Search tips
Search criteria

Results 1-25 (1301393)

Clipboard (0)

Related Articles

1.  MGMT promoter methylation status and MGMT and CD133 immunohistochemical expression as prognostic markers in glioblastoma patients treated with temozolomide plus radiotherapy 
The CD133 antigen is a marker of radio- and chemo-resistant stem cell populations in glioblastoma (GBM). The O6-methylguanine DNA methyltransferase (MGMT) enzyme is related with temozolomide (TMZ) resistance. Our propose is to analyze the prognostic significance of the CD133 antigen and promoter methylation and protein expression of MGMT in a homogenous group of GBM patients uniformly treated with radiotherapy and TMZ. The possible connection between these GBM markers was also investigated.
Seventy-eight patients with GBM treated with radiotherapy combined with concomitant and adjuvant TMZ were analyzed for MGMT and CD133. MGMT gene promoter methylation was determined by methylation-specific polymerase chain reaction after bisulfite treatment. MGMT and CD133 expression was assessed immunohistochemically using an automatic quantification system. Overall and progression-free survival was calculated according to the Kaplan–Meier method.
The MGMT gene promoter was found to be methylated in 34 patients (44.7%) and unmethylated in 42 patients (55.3%). A significant correlation was observed between MGMT promoter methylation and patients’ survival. Among the unmethylated tumors, 52.4% showed low expression of MGMT and 47.6% showed high-expression. Among methylated tumors, 58.8% showed low-expression of MGMT and 41.2% showed high-expression. No correlation was found between MGMT promoter methylation and MGMT expression, or MGMT expression and survival. In contrast with recent results, CD133 expression was not a predictive marker in GBM patients. Analyses of possible correlation between CD133 expression and MGMT protein expression or MGMT promoter methylation were negative.
Our results support the hypothesis that MGMT promoter methylation status but not MGMT expression may be a predictive biomarker in the treatment of patients with GBM. In addition, CD133 should not be used for prognostic evaluation of these patients. Future studies will be necessary to determine its clinical utility.
PMCID: PMC3551841  PMID: 23245659
Glioblastoma; Radiotherapy; Temozolomide; MGMT; Methylation; CD133
2.  Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts 
Neuro-Oncology  2009;11(3):281-291.
Temozolomide (TMZ)-based therapy is the standard of care for patients with glioblastoma multiforme (GBM), and resistance to this drug in GBM is modulated by the DNA repair protein O6-methylguanine-DNA methyl-transferase (MGMT). Expression of MGMT is silenced by promoter methylation in approximately half of GBM tumors, and clinical studies have shown that elevated MGMT protein levels or lack of MGMT promoter methylation is associated with TMZ resistance in some, but not all, GBM tumors. In this study, the relationship between MGMT protein expression and tumor response to TMZ was evaluated in four GBM xenograft lines that had been established from patient specimens and maintained by serial subcutaneous passaging in nude mice. Three MGMT unmethylated tumors displayed elevated basal MGMT protein expression, but only two of these were resistant to TMZ therapy (tumors GBM43 and GBM44), while the other (GBM14) displayed a level of TMZ sensitivity that was similar in extent to that seen in a single MGMT hypermethylated line (GBM12). In tissue culture and animal studies, TMZ treatment resulted in robust and prolonged induction of MGMT expression in the resistant GBM43 and GBM44 xenograft lines, while MGMT induction was blunted and abbreviated in GBM14. Consistent with a functional significance of MGMT induction, treatment of GBM43 with a protracted low-dose TMZ regimen was significantly less effective than a shorter high-dose regimen, while survival for GBM14 was improved with the protracted dosing regimen. In conclusion, MGMT expression is dynamically regulated in some MGMT nonmethylated tumors, and in these tumors, protracted dosing regimens may not be effective.
