PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (903948)

Clipboard (0)
None

Related Articles

1.  AthaMap, integrating transcriptional and post-transcriptional data 
Nucleic Acids Research  2008;37(Database issue):D983-D986.
The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403 173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/.
doi:10.1093/nar/gkn709
PMCID: PMC2686474  PMID: 18842622
2.  AthaMap web tools for the analysis and identification of co-regulated genes 
Nucleic Acids Research  2006;35(Database issue):D857-D862.
The AthaMap database generates a map of cis-regulatory elements for the whole Arabidopsis thaliana genome. This database has been extended by new tools to identify common cis-regulatory elements in specific regions of user-provided gene sets. A resulting table displays all cis-regulatory elements annotated in AthaMap including positional information relative to the respective gene. Further tables show overviews with the number of individual transcription factor binding sites (TFBS) present and TFBS common to the whole set of genes. Over represented cis-elements are easily identified. These features were used to detect specific enrichment of drought-responsive elements in cold-induced genes. For identification of co-regulated genes, the output table of the colocalization function was extended to show the closest genes and their relative distances to the colocalizing TFBS. Gene sets determined by this function can be used for a co-regulation analysis in microarray gene expression databases such as Genevestigator or PathoPlant. Additional improvements of AthaMap include display of the gene structure in the sequence window and a significant data increase. AthaMap is freely available at .
doi:10.1093/nar/gkl1006
PMCID: PMC1761422  PMID: 17148485
3.  AthaMap web tools for database-assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana 
Nucleic Acids Research  2005;33(Web Server issue):W397-W402.
The AthaMap database generates a map of cis-regulatory elements for the Arabidopsis thaliana genome. AthaMap contains more than 7.4 × 106 putative binding sites for 36 transcription factors (TFs) from 16 different TF families. A newly implemented functionality allows the display of subsets of higher conserved transcription factor binding sites (TFBSs). Furthermore, a web tool was developed that permits a user-defined search for co-localizing cis-regulatory elements. The user can specify individually the level of conservation for each TFBS and a spacer range between them. This web tool was employed for the identification of co-localizing sites of known interacting TFs and TFs containing two DNA-binding domains. More than 1.8 × 105 combinatorial elements were annotated in the AthaMap database. These elements can also be used to identify more complex co-localizing elements consisting of up to four TFBSs. The AthaMap database and the connected web tools are a valuable resource for the analysis and the prediction of gene expression regulation at .
doi:10.1093/nar/gki395
PMCID: PMC1160156  PMID: 15980498
4.  Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression 
BMC Genomics  2004;5:16.
Background
Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions.
Results
We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI.
Conclusion
Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions.
doi:10.1186/1471-2164-5-16
PMCID: PMC375527  PMID: 15053842
promoter; tissue-specific gene expression; position weight matrix; regulatory motif
5.  ‘MicroRNA Targets’, a new AthaMap web-tool for genome-wide identification of miRNA targets in Arabidopsis thaliana 
BioData Mining  2012;5:7.
Background
The AthaMap database generates a genome-wide map for putative transcription factor binding sites for A. thaliana. When analyzing transcriptional regulation using AthaMap it may be important to learn which genes are also post-transcriptionally regulated by inhibitory RNAs. Therefore, a unified database for transcriptional and post-transcriptional regulation will be highly useful for the analysis of gene expression regulation.
Methods
To identify putative microRNA target sites in the genome of A. thaliana, processed mature miRNAs from 243 annotated miRNA genes were used for screening with the psRNATarget web server. Positional information, target genes and the psRNATarget score for each target site were annotated to the AthaMap database. Furthermore, putative target sites for small RNAs from seven small RNA transcriptome datasets were used to determine small RNA target sites within the A. thaliana genome.
Results
Putative 41,965 genome wide miRNA target sites and 10,442 miRNA target genes were identified in the A. thaliana genome. Taken together with genes targeted by small RNAs from small RNA transcriptome datasets, a total of 16,600 A. thaliana genes are putatively regulated by inhibitory RNAs. A novel web-tool, ‘MicroRNA Targets’, was integrated into AthaMap which permits the identification of genes predicted to be regulated by selected miRNAs. The predicted target genes are displayed with positional information and the psRNATarget score of the target site. Furthermore, putative target sites of small RNAs from selected tissue datasets can be identified with the new ‘Small RNA Targets’ web-tool.
