PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1282190)

Clipboard (0)
None

Related Articles

1.  An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress 
Journal of Experimental Botany  2014;65(18):5415-5427.
Highlight text
SiARDP is a DREB-type transcription factor from foxtail millet. SiARDP is involved in ABA-dependent signal pathways under the control of SiARDP and plays a positive role in plant responses to drought stress.
The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants.
doi:10.1093/jxb/eru302
PMCID: PMC4157718  PMID: 25071221
Abscisic acid (ABA); abiotic stress; dehydration-responsive element (DRE); foxtail millet; SiARDP1; SiAREB; signal pathway; transcription factor.
2.  Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action 
Classical mechanisms of heterotrimeric G-protein signaling are observed to function in regulation of the transcriptome. Conversely, many theoretical regulatory modes of the G-protein are not manifested in the transcriptomes we investigate.A new mechanism of G-protein signaling is revealed, in which the β subunit regulates gene expression identically in the presence or absence of the α subunit.We find evidence of cross-talk between G-protein-mediated and hormone-mediated transcriptional regulation.We find evidence of system specificity in G-protein signaling.
Heterotrimeric G-proteins, composed of α, β, and γ subunits, participate in a wide range of signaling pathways in eukaryotes (Morris and Malbon, 1999). According to the typical, mammalian paradigm, in its inactive state, the G-protein exists as an associated heterotrimer. G-protein signaling begins with ligand binding that results in a conformational change in a G-protein-coupled receptor (GPCR). Once activated by the GPCR, the Gα separates from the associated Gβγ dimer and the freed Gα and Gβγ proteins can then interact with downstream effector molecules, alone or in combination, to transduce the signal. Subsequent to signal propagation, Gα re-associates with the Gβγ dimer to reform the G-protein complex.
There are several classical routes for signal propagation through heterotrimeric G-proteins that have been categorized in mammalian systems (Marrari et al, 2007; Dupre et al, 2009). One route, which we designate classical I, requires the presence of both subunits, and can invoke one of two distinct mechanisms. In one mechanism, on GPCR activation, freed Gα and Gβγ each interact with downstream effectors to elicit the downstream response. In a related mechanism, Gα but not Gβγ interacts with downstream effectors, but the Gβγ dimer is nevertheless required to facilitate coupling of Gα with the relevant GPCR (Marrari et al, 2007). In a second route, which we designate classical II, it is solely the Gβγ dimer that interacts with downstream effectors; in this case, sequestration of Gβγ within the heterotrimer prevents signal propagation. In addition, a few non-classical G-protein regulatory modes have also been implicated in some systems, for example signaling by the intact heterotrimer in yeast (Klein et al, 2000; Frank et al, 2005). Observations such as these lead to a fundamental question, namely, which of all the theoretical regulatory modes of G-protein signaling are realized biologically. Our study answers this question in the context of the model plant Arabidopsis thaliana, and in addition analyzes the manner in which G-protein signaling couples with signaling by the plant hormone abscisic acid. The Arabidopsis genome encodes only one canonical Gα subunit, GPA1, and one canonical Gβ subunit, AGB1, and knockout mutants are available for each of these, allowing clear dissection of Gα- and Gβ-related phenotypes.
Abscisic acid (ABA) is a major plant hormone, which inhibits growth and promotes tolerance of abiotic stresses such as drought, salinity, and cold. ABA signaling is known to interact with heterotrimeric G-protein signaling in both developmental and stress responses in a complex manner, causing, for example, ABA hyposensitivity of guard cell stomatal opening in gpa1 and agb1 single mutants as well as agb1 gpa1 double mutants (Fan et al, 2008), but ABA hypersensitivity of the inhibition of seed germination and post-germination seedling development in the same mutants (Pandey et al, 2006). These experimental observations implicate G-proteins as one of the components of ABA signaling, but to date no systematic study has been conducted in either plant or metazoan systems to define the co-regulatory modes of a G-protein and a hormone.
In this study, we conduct genome-wide gene expression profiling in G-protein subunit mutants of A. thaliana guard cells and leaves, with or without treatment with ABA. By introducing one or more mediators acting downstream of the G-protein and ABA to control transcript levels, we propose nine G-protein/ABA signaling pathways including ABA-independent G-protein signaling pathways, G-protein-independent ABA signaling pathways, and seven distinct ABA–G-protein-coupled signaling pathways (Figure 1). We develop a Boolean modeling framework to systematically enumerate 14 possible theoretical regulatory modes of the G-protein and 142 co-regulatory modes of the G-protein and ABA, and then use a pattern matching approach to associate target genes with theoretical regulatory modes.