PMCID: PMC2718972  PMID: 18952979
glioblastoma xenografts; MGMT induction; promoter methylation; temozolomide
3.  Alkylpurine–DNA–N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients  
Glioblastoma multiforme (GBM) is the most common and lethal of all gliomas. The current standard of care includes surgery followed by concomitant radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). O6-methylguanine–DNA methyltransferase (MGMT) repairs the most cytotoxic of lesions generated by TMZ, O6-methylguanine. Methylation of the MGMT promoter in GBM correlates with increased therapeutic sensitivity to alkylating agent therapy. However, several aspects of TMZ sensitivity are not explained by MGMT promoter methylation. Here, we investigated our hypothesis that the base excision repair enzyme alkylpurine–DNA–N-glycosylase (APNG), which repairs the cytotoxic lesions N3-methyladenine and N7-methylguanine, may contribute to TMZ resistance. Silencing of APNG in established and primary TMZ-resistant GBM cell lines endogenously expressing MGMT and APNG attenuated repair of TMZ-induced DNA damage and enhanced apoptosis. Reintroducing expression of APNG in TMZ-sensitive GBM lines conferred resistance to TMZ in vitro and in orthotopic xenograft mouse models. In addition, resistance was enhanced with coexpression of MGMT. Evaluation of APNG protein levels in several clinical datasets demonstrated that in patients, high nuclear APNG expression correlated with poorer overall survival compared with patients lacking APNG expression. Loss of APNG expression in a subset of patients was also associated with increased APNG promoter methylation. Collectively, our data demonstrate that APNG contributes to TMZ resistance in GBM and may be useful in the diagnosis and treatment of the disease.
PMCID: PMC3248301  PMID: 22156195
4.  Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide 
British Journal of Cancer  2010;103(1):29-35.
The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) can cause resistance to the alkylating drug temozolomide (TMZ). The purpose of this study was to determine the relationship between the MGMT status, determined by means of several techniques and methods, and the cytotoxic response to TMZ in 11 glioblastoma multiforme (GBM) cell lines and 5 human tumour cell lines of other origins.
Cell survival was analysed by clonogenic assay. The MGMT protein levels were assessed by western blot analysis. The MGMT promoter methylation levels were determined using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and quantitative real-time methylation-specific PCR (qMSP). On the basis of the results of these techniques, six GBM cell lines were selected and subjected to bisulphite sequencing.
The MGMT protein was detected in all TMZ-resistant cell lines, whereas no MGMT protein could be detected in cell lines that were TMZ sensitive. The MS-MLPA results were able to predict TMZ sensitivity in 9 out of 16 cell lines (56%). The qMSP results matched well with TMZ sensitivity in 11 out of 12 (92%) glioma cell lines. In addition, methylation as detected by bisulphite sequencing seemed to be predictive of TMZ sensitivity in all six cell lines analysed (100%).
The MGMT protein expression more than MGMT promoter methylation status predicts the response to TMZ in human tumour cell lines.
PMCID: PMC2905289  PMID: 20517307
MGMT; temozolomide; glioma; prediction
5.  Evaluation of MGMT Promoter Methylation Status and Correlation with Temozolomide Response in Orthotopic Glioblastoma Xenograft Model 
Journal of neuro-oncology  2008;92(1):23-31.
CpG methylation within the O6-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with enhanced survival of glioblastoma multiforme (GBM) patients treated with temozolomide (TMZ). Although MGMT promoter is methylated in ~50% of GBM, several studies have reported a lack of correlation between MGMT methylation and protein expression levels and consequently inaccurate discrimination of TMZ sensitive and resistant patients. To understand the limitations of currently used assays, TMZ responsiveness of 13 GBM xenograft lines was correlated with MGMT protein expression and MGMT promoter methylation determined by 1) standard methylation-specific polymerase chain reaction (MS-PCR), 2) quantitative MS-PCR (qMS-PCR) and 3) bisulfite sequencing. For each xenograft line, mice with established intracranial xenografts were treated with vehicle control or TMZ (66 mg/kg × 5 days), and TMZ response was defined as relative prolongation in median survival for TMZ-treated vs. control-treated mice. The relative survival benefit with TMZ was inversely related to MGMT protein expression (r= −0.75; p=0.003) and directly correlated with qMS-PCR (r=0.72; p=0.006). There was a direct correlation between MGMT methylation signal by qMS-PCR and the number of methylated CpG sites within the region amplified by MS-PCR (r =0.78, p=0.002). However, bisulfite sequencing revealed heterogeneity in the extent of CpG methylation in those tumors with a robust qMS-PCR signal. Three of the 4 GBM lines with a qMS-PCR signal greater than 10% had at least 1 unmethylated CpG site, while only one line was fully methylated at all 12 CpG sites. These data highlight one potential limitation of the evaluation of MGMT methylation by MS-PCR assay and suggest that more detailed evaluation of methylation at individual CpG sites relative to TMZ response may be worth pursuing.