Conclusions
The integration of predicted miRNA and small RNA target sites with transcription factor binding sites will be useful for AthaMap-assisted gene expression analysis. URL: http://www.athamap.de/
doi:10.1186/1756-0381-5-7
PMCID: PMC3410767  PMID: 22800758
Arabidopsis thaliana; AthaMap; MicroRNAs; Small RNAs; Post-transcriptional regulation
6.  AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome 
Nucleic Acids Research  2004;32(Database issue):D368-D372.
Gene expression is controlled mainly by the binding of transcription factors to regulatory sequences. To generate a genomic map for regulatory sequences, the Arabidopsis thaliana genome was screened for putative transcription factor binding sites. Using publicly available data from the TRANSFAC database and from publications, alignment matrices for 23 transcription factors of 13 different factor families were used with the pattern search program Patser to determine the genomic positions of more than 2.4 × 106 putative binding sites. Due to the dense clustering of genes and the observation that regulatory sequences are not restricted to upstream regions, the prediction of binding sites was performed for the whole genome. The genomic positions and the underlying data were imported into the newly developed AthaMap database. This data can be accessed by positional information or the Arabidopsis Genome Initiative identification number. Putative binding sites are displayed in the defined region. Data on the matrices used and on the thresholds applied in these screens are given in the database. Considering the high density of sites it will be a valuable resource for generating models on gene expression regulation. The data are available at http://www.athamap.de.
doi:10.1093/nar/gkh017
PMCID: PMC308752  PMID: 14681436
7.  COTRASIF: conservation-aided transcription-factor-binding site finder 
Nucleic Acids Research  2009;37(7):e49.
COTRASIF is a web-based tool for the genome-wide search of evolutionary conserved regulatory regions (transcription factor-binding sites, TFBS) in eukaryotic gene promoters. Predictions are made using either a position-weight matrix search method, or a hidden Markov model search method, depending on the availability of the matrix and actual sequences of the target TFBS. COTRASIF is a fully integrated solution incorporating both a gene promoter database (based on the regular Ensembl genome annotation releases) and both JASPAR and TRANSFAC databases of TFBS matrices. To decrease the false-positives rate an integrated evolutionary conservation filter is available, which allows the selection of only those of the predicted TFBS that are present in the promoters of the related species’ orthologous genes. COTRASIF is very easy to use, implements a regularly updated database of promoters and is a powerful solution for genome-wide TFBS searching. COTRASIF is freely available at http://biomed.org.ua/COTRASIF/.
doi:10.1093/nar/gkp084
PMCID: PMC2673430  PMID: 19264796
8.  Dinucleotide Weight Matrices for Predicting Transcription Factor Binding Sites: Generalizing the Position Weight Matrix 
PLoS ONE  2010;5(3):e9722.
Background
Identifying transcription factor binding sites (TFBS) in silico is key in understanding gene regulation. TFBS are string patterns that exhibit some variability, commonly modelled as “position weight matrices” (PWMs). Though convenient, the PWM has significant limitations, in particular the assumed independence of positions within the binding motif; and predictions based on PWMs are usually not very specific to known functional sites. Analysis here on binding sites in yeast suggests that correlation of dinucleotides is not limited to near-neighbours, but can extend over considerable gaps.
Methodology/Principal Findings
I describe a straightforward generalization of the PWM model, that considers frequencies of dinucleotides instead of individual nucleotides. Unlike previous efforts, this method considers all dinucleotides within an extended binding region, and does not make an attempt to determine a priori the significance of particular dinucleotide correlations. I describe how to use a “dinucleotide weight matrix” (DWM) to predict binding sites, dealing in particular with the complication that its entries are not independent probabilities. Benchmarks show, for many factors, a dramatic improvement over PWMs in precision of predicting known targets. In most cases, significant further improvement arises by extending the commonly defined “core motifs” by about 10bp on either side. Though this flanking sequence shows no strong motif at the nucleotide level, the predictive power of the dinucleotide model suggests that the “signature” in DNA sequence of protein-binding affinity extends beyond the core protein-DNA contact region.
Conclusion/Significance
While computationally more demanding and slower than PWM-based approaches, this dinucleotide method is straightforward, both conceptually and in implementation, and can serve as a basis for future improvements.
doi:10.1371/journal.pone.0009722
PMCID: PMC2842295  PMID: 20339533
9.  Genome-wide transcription factor binding site/promoter databases for the analysis of gene sets and co-occurrence of transcription factor binding motifs 
BMC Genomics  2010;11:145.