Our analysis shows that the G-protein regulatory mode that requires the presence of both Gα and Gβγ subunits (consistent with classical I mechanisms), is well represented in both guard cells and leaves. The G-protein regulatory mode that requires a freed Gβγ subunit (classical II G-protein regulatory mechanism) is well supported in guard cells and somewhat less so in leaves. In addition, a G-protein regulatory mode representing a non-classical regulatory mechanism is prevalent in guard cells but less so in leaves (Figure 5). In this regulatory mode, signaling by Gβ(γ) occurs, and this signaling is not regulated in any way by Gα.
By relating the target genes with the nine proposed G-protein/ABA signaling pathways, we are able to gauge the plausibility of regulatory modes of the G-protein and ABA at the pathway level. We find that G-protein-independent ABA signaling pathways are prevalent in both guard cells and leaves. The existence of an ABA-independent regulatory activity of the G-protein is well supported in guard cells, but not supported in leaves. Additive regulation by G-protein signaling plus G-protein-independent ABA signaling is rare in both guard cells and leaves. In addition, combinatorial cross-talk between G-protein signaling and ABA signaling and additive cross-talk between ABA–G-protein signaling and G-protein-independent ABA signaling are observed in both guard cells and leaves. Our transcriptome analysis indicates that in some cases, ABA definitely does not influence G-protein signaling, though it may do so in some other cases.
To investigate whether previously observed hypersensitivity or hyposensitivity of developmental and dynamic transient responses to ABA in G-protein mutants is recapitulated at the level of transcriptional regulation, we compare gene regulation by ABA in guard cells and leaves of the G-protein mutants versus wild type. We find that in guard cells, equal ABA hyposensitivity of all mutants combined is significant, although hyposensitivity in individual mutants is not. There is also a separate group of genes in guard cells that show ABA hypersensitivity in the gpa1 mutant, suggesting complex interactions between ABA and G-protein signaling in gene regulation in this cell type. In leaves, ABA hyposensitivity of gene expression in the three individual mutants and equal hyposensitivity in all mutants are strongly supported. In addition, several of the functional categories identified by our analysis of G-protein regulatory modes have been implicated in previous physiological analyses of G-protein mutants, providing validation to the biological interpretation of our results.
In summary, by conducting a genome-wide gene expression profiling study in G-protein subunit mutants of A. thaliana guard cells and leaves and developing a Boolean modeling framework, we systematically evaluate the biological utilization of mechanisms of G-protein regulatory action and reveal novel regulatory modes of the G-protein. The results generate empirical evidence and insights regarding molecular events of G-protein signaling and response at the physiological level in both plants and mammals.
Heterotrimeric G-proteins mediate crucial and diverse signaling pathways in eukaryotes. Here, we generate and analyze microarray data from guard cells and leaves of G-protein subunit mutants of the model plant Arabidopsis thaliana, with or without treatment with the stress hormone, abscisic acid. Although G-protein control of the transcriptome has received little attention to date in any system, transcriptome analysis allows us to search for potentially uncommon yet significant signaling mechanisms. We describe the theoretical Boolean mechanisms of G-protein × hormone regulation, and then apply a pattern matching approach to associate gene expression profiles with Boolean models. We find that (1) classical mechanisms of G-protein signaling are well represented. Conversely, some theoretical regulatory modes of the G-protein are not supported; (2) a new mechanism of G-protein signaling is revealed, in which Gβ regulates gene expression identically in the presence or absence of Gα; (3) guard cells and leaves favor different G-protein modes in transcriptome regulation, supporting system specificity of G-protein signaling. Our method holds significant promise for analyzing analogous ‘switch-like' signal transduction events in any organism.
doi:10.1038/msb.2010.28
PMCID: PMC2913393  PMID: 20531402
abscisic acid; Arabidopsis thaliana; Boolean modeling; heterotrimeric G-protein; transcriptome
3.  Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice 
BMC Genomics  2007;8:260.
Background
In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa).
Results
Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters.
Conclusion
Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks.
doi:10.1186/1471-2164-8-260
PMCID: PMC2000901  PMID: 17672917
4.  The Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis 
PLoS ONE  2014;9(10):e109415.
Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein could mediate ABA signaling both in rose and in A. thaliana.
doi:10.1371/journal.pone.0109415
PMCID: PMC4188598  PMID: 25290154
5.  Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens 
Plant Signaling & Behavior  2010;5(9):1061-1066.
