localization signal and one putative MAP kinase phosphorylation site. Pic5 contains one transmembrane domain and two functionally unknown CTNS (cystinosin/ERS1p repeat) motifs. The interaction of Pmk1 with Pic1 or Pic5 was confirmed by coimmunoprecipitation assays. Targeted gene deletion of PIC1 had no apparent effects on vegetative growth and pathogenicity but resulted in a significant reduction in conidiation and abnormal germ tube differentiation on onion epidermal cells. Deletion of PIC5 led to a reduction in conidiation and hyphal growth. Autolysis of aerial hyphae became visible in cultures older than 4 days. The pic5 mutant was defective in germ tube growth and appressorium differentiation. It was reduced in appressorial penetration and virulence on the plant. Both PIC1 and PIC5 are conserved in filamentous ascomycetes, but none of their orthologs have been functionally characterized. Our data indicate that PIC5 is a novel virulence factor involved in appressorium differentiation and pathogenesis in M. oryzae.
doi:10.1128/EC.00007-11
PMCID: PMC3165448  PMID: 21642506
21.  Alanine 
Plant Signaling & Behavior  2012;7(9):1206-1208.
The rice blast pathogen, Magnaporthe oryzae has been widely used as a model pathogen to study plant infection-related fungal morphogenesis, such as penetration via appressorium and plant-microbe interactions at the molecular level. Previously, we identified a gene encoding peroxisomal alanine: glyoxylate aminotransferase 1 (AGT1) in M. oryzae and demonstrated that the AGT1 was indispensable for pathogenicity. The AGT1 knockout mutants were unable to penetrate the host plants, such as rice and barley, and therefore were non-pathogenic. The inability of ∆Moagt1 mutants to penetrate the susceptible plants was likely due to the disruption in coordination of the β-oxidation and the glyoxylate cycle resulted from a blockage in lipid droplet mobilization and eventually utilization during conidial germination and appressorium morphogenesis, respectively. Here, we further demonstrate the role of AGT1 in lipid mobilization by in vitro germination assays and confocal microscopy.
doi:10.4161/psb.21368
PMCID: PMC3489663  PMID: 22899049
pathogenicity; conidia; appressorium; lipid; AGT1
22.  MoVam7, a Conserved SNARE Involved in Vacuole Assembly, Is Required for Growth, Endocytosis, ROS Accumulation, and Pathogenesis of Magnaporthe oryzae 
PLoS ONE  2011;6(1):e16439.
Soluble NSF attachment protein receptor (SNARE) proteins play a central role in membrane fusion and vesicle transport of eukaryotic organisms including fungi. We previously identified MoSce22 as a homolog of Saccharomyces cerevisiae SNARE protein Sec22 to be involved in growth, stress resistance, and pathogenicity of Magnaporthe oryzae. Here, we provide evidences that MoVam7, an ortholog of S. cerevisiae SNARE protein Vam7, exerts conserved functions in vacuolar morphogenesis and functions in pathogenicity of M. oryzae. Staining with neutral red and FM4-64 revealed the presence of abnormal fragmented vacuoles and an absence of the Spitzenkörper body in the ΔMovam7 mutant. The ΔMovam7 mutant also exhibited reduced vegetative growth, poor conidiation, and failure to produce the infection structure appressorium. Additionally, treatments with cell wall perturbing agents indicated weakened cell walls and altered distributions of the cell wall component chitin. Furthermore, the ΔMovam7 mutant showed a reduced accumulation of reactive oxygen species (ROS) in the hyphal apex and failed to cause diseases on the rice plant. In summary, our studies indicate that MoVam7, like MoSec22, is a component of the SNARE complex whose functions in vacuole assembly also underlies the growth, conidiation, appressorium formation, and pathogenicity of M. oryzae. Further studies of MoVam7, MoSec22, and additional members of the SNARE complex are likely to reveal critical mechanisms in vacuole formation and membrane trafficking that is linked to fungal pathogenicity.
doi:10.1371/journal.pone.0016439
PMCID: PMC3025985  PMID: 21283626
23.  MoSfl1 Is Important for Virulence and Heat Tolerance in Magnaporthe oryzae 
PLoS ONE  2011;6(5):e19951.