Background
The use of global gene expression profiling is a well established approach to understand biological processes. One of the major goals of these investigations is to identify sets of genes with similar expression patterns. Such gene signatures may be very informative and reveal new aspects of particular biological processes. A logical and systematic next step is to reduce the identified gene signatures to the regulatory components that induce the relevant gene expression changes. A central issue in this context is to identify transcription factors, or transcription factor binding sites (TFBS), likely to be of importance for the expression of the gene signatures.
Results
We develop a strategy that efficiently produces TFBS/promoter databases based on user-defined criteria. The resulting databases constitute all genes in the Santa Cruz database and the positions for all TFBS provided by the user as position weight matrices. These databases are then used for two purposes, to identify significant TFBS in the promoters in sets of genes and to identify clusters of co-occurring TFBS. We use two criteria for significance, significantly enriched TFBS in terms of total number of binding sites for the promoters, and significantly present TFBS in terms of the fraction of promoters with binding sites. Significant TFBS are identified by a re-sampling procedure in which the query gene set is compared with typically 105 gene lists of similar size randomly drawn from the TFBS/promoter database. We apply this strategy to a large number of published ChIP-Chip data sets and show that the proposed approach faithfully reproduces ChIP-Chip results. The strategy also identifies relevant TFBS when analyzing gene signatures obtained from the MSigDB database. In addition, we show that several TFBS are highly correlated and that co-occurring TFBS define functionally related sets of genes.
Conclusions
The presented approach of promoter analysis faithfully reproduces the results from several ChIP-Chip and MigDB derived gene sets and hence may prove to be an important method in the analysis of gene signatures obtained through ChIP-Chip or global gene expression experiments. We show that TFBS are organized in clusters of co-occurring TFBS that together define highly coherent sets of genes.
doi:10.1186/1471-2164-11-145
PMCID: PMC2841680  PMID: 20193056
10.  Jaccard index based similarity measure to compare transcription factor binding site models 
Background
Positional weight matrix (PWM) remains the most popular for quantification of transcription factor (TF) binding. PWM supplied with a score threshold defines a set of putative transcription factor binding sites (TFBS), thus providing a TFBS model.
TF binding DNA fragments obtained by different experimental methods usually give similar but not identical PWMs. This is also common for different TFs from the same structural family. Thus it is often necessary to measure the similarity between PWMs. The popular tools compare PWMs directly using matrix elements. Yet, for log-odds PWMs, negative elements do not contribute to the scores of highly scoring TFBS and thus may be different without affecting the sets of the best recognized binding sites. Moreover, the two TFBS sets recognized by a given pair of PWMs can be more or less different depending on the score thresholds.
Results
We propose a practical approach for comparing two TFBS models, each consisting of a PWM and the respective scoring threshold. The proposed measure is a variant of the Jaccard index between two TFBS sets. The measure defines a metric space for TFBS models of all finite lengths. The algorithm can compare TFBS models constructed using substantially different approaches, like PWMs with raw positional counts and log-odds. We present the efficient software implementation: MACRO-APE (MAtrix CompaRisOn by Approximate P-value Estimation).
Conclusions
MACRO-APE can be effectively used to compute the Jaccard index based similarity for two TFBS models. A two-pass scanning algorithm is presented to scan a given collection of PWMs for PWMs similar to a given query.
Availability and implementation
MACRO-APE is implemented in ruby 1.9; software including source code and a manual is freely available at http://autosome.ru/macroape/ and in supplementary materials.
doi:10.1186/1748-7188-8-23
PMCID: PMC3851813  PMID: 24074225
Transcription factor binding site; TFBS; Transcription factor binding site model; Binding motif; Jaccard similarity; Position weight matrix; PWM; P-value; Position specific frequency matrix; PSFM; Macroape
11.  Relationship between gene co-expression and sharing of transcription factor binding sites in Drosophila melanogaster 
Bioinformatics  2009;25(19):2473-2477.
Motivation: In functional genomics, it is frequently useful to correlate expression levels of genes to identify transcription factor binding sites (TFBS) via the presence of common sequence motifs. The underlying assumption is that co-expressed genes are more likely to contain shared TFBS and, thus, TFBS can be identified computationally. Indeed, gene pairs with a very high expression correlation show a significant excess of shared binding sites in yeast. We have tested this assumption in a more complex organism, Drosophila melanogaster, by using experimentally determined TFBS and microarray expression data. We have also examined the reverse relationship between the expression correlation and the extent of TFBS sharing.