PMCID: PMC2790867  PMID: 19011762
MGMT; methylation; Glioblastoma; orthotopic xenografts
6.  Pharmacological inhibition of poly(ADP-ribose) polymerase-1 modulates resistance of human glioblastoma stem cells to temozolomide 
BMC Cancer  2014;14:151.
Chemoresistance of glioblastoma multiforme (GBM) has been attributed to the presence within the tumor of cancer stem cells (GSCs). The standard therapy for GBM consists of surgery followed by radiotherapy and the chemotherapeutic agent temozolomide (TMZ). However, TMZ efficacy is limited by O6-methylguanine-DNA-methyltransferase (MGMT) and Mismatch Repair (MMR) functions. Strategies to counteract TMZ resistance include its combination with poly(ADP-ribose) polymerase inhibitors (PARPi), which hamper the repair of N-methylpurines. PARPi are also investigated as monotherapy for tumors with deficiency of homologous recombination (HR). We have investigated whether PARPi may restore GSC sensitivity to TMZ or may be effective as monotherapy.
Ten human GSC lines were assayed for MMR proteins, MGMT and PARP-1 expression/activity, MGMT promoter methylation and sensitivity to TMZ or PARPi, alone and in combination. Since PTEN defects are frequently detected in GBM and may cause HR dysfunction, PTEN expression was also analyzed. The statistical analysis of the differences in drug sensitivity among the cell lines was performed using the ANOVA and Bonferroni’s post-test or the non-parametric Kruskal-Wallis analysis and Dunn’s post-test for multiple comparisons. Synergism between TMZ and PARPi was analyzed by the median-effect method of Chou and Talalay. Correlation analyses were done using the Spearman’s rank test.
All GSCs were MMR-proficient and resistance to TMZ was mainly associated with high MGMT activity or low proliferation rate. MGMT promoter hypermethylation of GSCs correlated both with low MGMT activity/expression (Spearman’s test, P = 0.004 and P = 0.01) and with longer overall survival of GBM patients (P = 0.02). Sensitivity of each GSC line to PARPi as single agent did not correlate with PARP-1 or PTEN expression. Notably, PARPi and TMZ combination exerted synergistic antitumor effects in eight out of ten GSC lines and the TMZ dose reduction achieved significantly correlated with the sensitivity of each cell line to PARPi as single agent (P = 0.01).
The combination of TMZ with PARPi may represent a valuable strategy to reverse GSC chemoresistance.
PMCID: PMC3975727  PMID: 24593254
Temozolomide; PARP inhibitor; Cancer stem cells; O6-methylguanine-DNA-methyltransferase; Chemoresistance
7.  Efficacy of protracted temozolomide dosing is limited in MGMT unmethylated GBM xenograft models 
Neuro-Oncology  2013;15(6):735-746.
Temozolomide (TMZ) is important chemotherapy for glioblastoma multiforme (GBM), but the optimal dosing schedule is unclear.
The efficacies of different clinically relevant dosing regimens were compared in a panel of 7 primary GBM xenografts in an intracranial therapy evaluation model.
Protracted TMZ therapy (TMZ daily M–F, 3 wk every 4) provided superior survival to a placebo-treated group in 1 of 4 O6-DNA methylguanine-methyltransferase (MGMT) promoter hypermethylated lines (GBM12) and none of the 3 MGMT unmethylated lines, while standard therapy (TMZ daily M–F, 1 wk every 4) provided superior survival to the placebo-treated group in 2 of 3 MGMT unmethylated lines (GBM14 and GBM43) and none of the methylated lines. In comparing GBM12, GBM14, and GBM43 intracranial specimens, both GBM14 and GBM43 mice treated with protracted TMZ had a significant elevation in MGMT levels compared with placebo. Similarly, high MGMT was found in a second model of acquired TMZ resistance in GBM14 flank xenografts, and resistance was reversed in vitro by treatment with the MGMT inhibitor O6-benzylguanine, demonstrating a mechanistic link between MGMT overexpression and TMZ resistance in this line. Additionally, in an analysis of gene expression data, comparison of parental and TMZ-resistant GBM14 demonstrated enrichment of functional ontologies for cell cycle control within the S, G2, and M phases of the cell cycle and DNA damage checkpoints.