The formation of appressoria, specialized plant penetration structures of Magnaporthe oryzae, is regulated by the MST11-MST7-PMK1 MAP kinase cascade. One of its downstream transcription factor, MST12, is important for penetration and invasive growth but dispensable for appressorium formation. To identify additional downstream targets that are regulated by Pmk1, in this study we performed phosphorylation assays with a protein microarray composed of 573 M. oryzae transcription factor (TF) genes. Three of the TF genes phosphorylated by Pmk1 in vitro were further analyzed by coimmunoprecipitation assays. One of them, MoSFL1, was found to interact with Pmk1 in vivo. Like other Sfl1 orthologs, the MoSfl1 protein has the HSF-like domain. When expressed in yeast, MoSFL1 functionally complemented the flocculation defects of the sfl1 mutant. In M. oryzae, deletion of MoSFl1 resulted in a significant reduction in virulence on rice and barley seedlings. Consistent with this observation, the Mosfl1 mutant was defective in invasive growth in penetration assays with rice leaf sheaths. In comparison with that of vegetative hyphae, the expression level of MoSFL1 was increased in appressoria and infected rice leaves. The Mosfl1 mutant also had increased sensitivity to elevated temperatures. In CM cultures of the Mosfl1 and pmk1 mutants grown at 30°C, the production of aerial hyphae and melanization were reduced but their growth rate was not altered. When assayed by qRT-PCR, the transcription levels of the MoHSP30 and MoHSP98 genes were reduced 10- and 3-fold, respectively, in the Mosfl1 mutant. SFL1 orthologs are conserved in filamentous ascomycetes but none of them have been functionally characterized in non-Saccharomycetales fungi. MoSfl1 has one putative MAPK docking site and three putative MAPK phosphorylation sites. Therefore, it may be functionally related to Pmk1 in the regulation of invasive growth and stress responses in M. oryzae.
doi:10.1371/journal.pone.0019951
PMCID: PMC3098271  PMID: 21625508
24.  Transcriptome and Expression Profile Analysis of Highly Resistant and Susceptible Banana Roots Challenged with Fusarium oxysporum f. sp. cubense Tropical Race 4 
PLoS ONE  2013;8(9):e73945.
Banana wilt disease, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense 4 (Foc4), is regarded as one of the most devastating diseases worldwide. Cavendish cultivar ‘Yueyoukang 1’ was shown to have significantly lower disease severity and incidence compared with susceptible cultivar ‘Brazilian’ in greenhouse and field trials. De novo sequencing technology was previously performed to investigate defense mechanism in middle resistant ‘Nongke No 1’ banana, but not in highly resistant cultivar ‘Yueyoukang 1’. To gain more insights into the resistance mechanism in banana against Foc4, Illumina Solexa sequencing technology was utilized to perform transcriptome sequencing of ‘Yueyoukang 1’ and ‘Brazilian’ and characterize gene expression profile changes in the both two cultivars at days 0.5, 1, 3, 5 and 10 after infection with Foc4. The results showed that more massive transcriptional reprogramming occurs due to Foc4 treatment in ‘Yueyoukang 1’ than ‘Brazilian’, especially at the first three time points, which suggested that ‘Yueyoukang 1’ had much faster defense response against Foc4 infection than ‘Brazilian’. Expression patterns of genes involved in ‘Plant-pathogen interaction’ and ‘Plant hormone signal transduction’ pathways were analyzed and compared between the two cultivars. Defense genes associated with CEBiP, BAK1, NB-LRR proteins, PR proteins, transcription factor and cell wall lignification were expressed stronger in ‘Yueyoukang 1’ than ‘Brazilian’, indicating that these genes play important roles in banana against Foc4 infection. However, genes related to hypersensitive reaction (HR) and senescence were up-regulated in ‘Brazilian’ but down-regulated in ‘Yueyoukang 1’, which suggested that HR and senescence may contribute to Foc4 infection. In addition, the resistance mechanism in highly resistant ‘Yueyoukang 1’ was found to differ from that in middle resistant ‘Nongke No 1’ banana. These results explain the resistance in the highly resistant cultivar and provide more insights in understanding the compatible and incompatible interactions between banana and Foc4.
doi:10.1371/journal.pone.0073945
PMCID: PMC3781162  PMID: 24086302
25.  The Cyclase-Associated Protein Cap1 Is Important for Proper Regulation of Infection-Related Morphogenesis in Magnaporthe oryzae 
PLoS Pathogens  2012;8(9):e1002911.
Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB) of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1ΔAB only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1ΔAB transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant infection in M. oryzae. CAP1 may also play a role in feedback inhibition of Ras2 signaling when Pmk1 is activated.
Author Summary
In Magnaporthe oryzae, cAMP signaling is known to play an important role in surface recognition and plant penetration. The Mac1 adenylate cyclase is essential for plant infection. To better understand Mac1 activation mechanisms, in this study we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting protein is the adenylate cyclase associated protein (CAP) encoded by the CAP1 gene. Results from our study indicated that Cap1 is important for Mac1 activation and plant infection in M. oryzae. The Δcap1 mutant was defective in germ tube growth and appressorium formation and failed to cause typical blast lesions. Like LifeAct, Cap1 localized to apical patches in vegetative hyphae but not in invasive hyphae. The P2 proline-rich region was important for Cap1 localization but the actin-binding domain played a role in feedback inhibition of Ras signaling. To our knowledge, functional characterization of CAP genes has not been reported in filamentous fungi. Our results indicate that CAP1 is important for regulating adenylate cyclase activities, appressorium morphogenesis, and plant infection. Further characterization of CAP1 will be important to better understand the interaction between cAMP signaling and the PMK1 pathway in M. oryzae.
doi:10.1371/journal.ppat.1002911
PMCID: PMC3435248  PMID: 22969430

Results 1-25 (342938)