The plant-specific transcription factor ABSCISIC ACID IN SENSITIVE3 (ABI3) or the maize ortholog VIVIPAROUS1 (VP1) is known to regulate seed maturation and germination in concert with the phytohormone abscisic acid (ABA) but is also evolutionarily conserved among land plants including non-seed plants. An ABI3/VP1 ortholog (PpABI3A) from the moss Physcomitrella patens can activate ABA-responsive gene promoters in the moss and angiosperms; however, it failed to fully complement the phenotypes of the Arabidopsis abi3-6 mutant, suggesting that some aspects of ABI3/VP1 functions have diverged during the evolution of land plants. To gain insights into the evolution of ABI3/VP1 function, we performed a comparative analysis of the regulatory elements required for ABI3 activation in Physcomitrella using a wheat Em gene promoter, which is induced by ABA and ABI3/VP1 both in Physcomitrella and in angiosperms. Elimination of either the ACGT core motif in the ABA response element (ABRE) or the RY element, to which ABI3/VP1 binds directly, resulted in a drastic reduction of the ABA response in Physcomitrella. Arabidopsis ABI3 could effectively activate the Em promoter either in an ABRE- or RY-dependent manner, as observed in angiosperms. On the other hand, PpABI3A failed to activate an Em promoter lacking the RY element but not the ABRE. These results suggest that RY-mediated transcriptional regulation of ABI3/VP1 is evolutionarily conserved between the moss and angiosperms, whereas angiosperm ABI3/VP1 has evolved to activate ABA-inducible promoters via the ABRE sequence independently from the RY element.
doi:10.4161/psb.5.9.11774
PMCID: PMC3115069  PMID: 20448474
ABA; ABI3; ABA response element; Physcomoitrella patens; RY element
6.  A Remorin Gene SiREM6, the Target Gene of SiARDP, from Foxtail Millet (Setaria italica) Promotes High Salt Tolerance in Transgenic Arabidopsis 
PLoS ONE  2014;9(6):e100772.
Remorin proteins (REMs) form a plant-specific protein family, with some REMs being responsive to abiotic stress. However, the precise functions of REMs in abiotic stress tolerance are not clear. In this study, we identified 11 remorin genes from foxtail millet (Setaria italica) and cloned a remorin gene, SiREM6, for further investigation. The transcript level of SiREM6 was increased by high salt stress, low temperature stress and abscisic acid (ABA) treatment, but not by drought stress. The potential oligomerization of SiREM6 was examined by negative staining electron microscopy. The overexpression of SiREM6 improved high salt stress tolerance in transgenic Arabidopsis at the germination and seedling stages as revealed by germination rate, survival rate, relative electrolyte leakage and proline content. The SiREM6 promoter contains two dehydration responsive elements (DRE) and one ABA responsive element (ABRE). An ABA responsive DRE-binding transcription factor, SiARDP, and an ABRE-binding transcription factor, SiAREB1, were cloned from foxtail millet. SiARDP could physically bind to the DREs, but SiAREB1 could not. These results revealed that SiREM6 is a target gene of SiARDP and plays a critical role in high salt stress tolerance.
doi:10.1371/journal.pone.0100772
PMCID: PMC4072699  PMID: 24967625
7.  Auxin Response Factor2 (ARF2) and Its Regulated Homeodomain Gene HB33 Mediate Abscisic Acid Response in Arabidopsis 
PLoS Genetics  2011;7(7):e1002172.
The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth.
Author Summary
Abscisic acid is a phytohormone that regulates many aspects in plant growth and development and response to different biotic and abiotic stresses. Research on ABA inhibiting seed germination, controlling stomatal movement, and regulating gene expression has been widely performed. However, the molecular mechanism for ABA regulating root growth is not well known. We have set up a genetic screen by using ABA inhibiting root growth to identify ABA related mutants and to dissect the molecular mechanism of ABA regulating root growth. In this study, we identified two new mutant alleles that are defective in ARF2 gene. ARF2 is a transcriptional suppressor that has been found to be involved in ethylene, auxin, and brassinosteroid pathway to control plant growth and development. Our study indicates that ARF2 is an ABA responsive regulator that functions in both seed germination and primary root growth. ARF2 directly regulates the expression of a homeodomain gene HB33. We demonstrate that ABA treatment reduces the cell division and alters auxin distribution more in arf2 mutant than in the wild type, suggesting an important mechanism in ABA inhibiting the primary root growth through mediating cell division in root tips.
doi:10.1371/journal.pgen.1002172
PMCID: PMC3136439  PMID: 21779177
8.  Abscisic Acid and Abiotic Stress Signaling 
Plant Signaling & Behavior  2007;2(3):135-138.
Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis.
PMCID: PMC2634038  PMID: 19516981
ABA; ABA-responsive element; ABA-responsive genes; cis-acting elements; environmental stress; plant stress hormone; signal transduction; transcription factors
9.  The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat 
Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.
doi:10.3389/fpls.2014.00170
PMCID: PMC4032904  PMID: 24904597
ABA; transcription factor; signal transduction; abiotic stress; drought
10.  Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco 
Journal of Experimental Botany  2009;60(13):3781-3796.