Results: Pairs of genes with shared TFBS show, on average, a higher degree of co-expression than those with no common TFBS in Drosophila. However, the reverse does not hold true: gene pairs with high expression correlations do not share significantly larger numbers of TFBS. Exception to this observation exists when comparing expression of genes from the earliest stages of embryonic development. Interestingly, semantic similarity between gene annotations (Biological Process) is much better associated with TFBS sharing, as compared to the expression correlation. We discuss these results in light of reverse engineering approaches to computationally predict regulatory sequences by using comparative genomics.
Contact: amarcoca@asu.edu
doi:10.1093/bioinformatics/btp462
PMCID: PMC2752616  PMID: 19633094
12.  Fine-Tuning Enhancer Models to Predict Transcriptional Targets across Multiple Genomes 
PLoS ONE  2007;2(11):e1115.
Networks of regulatory relations between transcription factors (TF) and their target genes (TG)- implemented through TF binding sites (TFBS)- are key features of biology. An idealized approach to solving such networks consists of starting from a consensus TFBS or a position weight matrix (PWM) to generate a high accuracy list of candidate TGs for biological validation. Developing and evaluating such approaches remains a formidable challenge in regulatory bioinformatics. We perform a benchmark study on 34 Drosophila TFs to assess existing TFBS and cis-regulatory module (CRM) detection methods, with a strong focus on the use of multiple genomes. Particularly, for CRM-modelling we investigate the addition of orthologous sites to a known PWM to construct phyloPWMs and we assess the added value of phylogenentic footprinting to predict contextual motifs around known TFBSs. For CRM-prediction, we compare motif conservation with network-level conservation approaches across multiple genomes. Choosing the optimal training and scoring strategies strongly enhances the performance of TG prediction for more than half of the tested TFs. Finally, we analyse a 35th TF, namely Eyeless, and find a significant overlap between predicted TGs and candidate TGs identified by microarray expression studies. In summary we identify several ways to optimize TF-specific TG predictions, some of which can be applied to all TFs, and others that can be applied only to particular TFs. The ability to model known TF-TG relations, together with the use of multiple genomes, results in a significant step forward in solving the architecture of gene regulatory networks.
doi:10.1371/journal.pone.0001115
PMCID: PMC2047340  PMID: 17973026
13.  Identifying Functional Transcription Factor Binding Sites in Yeast by Considering Their Positional Preference in the Promoters 
PLoS ONE  2013;8(12):e83791.
Transcription factor binding site (TFBS) identification plays an important role in deciphering gene regulatory codes. With comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades, various computational approaches have been proposed to predict TFBSs in the genome. The TFBS dataset of a TF generated by each algorithm is a ranked list of predicted TFBSs of that TF, where top ranked TFBSs are statistically significant ones. However, whether these statistically significant TFBSs are functional (i.e. biologically relevant) is still unknown. Here we develop a post-processor, called the functional propensity calculator (FPC), to assign a functional propensity to each TFBS in the existing computationally predicted TFBS datasets. It is known that functional TFBSs reveal strong positional preference towards the transcriptional start site (TSS). This motivates us to take TFBS position relative to the TSS as the key idea in building our FPC. Based on our calculated functional propensities, the TFBSs of a TF in the original TFBS dataset could be reordered, where top ranked TFBSs are now the ones with high functional propensities. To validate the biological significance of our results, we perform three published statistical tests to assess the enrichment of Gene Ontology (GO) terms, the enrichment of physical protein-protein interactions, and the tendency of being co-expressed. The top ranked TFBSs in our reordered TFBS dataset outperform the top ranked TFBSs in the original TFBS dataset, justifying the effectiveness of our post-processor in extracting functional TFBSs from the original TFBS dataset. More importantly, assigning functional propensities to putative TFBSs enables biologists to easily identify which TFBSs in the promoter of interest are likely to be biologically relevant and are good candidates to do further detailed experimental investigation. The FPC is implemented as a web tool at http://santiago.ee.ncku.edu.tw/FPC/.
doi:10.1371/journal.pone.0083791
PMCID: PMC3873331  PMID: 24386279
14.  Internet Resources for Gene Expression Analysis in Arabidopsis thaliana 
Current Genomics  2008;9(6):375-380.