Across the 7 tumor models studied, there was no consistent difference between protracted and standard TMZ regimens. The efficacy of protracted TMZ regimens may be limited in a subset of MGMT unmethylated tumors by induction of MGMT expression.
PMCID: PMC3661094  PMID: 23479134
dosing schedule; glioblastoma multiforme; temozolomide; xenografts
8.  The strategy for enhancing temozolomide against malignant glioma 
A combined therapy of the alkylating agent temozolomide (TMZ) and radiotherapy is standard treatment, and it improves the survival of patients with newly diagnosed glioblastoma (GBM). The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes the most cytotoxic lesions generated by TMZ, O6-methylguanine, establishing MGMT as one of the most important DNA repair mechanisms of TMZ-induced DNA damage. Thus, the expression of MGMT, its activity, and its promoter methylation status are associated with the response of GBM to TMZ, confirming that MGMT promotes clinical resistance to TMZ. Previous studies have shown that a variety of drugs such as interferon-β (IFN-β), levetiracetam (LEV), resveratrol, and valproic acid (VAP) increased the sensitivity of TMZ through MGMT-dependent or MGMT-independent mechanisms. In this review, we describe drugs and promising molecules that influence the responsiveness of GBM to TMZ and discuss their putative mechanism of action. In MGMT-positive GBMs, drugs that modulate MGMT activity could enhance the therapeutic activity of TMZ. Thus, administration of these drugs as an adjunct to TMZ chemotherapy may have clinical applications in patients with malignant gliomas to improve the outcome.
PMCID: PMC3418701  PMID: 22912934
temozolomide; glioma; MGMT; chemosensitivity; interferon-β; levetiracetam; resveratrol; valproic acid
9.  The Global DNA Methylation Surrogate LINE-1 Methylation Is Correlated with MGMT Promoter Methylation and Is a Better Prognostic Factor for Glioma 
PLoS ONE  2011;6(8):e23332.
Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4) have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ), and even low grade gliomas (LGGs, WHO grade 2) eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O6-methylguanine-DNA methyltransferase (MGMT) that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP) in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1) IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2) LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3) LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4) higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.
PMCID: PMC3150434  PMID: 21829728
10.  Decoupling of DNA damage response signaling from DNA damages underlies temozolomide resistance in glioblastoma cells☆ 
Journal of Biomedical Research  2010;24(6):424-435.
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor in adults. Current therapy includes surgery, radiation and chemotherapy with temozolomide (TMZ). Major determinants of clinical response to TMZ include methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter and mismatch repair (MMR) status. Though the MGMT promoter is methylated in 45% of cases, for the first nine months of follow-up, TMZ does not change survival outcome. Furthermore, MMR deficiency makes little contribution to clinical resistance, suggesting that there exist unrecognized mechanisms of resistance. We generated paired GBM cell lines whose resistance was attributed to neither MGMT nor MMR. We show that, responding to TMZ, these cells exhibit a decoupling of DNA damage response (DDR) from ongoing DNA damages. They display methylation-resistant synthesis in which ongoing DNA synthesis is not inhibited. They are also defective in the activation of the S and G2 phase checkpoint. DDR proteins ATM, Chk2, MDC1, NBS1 and gammaH2AX also fail to form discrete foci. These results demonstrate that failure of DDR may play an active role in chemoresistance to TMZ. DNA damages by TMZ are repaired by MMR proteins in a futile, reiterative process, which activates DDR signaling network that ultimately leads to the onset of cell death. GBM cells may survive genetic insults in the absence of DDR. We anticipate that our findings will lead to more studies that seek to further define the role of DDR in ultimately determining the fate of a tumor cell in response to TMZ and other DNA methylators.
PMCID: PMC3596690  PMID: 23554659
glioblastomas multiforme; temozolomide; DNA damage response; resistance
11.  Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53 
British Journal of Cancer  2009;100(2):322-333.