A new member of the AP2/ERF transcription factor family, GmERF3, was isolated from soybean. Sequence analysis showed that GmERF3 contained an AP2/ERF domain of 58 amino acids and two putative nuclear localization signal (NLS) domains. It belonged to a group IV protein in the ERF (ethylene response factor) subfamily as typified by a conserved N-terminal motif [MCGGAI(I/L)]. Expression of GmERF3 was induced by treatments with high salinity, drought, abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and soybean mosaic virus (SMV), whereas there was no significant GmERF3 mRNA accumulation under cold stress treatment. GmERF3 could bind to the GCC box and DRE/CRT element, and was targeted to the nucleus when transiently expressed in onion epidermal cells. The GmERF3 protein fused to the GAL4 DNA-binding domain to activate transcription of reporter genes in yeast. Ectopic expression of the GmERF3 gene in transgenic tobacco plants induced the expression of some PR genes and enhanced resistance against infection by Ralstonia solanacearum, Alternaria alternata, and tobacco mosaic virus (TMV), and gave tolerance to high salinity and dehydration stresses. Furthermore, overexpression of GmERF3 in transgenic tobacco led to higher levels of free proline and soluble carbohydrates compared to wild-type plants under drought conditions. The overall results suggested that GmERF3 as an AP2/ERF transcription factor may play dual roles in response to biotic and abiotic stresses in plants.
doi:10.1093/jxb/erp214
PMCID: PMC2736888  PMID: 19602544
Abiotic stress; biotic stress; ethylene response factor; pathogen
11.  Isolation and Characterization of Six AP2/ERF Transcription Factor Genes in Chrysanthemum nankingense 
The AP2/ERF family of plant transcription factors (TFs) regulate a variety of developmental and physiological processes. Here, we report the isolation of six AP2/ERF TF family genes from Chrysanthemum nankingense. On the basis of sequence similarity, one of these belonged to the Ethylene Responsive Factor (ERF) subfamily and the other five to the Dehydration Responsive Element Binding protein (DREB) subfamily. A transient expression experiment showed that all six AP2/ERF proteins localized to the nucleus. A yeast-one hybrid assay demonstrated that CnDREB1-1, 1-2 and 1-3 all function as transactivators, while CnERF1, CnDREB3-1 and 3-2 have no transcriptional activation ability. The transcription response of the six TFs in response to wounding, salinity and low temperature stress and treatment with abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) showed that CnERF1 was up-regulated by wounding and low temperature stress but suppressed by salinity stress. The transcription of CnDREB1-1, 1-2 and 1-3 was down-regulated by ABA and JA to varying degrees. CnDREB3-1 and 3-2 was moderately increased or decreased by wounding and SA treatment, suppressed by salinity stress and JA treatment, and enhanced by low temperature stress and ABA treatment.
doi:10.3390/ijms16012052
PMCID: PMC4307348  PMID: 25607731
hormone; PCR; stress response; transcription pattern
12.  Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress 
Plant, Cell & Environment  2014;38(1):35-49.
Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth.
Abscisic acid (ABA) plays important roles in osmotic stress-responsive gene expression mainly through three bZIP transcription factors, AREB1, AREB2, and ABF3, which are activated by SnRK2s such as SRK2D, SRK2E, and SRK2I (SRK2D/E/I). However, transcription factors other than the three AREB/ABFs that function downstream of SRK2D/E/I remain obscure. Here, we report that ABF1 is a functional homolog of AREB1, AREB2, and ABF3 in ABA-dependent gene expression from a comparative analysis between the areb1 areb2 abf3 abf1 and areb1 areb2 abf3 mutants. Moreover, genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I were mostly impaired in the areb1 areb2 abf3 abf1 quadruple mutant, suggesting that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signaling in response to osmotic stress.
doi:10.1111/pce.12351
PMCID: PMC4302978  PMID: 24738645
ABF1; transcriptional regulation; transcriptome analysis.
13.  Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species 
Plant Molecular Biology  2011;75(4-5):365-378.
The phytohormone abscisic acid (ABA) and reactive oxygen species (ROS) play critical roles in mediating abiotic stress responses in plants. It is well known that ABA is involved in the modulation of ROS levels by regulating ROS-producing and ROS-scavenging genes, but the molecular mechanisms underlying this regulation are poorly understood. Here we show that the expression of maize ABP9 gene, which encodes a bZIP transcription factor capable of binding to the ABRE2 motif in the maize Cat1 promoter, is induced by ABA, H2O2, drought and salt. Constitutive expression of ABP9 in transgenic Arabidopsis leads to remarkably enhanced tolerance to multiple stresses including drought, high salt, freezing temperature and oxidative stresses. ABP9 expressing Arabidopsis plants also exhibit increased sensitivity to exogenously applied ABA during seed germination, root growth and stomatal closure and improved water-conserving capacity. Moreover, constitutive expression of ABP9 causes reduced cellular levels of ROS, alleviated oxidative damage and reduced cell death, accompanied by elevated expression of many stress/ABA responsive genes including those for scavenging and regulating ROS. Taken together, these results suggest that ABP9 may play a pivotal role in plant tolerance to abiotic stresses by fine tuning ABA signaling and control of ROS accumulation.