The number of online databases and web-tools for gene expression analysis in Arabidopsis thaliana has increased tremendously during the last years. These resources permit the database-assisted identification of putative cis-regulatory DNA sequences, their binding proteins, and the determination of common cis-regulatory motifs in coregulated genes. DNA binding proteins may be predicted by the type of cis-regulatory motif. Further questions of combinatorial control based on the interaction of DNA binding proteins and the colocalization of cis-regulatory motifs can be addressed. The database-assisted spatial and temporal expression analysis of DNA binding proteins and their target genes may help to further refine experimental approaches. Signal transduction pathways upstream of regulated genes are not yet fully accessible in databases mainly because they need to be manually annotated. This review focuses on the use of the AthaMap and PathoPlant® databases for gene expression regulation analysis and discusses similar and complementary online databases and web-tools. Online databases are helpful for the development of working hypothesis and for designing subsequent experiments.
doi:10.2174/138920208785699535
PMCID: PMC2691667  PMID: 19506727
Bioinformatics; databases; gene expression; plants; transcription; web-server.
15.  Evolutionary Conserved Motif Finder (ECMFinder) for genome-wide identification of clustered YY1- and CTCF-binding sites 
Nucleic Acids Research  2009;37(6):2003-2013.
We have developed a new bioinformatics approach called ECMFinder (Evolutionary Conserved Motif Finder). This program searches for a given DNA motif within the entire genome of one species and uses the gene association information of a potential transcription factor-binding site (TFBS) to screen the homologous regions of a second and third species. If multiple species have this potential TFBS in homologous positions, this program recognizes the identified TFBS as an evolutionary conserved motif (ECM). This program outputs a list of ECMs, which can be uploaded as a Custom Track in the UCSC genome browser and can be visualized along with other available data. The feasibility of this approach was tested by searching the genomes of three mammals (human, mouse and cow) with the DNA-binding motifs of YY1 and CTCF. This program successfully identified many clustered YY1- and CTCF-binding sites that are conserved among these species but were previously undetected. In particular, this program identified CTCF-binding sites that are located close to the Dlk1, Magel2 and Cdkn1c imprinted genes. Individual ChIP experiments confirmed the in vivo binding of the YY1 and CTCF proteins to most of these newly discovered binding sites, demonstrating the feasibility and usefulness of ECMFinder.
doi:10.1093/nar/gkp077
PMCID: PMC2665242  PMID: 19208640
16.  Analysis of variation at transcription factor binding sites in Drosophila and humans 
Genome Biology  2012;13(9):R49.
Background
Advances in sequencing technology have boosted population genomics and made it possible to map the positions of transcription factor binding sites (TFBSs) with high precision. Here we investigate TFBS variability by combining transcription factor binding maps generated by ENCODE, modENCODE, our previously published data and other sources with genomic variation data for human individuals and Drosophila isogenic lines.
Results
We introduce a metric of TFBS variability that takes into account changes in motif match associated with mutation and makes it possible to investigate TFBS functional constraints instance-by-instance as well as in sets that share common biological properties. We also take advantage of the emerging per-individual transcription factor binding data to show evidence that TFBS mutations, particularly at evolutionarily conserved sites, can be efficiently buffered to ensure coherent levels of transcription factor binding.
Conclusions
Our analyses provide insights into the relationship between individual and interspecies variation and show evidence for the functional buffering of TFBS mutations in both humans and flies. In a broad perspective, these results demonstrate the potential of combining functional genomics and population genetics approaches for understanding gene regulation.
doi:10.1186/gb-2012-13-9-r49
PMCID: PMC3491393  PMID: 22950968
17.  ncDNA and drift drive binding site accumulation 
Background
The amount of transcription factor binding sites (TFBS) in an organism’s genome positively correlates with the complexity of the regulatory network of the organism. However, the manner by which TFBS arise and accumulate in genomes and the effects of regulatory network complexity on the organism’s fitness are far from being known. The availability of TFBS data from many organisms provides an opportunity to explore these issues, particularly from an evolutionary perspective.
Results
We analyzed TFBS data from five model organisms – E. coli K12, S. cerevisiae, C. elegans, D. melanogaster, A. thaliana – and found a positive correlation between the amount of non-coding DNA (ncDNA) in the organism’s genome and regulatory complexity. Based on this finding, we hypothesize that the amount of ncDNA, combined with the population size, can explain the patterns of regulatory complexity across organisms. To test this hypothesis, we devised a genome-based regulatory pathway model and subjected it to the forces of evolution through population genetic simulations. The results support our hypothesis, showing neutral evolutionary forces alone can explain TFBS patterns, and that selection on the regulatory network function does not alter this finding.