Electronic supplementary material
The online version of this article (doi:10.1007/s11103-011-9732-x) contains supplementary material, which is available to authorized users.
doi:10.1007/s11103-011-9732-x
PMCID: PMC3044229  PMID: 21327835
Transcription factor ABP9; ABA; Reactive oxygen species; Stress tolerance; Gene expression
14.  Genome-Wide Investigation and Expression Profiling of AP2/ERF Transcription Factor Superfamily in Foxtail Millet (Setaria italica L.) 
PLoS ONE  2014;9(11):e113092.
The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses.
doi:10.1371/journal.pone.0113092
PMCID: PMC4237383  PMID: 25409524
15.  Convergence of Light and ABA Signaling on the ABI5 Promoter 
PLoS Genetics  2014;10(2):e1004197.
Light is one of the most important environmental cues regulating multiple aspects of plant growth and development, and abscisic acid (ABA) is a plant hormone that plays important roles during many phases of the plant life cycle and in plants' responses to various environmental stresses. How plants integrate the external light signal with endogenous ABA pathway for better adaptation and survival remains poorly understood. Here, we show that BBX21 (also known as SALT TOLERANCE HOMOLOG 2), a B-box (BBX) protein previously shown to positively regulate seedling photomorphogenesis, is also involved in ABA signaling. Our genetic data show that BBX21 may act upstream of several ABA INSENSITIVE (ABI) genes and ELONGATED HYPOCOTYL 5 (HY5) in ABA control of seed germination. Previous studies showed that HY5 acts as a direct activator of ABI5 expression, and that BBX21 interacts with HY5. We further demonstrate that BBX21 negatively regulates ABI5 expression by interfering with HY5 binding to the ABI5 promoter. In addition, ABI5 was shown to directly activate its own expression, whereas BBX21 negatively regulates this activity by directly interacting with ABI5. Together, our study indicates that BBX21 coordinates with HY5 and ABI5 on the ABI5 promoter and that these transcriptional regulators work in concert to integrate light and ABA signaling in Arabidopsis thaliana.
Author Summary
Many factors such as light, phytohormone abscisic acid (ABA), etc., regulate multiple developmental processes throughout the plants' life cycle. Light promotes seed germination and ABA maintains seed dormancy. However, little is known about how light and ABA signaling pathways interact with each other. It was previously reported that Arabidopsis HY5, a well-known bZIP transcription factor involved in promoting seedling photomorphogenesis, is involved in ABA signaling by directly activating ABI5 expression. Here, we report that the B-box protein BBX21 negatively regulates ABI5 expression by interfering with HY5 binding to the ABI5 promoter. Interestingly, ABI5 was shown to directly bind to its own promoter and activate its expression, whereas BBX21 also negatively regulates this activity by interacting with ABI5. Together, our study shows that light and ABA signaling pathways converge on the ABI5 promoter, on which BBX21 acts as a negative regulator of ABI5 expression.
doi:10.1371/journal.pgen.1004197
PMCID: PMC3937224  PMID: 24586210
16.  Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid 
BMC Plant Biology  2009;9:96.
Background
Plant WRKY DNA-binding transcription factors are key regulators in certain developmental programs. A number of studies have suggested that WRKY genes may mediate seed germination and postgermination growth. However, it is unclear whether WRKY genes mediate ABA-dependent seed germination and postgermination growth arrest.
Results
To determine directly the role of Arabidopsis WRKY2 transcription factor during ABA-dependent seed germination and postgermination growth arrest, we isolated T-DNA insertion mutants. Two independent T-DNA insertion mutants for WRKY2 were hypersensitive to ABA responses only during seed germination and postgermination early growth. wrky2 mutants displayed delayed or decreased expression of ABI5 and ABI3, but increased or prolonged expression of Em1 and Em6. wrky2 mutants and wild type showed similar levels of expression for miR159 and its target genes MYB33 and MYB101. Analysis of WRKY2 expression level in ABA-insensitive and ABA-deficient mutants abi5-1, abi3-1, aba2-3 and aba3-1 further indicated that ABA-induced WRKY2 accumulation during germination and postgermination early growth requires ABI5, ABI3, ABA2 and ABA3.
Conclusion
ABA hypersensitivity of the wrky2 mutants during seed germination and postgermination early seedling establishment is attributable to elevated mRNA levels of ABI5, ABI3 and ABI5-induced Em1 and Em6 in the mutants. WRKY2-mediated ABA responses are independent of miR159 and its target genes MYB33 and MYB101. ABI5, ABI3, ABA2 and ABA3 are important regulators of the transcripts of WRKY2 by ABA treatment. Our results suggest that WRKY2 transcription factor mediates seed germination and postgermination developmental arrest by ABA.
doi:10.1186/1471-2229-9-96
PMCID: PMC2719644  PMID: 19622176
17.  The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling 
Cell Research  2013;23(12):1380-1395.
Proteins in the PYR/PYL/RCAR family (PYLs) are known as receptors for the phytohormone ABA. Upon ABA binding, PYL adopts a conformation that allows it to interact with and inhibit clade A protein phosphatase 2Cs (PP2Cs), which are known as the co-receptors for ABA. Inhibition of the PP2Cs then leads to the activation of the SnRK2 family protein kinases that phosphorylate and activate downstream effectors in ABA response pathways. The PYL family has 14 members in Arabidopsis, 13 of which have been demonstrated to function as ABA receptors. The function of PYL13, a divergent member of the family, has been enigmatic. We report here that PYL13 differs from the other PYLs in three key residues that affect ABA perception, and mutations in these three residues can convert PYL13 into a partially functional ABA receptor. Transgenic plants overexpressing PYL13 show increased ABA sensitivity in seed germination and postgermination seedling establishment as well as decreased stomatal conductance, increased water-use efficiency, accelerated stress-responsive gene expression, and enhanced drought resistance. pyl13 mutant plants are less sensitive to ABA inhibition of postgermination seedling establishment. PYL13 interacts with and inhibits some members of clade A PP2Cs (PP2CA in particular) in an ABA-independent manner. PYL13 also interacts with the other PYLs and antagonizes their function as ABA receptors. Our results show that PYL13 is not an ABA receptor but can modulate the ABA pathway by interacting with and inhibiting both the PYL receptors and the PP2C co-receptors.
doi:10.1038/cr.2013.149
PMCID: PMC3847577  PMID: 24189045
abiotic stress; drought; stress resistance; PYL; PP2C; SnRK2
18.  Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells 
BMC Genomics  2011;12:216.
Background
In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues.
Results
The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets, the type 2C protein phosphatases. Our data also provide evidence for cross-talk at the transcriptional level between ABA and another hormonal inhibitor of stomatal opening, methyl jasmonate.
Conclusions
Our results engender new insights into the basic cell biology of guard cells, reveal common and unique elements of ABA-regulation of gene expression in guard cells, and set the stage for targeted biotechnological manipulations to improve plant water use efficiency.
doi:10.1186/1471-2164-12-216
PMCID: PMC3115880  PMID: 21554708
19.  ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis 
PLoS Genetics  2013;9(6):e1003577.
Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis.
Author Summary
Seed dormancy prevents or delays germination in maturated seeds. The optimal level of seed dormancy is a valuable trait for agricultural production and post-harvest management. High ABA and low GA content in seeds promote seed dormancy. However, the precise molecular mechanisms controlling seed dormancy and germination remain unclear. We found that ABI4, the key transcription factor in the ABA signaling pathway, indeed controls primary seed dormancy. This result contradicts the previous conclusion that ABI4 is not involved in the control of seed dormancy. Several lines of evidence support our conclusion. For example, detailed physiological analysis of the germination of abi4 seeds that were harvested immediately and stored for various periods of time and subjected to various treatments allowed us to conclude that ABI4 negatively regulates primary seed dormancy. The molecular mechanism responsible for this control is as follows: ABI4 directly or indirectly regulates the key genes of the ABA and GA biogenesis pathways, which then regulates the ABA and GA contents in seeds. Importantly, further genetic interactions between CYP707A1, CYP707A2, GA1, and ABI4 also support our conclusion.
doi:10.1371/journal.pgen.1003577
PMCID: PMC3688486  PMID: 23818868
20.  Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress 
BMC Plant Biology  2010;10:281.
Background
WRKY transcription factors are involved in plant responses to both biotic and abiotic stresses. Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors interact both physically and functionally in plant defense responses. However, their role in plant abiotic stress response has not been directly analyzed.
Results
We report that the three WRKYs are involved in plant responses to abscisic acid (ABA) and abiotic stress. Through analysis of single, double, and triple mutants and overexpression lines for the WRKY genes, we have shown that WRKY18 and WRKY60 have a positive effect on plant ABA sensitivity for inhibition of seed germination and root growth. The same two WRKY genes also enhance plant sensitivity to salt and osmotic stress. WRKY40, on the other hand, antagonizes WRKY18 and WRKY60 in the effect on plant sensitivity to ABA and abiotic stress in germination and growth assays. Both WRKY18 and WRKY40 are rapidly induced by ABA, while induction of WRKY60 by ABA is delayed. ABA-inducible expression of WRKY60 is almost completely abolished in the wrky18 and wrky40 mutants. WRKY18 and WRKY40 recognize a cluster of W-box sequences in the WRKY60 promoter and activate WRKY60 expression in protoplasts. Thus, WRKY60 might be a direct target gene of WRKY18 and WRKY40 in ABA signaling. Using a stable transgenic reporter/effector system, we have shown that both WRKY18 and WRKY60 act as weak transcriptional activators while WRKY40 is a transcriptional repressor in plant cells.
Conclusions
We propose that the three related WRKY transcription factors form a highly interacting regulatory network that modulates gene expression in both plant defense and stress responses by acting as either transcription activator or repressor.
doi:10.1186/1471-2229-10-281
PMCID: PMC3023790  PMID: 21167067
21.  PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis 
The Plant Journal  2009;61(2):290-299.