Conclusions
The cis-regulome is not a clean functional network crafted by adaptive forces alone, but instead a data source filled with the noise of non-adaptive forces. From a regulatory perspective, this evolutionary noise manifests as complexity on both the binding site and pathway level, which has significant implications on many directions in microbiology, genetics, and synthetic biology.
doi:10.1186/1471-2148-12-159
PMCID: PMC3556125  PMID: 22935101
18.  Phylogenetic simulation of promoter evolution: estimation and modeling of binding site turnover events and assessment of their impact on alignment tools 
Genome Biology  2007;8(10):R225.
Phylogenetic simulation of promoter evolution were used to analyze functional site turnover in regulatory sequences.
Background
The phenomenon of functional site turnover has important implications for the study of regulatory region evolution, such as for promoter sequence alignments and transcription factor binding site (TFBS) identification. At present, it remains difficult to estimate TFBS turnover rates on real genomic sequences, as reliable mappings of functional sites across related species are often not available. As an alternative, we introduce a flexible new simulation system, Phylogenetic Simulation of Promoter Evolution (PSPE), designed to study functional site turnovers in regulatory sequences.
Results
Using PSPE, we study replacement turnover rates of different individual TFBSs and simple modules of two sites under neutral evolutionary functional constraints. We find that TFBS replacement turnover can happen rapidly in promoters, and turnover rates vary significantly among different TFBSs and modules. We assess the influence of different constraints such as insertion/deletion rate and translocation distances. Complementing the simulations, we give simple but effective mathematical models for TFBS turnover rate prediction. As one important application of PSPE, we also present a first systematic evaluation of multiple sequence aligners regarding their capability of detecting TFBSs in promoters with site turnovers.
Conclusion
PSPE allows researchers for the first time to investigate TFBS replacement turnovers in promoters systematically. The assessment of alignment tools points out the limitations of current approaches to identify TFBSs in non-coding sequences, where turnover events of functional sites may happen frequently, and where we are interested in assessing the similarity on the functional level. PSPE is freely available at the authors' website.
doi:10.1186/gb-2007-8-10-r225
PMCID: PMC2246299  PMID: 17956628
19.  Measuring Transcription Factor–Binding Site Turnover: A Maximum Likelihood Approach Using Phylogenies 
A major mode of gene expression evolution is based on changes in cis-regulatory elements (CREs) whose function critically depends on the presence of transcription factor–binding sites (TFBS). Because CREs experience extensive TFBS turnover even with conserved function, alignment-based studies of CRE sequence evolution are limited to very closely related species. Here, we propose an alternative approach based on a stochastic model of TFBS turnover. We implemented a maximum likelihood model that permits variable turnover rates in different parts of the species tree. This model can be used to detect changes in turnover rate as a proxy for differences in the selective pressures acting on TFBS in different clades. We applied this method to five TFBS in the fungi methionine biosynthesis pathway and three TFBS in the HoxA clusters of vertebrates. We find that the estimated turnover rate is generally high, with half-life ranging between ∼5 and 150 My and a mode around tens of millions of years. This rate is consistent with the finding that even functionally conserved enhancers can show very low sequence similarity. We also detect statistically significant differences in the equilibrium densities of estrogen- and progesterone-response elements in the HoxA clusters between mammal and nonmammal vertebrates. Even more extreme clade-specific differences were found in the fungal data. We conclude that stochastic models of TFBS turnover enable the detection of shifts in the selective pressures acting on CREs in different organisms.
The analysis tool, called CRETO (Cis-Regulatory Element Turn-Over) can be downloaded from http://www.bioinf.uni-leipzig.de/Software/creto/.
doi:10.1093/gbe/evp010
PMCID: PMC2817405  PMID: 20333180
cis-regulatory evolution; noncoding sequences; evolution of gene regulation; enhancer evolution; promoter evolution; evolution of development
20.  An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs 
BMC Bioinformatics  2010;11:551.
Background
Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty.
Results
We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed.
Conclusions
The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven.
doi:10.1186/1471-2105-11-551
PMCID: PMC3098096  PMID: 21059262
21.  Finding subtypes of transcription factor motif pairs with distinct regulatory roles 
Nucleic Acids Research  2011;39(11):e76.