Abscisic acid (ABA) mediates resistance to abiotic stress and controls developmental processes in plants. The group-A PP2Cs, of which ABI1 is the prototypical member, are protein phosphatases that play critical roles as negative regulators very early in ABA signal transduction. Because redundancy is thought to limit the genetic dissection of early ABA signalling, to identify redundant and early ABA signalling proteins, we pursued a proteomics approach. We generated YFP-tagged ABI1 Arabidopsis expression lines and identified in vivo ABI1-interacting proteins by mass-spectrometric analyses of ABI1 complexes. Known ABA signalling components were isolated including SnRK2 protein kinases. We confirm previous studies in yeast and now show that ABI1 interacts with the ABA-signalling kinases OST1, SnRK2.2 and SnRK2.3 in plants. Interestingly, the most robust in planta ABI1-interacting proteins in all LC-MS/MS experiments were nine of the 14 PYR/PYL/RCAR proteins, which were recently reported as ABA-binding signal transduction proteins, providing evidence for in vivo PYR/PYL/RCAR interactions with ABI1 in Arabidopsis. ABI1–PYR1 interaction was stimulated within 5 min of ABA treatment in Arabidopsis. Interestingly, in contrast, PYR1 and SnRK2.3 co-immunoprecipitated equally well in the presence and absence of ABA. To investigate the biological relevance of the PYR/PYLs, we analysed pyr1/pyl1/pyl2/pyl4 quadruple mutant plants and found strong insensitivities in ABA-induced stomatal closure and ABA-inhibition of stomatal opening. These findings demonstrate that ABI1 can interact with several PYR/PYL/RCAR family members in Arabidopsis, that PYR1–ABI1 interaction is rapidly stimulated by ABA in Arabidopsis and indicate new SnRK2 kinase-PYR/PYL/RCAR interactions in an emerging model for PYR/PYL/RCAR-mediated ABA signalling.
doi:10.1111/j.1365-313X.2009.04054.x
PMCID: PMC2807913  PMID: 19874541
abscisic acid; ABI1; ABI1 interacting proteins; proteome; PYR/PYL/RCAR
22.  PYR/PYL/RACR family members are major in vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis 
Summary
Abscisic acid (ABA) mediates resistance to abiotic stress and controls developmental processes in plants. The group-A PP2Cs, of which ABI1 is the prototypical member, are protein phosphatases that play critical roles as negative regulators very early in ABA signal transduction. Because redundancy is thought to limit the genetic dissection of early ABA signaling, to identify redundant and early ABA signaling proteins, we pursued a proteomics approach. We generated YFP-tagged ABI1 Arabidopsis expression lines and identified in vivo ABI1-interacting proteins by mass-spectrometric analyses of ABI1 complexes. Known ABA signaling components were isolated including SnRK2 protein-kinases. We confirm previous studies in yeast and now show that ABI1 interacts with the ABA-signaling kinases OST1, SnRK2.2 and SnRK2.3 in plants. Interestingly, the most robust in planta ABI1-interacting proteins in all LC-MS/MS experiments were nine of the 14 PYR/PYL/RCAR proteins, which were recently reported as ABA-binding signal transduction proteins, providing evidence for in vivo PYR/PYL/RCAR interactions with ABI1 in Arabidopsis. ABI1-PYR1 interaction was stimulated within 5 min of ABA treatment in Arabidopsis. Interestingly, in contrast, PYR1 and SnRK2.3 co-immunoprecipitated equally well in the presence and absence of ABA. To investigate the biological relevance of the PYR/PYLs, we analyzed pyr1/pyl1/pyl2/pyl4 quadruple mutant plants and found strong insensitivities in ABA-induced stomatal closure and ABA-inhibition of stomatal opening. These findings demonstrate that ABI1 can interact with several PYR/PYL/RCAR family members in Arabidopsis, that PYR1–ABI1 interaction is rapidly stimulated by ABA in Arabidopsis and indicate new SnRK2 kinase-PYR/PYL/RCAR interactions in an emerging model for PYR/PYL/RCAR-mediated ABA signaling.
doi:10.1111/j.1365-313X.2009.04054.x
PMCID: PMC2807913  PMID: 19874541
Abscisic acid; ABI1; ABI1 interacting proteins; proteome; PYR/PYL/RCAR
23.  Overexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content 
AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1) is a member of the basic domain leucine zipper (bZIP)-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA), dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAREB1 was conducted in wild-type (WT), and a complementation experiment was employed to ABA non-sensitivity mutant abi5 (abscisic acid-insensitive 5). Constitutive expression of AhAREB1 confers water stress tolerance and is highly sensitive to exogenous ABA. Microarray and further real-time PCR analysis revealed that drought stress, reactive oxygen species (ROS) scavenging, ABA synthesis/metabolism-related genes and others were regulated in transgenic Arabidopsis overexpressing AhAREB1. Accordingly, low level of ROS, but higher ABA content was detected in the transgenic Arabidopsis plants’ overexpression of AhAREB1. Taken together, it was concluded that AhAREB1 modulates ROS accumulation and endogenous ABA level to improve drought tolerance in transgenic Arabidopsis.
doi:10.3390/ijms140612827
PMCID: PMC3709814  PMID: 23783278
AhAREB1; transcription factor; drought stress; Arachis hypogaea
24.  The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control 
BMC Plant Biology  2010;10:47.
Background
Plants respond to abiotic stress through complex regulation of transcription, including both transcriptional activation and repression. Dehydration-responsive-element binding protein (DREB)-type transcription factors are well known to play important roles in adaptation to abiotic stress. The mechanisms by which DREB-type transcription factors activate stress-induced gene expression have been relatively well studied. However, little is known about how DREB-type transcriptional repressors modulate plant stress responses. In this study, we report the functional analysis of RAP2.1, a DREB-type transcriptional repressor.
Results
RAP2.1 possesses an APETALA2 (AP2) domain that binds to dehydration-responsive elements (DREs) and an ERF-associated amphiphilic repression (EAR) motif, as the repression domain located at the C-terminus of the protein. Expression of RAP2.1 is strongly induced by drought and cold stress via an ABA-independent pathway. Arabidopsis plants overexpressing RAP2.1 show enhanced sensitivity to cold and drought stresses, while rap2.1-1 and rap2.1-2 T-DNA insertion alleles result in reduced sensitivity to these stresses. The reduced stress sensitivity of the plant containing the rap2.1 allele can be genetically complemented by the expression of RAP2.1, but not by the expression of EAR-motif-mutated RAP2.1. Furthermore, chromatin immunoprecipitation (ChIP) analysis has identified Responsive to desiccation/Cold-regulated (RD/COR) genes as downstream targets of RAP2.1 in vivo. Stress-induced expression of the RD/COR genes is repressed by overexpression of RAP2.1 and is increased in plants expressing the rap2.1 allele. In addition, RAP2.1 can negatively regulate its own expression by binding to DREs present in its own promoter. Our data suggest that RAP2.1 acts as a negative transcriptional regulator in defence responses to cold and drought stress in Arabidopsis.
Conclusions
A hypothetical model for the role of RAP2.1 in modulating plant responses to cold and drought is proposed in this study. It appears that RAP2.1 acts as a negative "subregulon" of DREB-type activators and is involved in the precise regulation of expression of stress-related genes, acting to keep stress responses under tight control.
doi:10.1186/1471-2229-10-47
PMCID: PMC2848764  PMID: 20230648
25.  Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid 
BMC Genomics  2013;14(1):841.
Background
Abscisic acid (ABA) can regulate the expressions of many stress-responsive genes in plants. However, in defense responses to pathogens, mounting evidence suggests that ABA plays variable roles. Little information exists about genome-wide gene expression in ABA responses in tomato (Solanum lycopersicum L.), a model fruit crop plant.
Results
Global transcriptome profiles of tomato leaf responses to exogenous ABA were generated using Illumina RNA-sequencing. More than 173 million base pair reads were mapped onto the tomato reference genome and the expression pattern differences between treated and control leaves were assessed. In total, 50,616 transcripts were generated. Among them, 42,583 were functionally annotated in the NCBI non-redundant database and 47,877 in the tomato genome reference. Additionally, 31,107 transcripts were categorized into 57 functional groups based on Gene Ontology terms, and 14,371 were assigned to 310 Kyoto Encyclopedia of Genes and Genomes pathways. In both the ABA treatment and control samples, 39,671 transcripts were available to analyze their expressions, of which 21,712 (54.73%) responded to exogenous ABA. Of these transcripts, 2,787 were significantly differently expressed genes (DEGs). Many known and novel ABA-induced and -repressed genes were found. Exogenous ABA can influence the ABA signaling pathway with PYR/PYL/RCARs-PP2Cs-SnRK2s as the center. Eighteen PYL genes were detected. A large number of genes related to various transcription factors, heat shock proteins, pathogen resistance, and the salicylic acid, jasmonic acid, and ethylene signaling pathways were up-regulated by exogenous ABA.
Conclusions
The results indicated that ABA has the potential to improve pathogen-resistance and abiotic stress tolerance in tomato. This study presents the global expression analysis of ABA-regulated transcripts in tomato and provides a robust database for investigating the functions of genes induced by ABA.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-14-841) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-14-841
PMCID: PMC4046761  PMID: 24289302
Tomato; Exogenous ABA; RNA-Seq; ABA signaling pathway; Transcription factors; Heat shock proteins; Pathogen-related proteins; ROS scavenging enzymes

Results 1-25 (1282190)