DNA sequences bound by a transcription factor (TF) are presumed to contain sequence elements that reflect its DNA binding preferences and its downstream-regulatory effects. Experimentally identified TF binding sites (TFBSs) are usually similar enough to be summarized by a ‘consensus’ motif, representative of the TF DNA binding specificity. Studies have shown that groups of nucleotide TFBS variants (subtypes) can contribute to distinct modes of downstream regulation by the TF via differential recruitment of cofactors. A TFA may bind to TFBS subtypes a1 or a2 depending on whether it associates with cofactors TFB or TFC, respectively. While some approaches can discover motif pairs (dyads), none address the problem of identifying ‘variants’ of dyads. TFs are key components of multiple regulatory pathways targeting different sets of genes perhaps with different binding preferences. Identifying the discriminating TF–DNA associations that lead to the differential downstream regulation is thus essential. We present DiSCo (Discovery of Subtypes and Cofactors), a novel approach for identifying variants of dyad motifs (and their respective target sequence sets) that are instrumental for differential downstream regulation. Using both simulated and experimental datasets, we demonstrate how current motif discovery can be successfully leveraged to address this question.
doi:10.1093/nar/gkr205
PMCID: PMC3113591  PMID: 21486752
22.  MATLIGN: a motif clustering, comparison and matching tool 
BMC Bioinformatics  2007;8:189.
Background
Sequence motifs representing transcription factor binding sites (TFBS) are commonly encoded as position frequency matrices (PFM) or degenerate consensus sequences (CS). These formats are used to represent the characterised TFBS profiles stored in transcription factor databases, as well as to represent the potential motifs predicted using computational methods. To fill the gap between the known and predicted motifs, methods are needed for the post-processing of prediction results, i.e. for matching, comparison and clustering of pre-selected motifs. The computational identification of over-represented motifs in sets of DNA sequences is, in particular, a task where post-processing can dramatically simplify the analysis. Efficient post-processing, for example, reduces the redundancy of the motifs predicted and enables them to be annotated.
Results
In order to facilitate the post-processing of motifs, in both PFM and CS formats, we have developed a tool called Matlign. The tool aligns and evaluates the similarity of motifs using a combination of scoring functions, and visualises the results using hierarchical clustering. By limiting the number of distinct gaps created (though, not their length), the alignment algorithm also correctly aligns motifs with an internal spacer. The method selects the best non-redundant motif set, with repetitive motifs merged together, by cutting the hierarchical tree using silhouette values. Our analyses show that Matlign can reliably discover the most similar analogue from a collection of characterised regulatory elements such that the method is also useful for the annotation of motif predictions by PFM library searches.
Conclusion
Matlign is a user-friendly tool for post-processing large collections of DNA sequence motifs. Starting from a large number of potential regulatory motifs, Matlign provides a researcher with a non-redundant set of motifs, which can then be further associated to known regulatory elements. A web-server is available at .
doi:10.1186/1471-2105-8-189
PMCID: PMC1925120  PMID: 17559640
23.  ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor 
Nucleic Acids Research  2011;39(Web Server issue):W430-W436.
Chromatin immunoprecipitation (ChIP) coupled with high-throughput techniques (ChIP-X), such as next generation sequencing (ChIP-Seq) and microarray (ChIP–chip), has been successfully used to map active transcription factor binding sites (TFBS) of a transcription factor (TF). The targeted genes can be activated or suppressed by the TF, or are unresponsive to the TF. Microarray technology has been used to measure the actual expression changes of thousands of genes under the perturbation of a TF, but is unable to determine if the affected genes are direct or indirect targets of the TF. Furthermore, both ChIP-X and microarray methods produce a large number of false positives. Combining microarray expression profiling and ChIP-X data allows more effective TFBS analysis for studying the function of a TF. However, current web servers only provide tools to analyze either ChIP-X or expression data, but not both. Here, we present ChIP-Array, a web server that integrates ChIP-X and expression data from human, mouse, yeast, fruit fly and Arabidopsis. This server will assist biologists to detect direct and indirect target genes regulated by a TF of interest and to aid in the functional characterization of the TF. ChIP-Array is available at http://jjwanglab.hku.hk/ChIP-Array, with free access to academic users.
doi:10.1093/nar/gkr332
PMCID: PMC3125757  PMID: 21586587
24.  SPIC: A novel similarity metric for comparing transcription factor binding site motifs based on information contents 
BMC Systems Biology  2013;7(Suppl 2):S14.
Background
Discovering transcription factor binding sites (TFBS) is one of primary challenges to decipher complex gene regulatory networks encrypted in a genome. A set of short DNA sequences identified by a transcription factor (TF) is known as a motif, which can be expressed accurately in matrix form such as a position-specific scoring matrix (PSSM) and a position frequency matrix. Very frequently, we need to query a motif in a database of motifs by seeking its similar motifs, merge similar TFBS motifs possibly identified by the same TF, separate irrelevant motifs, or filter out spurious motifs. Therefore, a novel metric is required to seize slight differences between irrelevant motifs and highlight the similarity between motifs of the same group in all these applications. While there are already several metrics for motif similarity proposed before, their performance is still far from satisfactory for these applications.
Methods
A novel metric has been proposed in this paper with name as SPIC (Similarity with Position Information Contents) for measuring the similarity between a column of a motif and a column of another motif. When defining this similarity score, we consider the likelihood that the column of the first motif's PFM can be produced by the column of the second motif's PSSM, and multiply the likelihood by the information content of the column of the second motif's PSSM, and vise versa. We evaluated the performance of SPIC combined with a local or a global alignment method having a function for affine gap penalty, for computing the similarity between two motifs. We also compared SPIC with seven existing state-of-the-arts metrics for their capability of clustering motifs from the same group and retrieving motifs from a database on three datasets.
Results
When used jointly with the Smith-Waterman local alignment method with an affine gap penalty function (gap open penalty is equal to1, gap extension penalty is equal to 0.5), SPIC outperforms the seven existing state-of-the-art motif similarity metrics combined with their best alignments for matching motifs in database searches, and clustering the same TF's sub-motifs or distinguishing relevant ones from a miscellaneous group of motifs.
Conclusions
We have developed a novel motif similarity metric that can more accurately match motifs in database searches, and more effectively cluster similar motifs and differentiate irrelevant motifs than do the other seven metrics we are aware of.
doi:10.1186/1752-0509-7-S2-S14
PMCID: PMC3866262  PMID: 24564945
gene regulatory networks; information contents; transcription factor binding site (TFBS); motif; similarity metric
25.  Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA 
BMC Genomics  2008;9:226.
Background
The majority of human non-protein-coding DNA is made up of repetitive sequences, mainly transposable elements (TEs). It is becoming increasingly apparent that many of these repetitive DNA sequence elements encode gene regulatory functions. This fact has important evolutionary implications, since repetitive DNA is the most dynamic part of the genome. We set out to assess the evolutionary rate and pattern of experimentally characterized human transcription factor binding sites (TFBS) that are derived from repetitive versus non-repetitive DNA to test whether repeat-derived TFBS are in fact rapidly evolving. We also evaluated the position-specific patterns of variation among TFBS to look for signs of functional constraint on TFBS derived from repetitive and non-repetitive DNA.
Results
We found numerous experimentally characterized TFBS in the human genome, 7–10% of all mapped sites, which are derived from repetitive DNA sequences including simple sequence repeats (SSRs) and TEs. TE-derived TFBS sequences are far less conserved between species than TFBS derived from SSRs and non-repetitive DNA. Despite their rapid evolution, several lines of evidence indicate that TE-derived TFBS are functionally constrained. First of all, ancient TE families, such as MIR and L2, are enriched for TFBS relative to younger families like Alu and L1. Secondly, functionally important positions in TE-derived TFBS, specifically those residues thought to physically interact with their cognate protein binding factors (TF), are more evolutionarily conserved than adjacent TFBS positions. Finally, TE-derived TFBS show position-specific patterns of sequence variation that are highly distinct from random patterns and similar to the variation seen for non-repeat derived sequences of the same TFBS.
Conclusion
The abundance of experimentally characterized human TFBS that are derived from repetitive DNA speaks to the substantial regulatory effects that this class of sequence has on the human genome. The unique evolutionary properties of repeat-derived TFBS are perhaps even more intriguing. TE-derived TFBS in particular, while clearly functionally constrained, evolve extremely rapidly relative to non-repeat derived sites. Such rapidly evolving TFBS are likely to confer species-specific regulatory phenotypes, i.e. divergent expression patterns, on the human evolutionary lineage. This result has practical implications with respect to the widespread use of evolutionary conservation as a surrogate for functionally relevant non-coding DNA. Most TE-derived TFBS would be missed using the kinds of sequence conservation-based screens, such as phylogenetic footprinting, that are used to help characterize non-coding DNA. Thus, the very TFBS that are most likely to yield human-specific characteristics will be neglected by the comparative genomic techniques that are currently de rigeur for the identification of novel regulatory sites.
doi:10.1186/1471-2164-9-226
PMCID: PMC2397414  PMID: 18485226

Results 1-25 (903948)