Malignant melanomas are highly resistant to chemotherapy. First-line chemotherapeutics used in melanoma therapy are the methylating agents dacarbazine (DTIC) and temozolomide (TMZ) and the chloroethylating agents BCNU and fotemustine. Here, we determined the mode of cell death in 11 melanoma cell lines upon exposure to TMZ and fotemustine. We show for the first time that TMZ induces apoptosis in melanoma cells, using therapeutic doses. For both TMZ and fotemustine apoptosis is the dominant mode of cell death. The contribution of necrosis to total cell death varied between 10 and 40%. The O6-methylguanine-DNA methyltransferase (MGMT) activity in the cell lines was between 0 and 1100 fmol mg−1 protein, and there was a correlation between MGMT activity and the level of resistance to TMZ and fotemustine. MGMT inactivation by O6-benzylguanine sensitized all melanoma cell lines expressing MGMT to TMZ and fotemustine-induced apoptosis, and MGMT transfection attenuated the apoptotic response. This supports that O6-alkylguanines are critical lesions involved in the initiation of programmed melanoma cell death. One of the cell lines (MZ7), derived from a patient subjected to DTIC therapy, exhibited a high level of resistance to TMZ without expressing MGMT. This was related to an impaired expression of MSH2 and MSH6. The cells were not cross-resistant to fotemustine. Although these data indicate that methylating drug resistance of melanoma cells can be acquired by down-regulation of mismatch repair, a correlation between MSH2 and MSH6 expression in the different lines and TMZ sensitivity was not found. Apoptosis in melanoma cells induced by TMZ and fotemustine was accompanied by double-strand break (DSB) formation (as determined by H2AX phosphorylation) and caspase-3 and -7 activation as well as PARP cleavage. For TMZ, DSBs correlated significantly with the apoptotic response, whereas for fotemustine a correlation was not found. Melanoma lines expressing p53 wild-type were more resistant to TMZ and fotemustine than p53 mutant melanoma lines, which is in marked contrast to previous data reported for glioma cells treated with TMZ. Overall, the findings are in line with the model that in melanoma cells TMZ-induced O6-methylguanine triggers the apoptotic (and necrotic) pathway through DSBs, whereas for chloroethylating agents apoptosis is triggered in a more complex manner.
PMCID: PMC2634706  PMID: 19127257
temozolomide; fotemustine; melanoma therapy; apoptosis; MGMT; mismatch repair
12.  mTOR inhibition and levels of the DNA repair protein MGMT in T98G glioblastoma cells 
Molecular Cancer  2014;13:144.
Glioblastoma multiforme (GBM), the most common and most aggressive type of primary adult brain tumour, responds poorly to conventional treatment. Temozolomide (TMZ) chemotherapy remains the most commonly used treatment, despite a large proportion of tumours displaying TMZ resistance. 60% of GBM tumours have unmethylated MGMT promoter regions, resulting in an overexpression of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), which is responsible for tumour resistance to TMZ chemotherapy. Tumours also often exhibit hyperactive PI3-kinase/mTOR signalling, which enables them to resynthesise proteins quickly. Since MGMT is a suicide protein that is degraded upon binding to and repairing TMZ-induced O6-methylguanine adducts, it has been hypothesized that inhibition of translation via the mTOR signalling pathway could generate a tumour-specific reduction in MGMT protein and increase TMZ sensitivity.
MGMT was monitored at the post-transcriptional, translational and protein levels, to determine what effect mTOR inhibition was having on MGMT protein expression in vitro.
We show that inhibiting mTOR signalling is indeed associated with acute inhibition of protein synthesis. Western blots show that despite this, relative to loading control proteins, steady state levels of MGMT protein increased and MGMT mRNA was retained in heavy polysomes. Whilst TMZ treatment resulted in maintained MGMT protein levels, concomitant treatment of T98G cells with TMZ and KU0063794 resulted in increased MGMT protein levels without changes in total mRNA levels.
These in vitro data suggest that, counterintuitively, mTOR inhibition may not be a useful adjunct to TMZ therapy and that more investigation is needed before applying mTOR inhibitors in a clinical setting.
PMCID: PMC4061125  PMID: 24909675
MGMT; Stability; Translation; mTOR; Initiation of translation; KU0063794; Glioblastoma; TMZ resistance
13.  Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair 
Cancer research  2011;71(6):2308-2317.
Glioblastoma multiforme (GBM) is a devastating brain tumor with poor prognosis and low median survival time. Standard treatment includes radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). However, a large percentage of tumors are resistant to the cytotoxic effects of the TMZ-induced DNA lesion O6-methylguanine (O6-MeG) due to elevated expression of the repair protein O6-methylguanine-DNA methyltransferase (MGMT) or a defect in the mismatch repair (MMR) pathway. Although a majority of the TMZ induced lesions (N7-methylguanine and N3-methyladenine) are base excision repair (BER) substrates, these DNA lesions are also readily repaired. However, blocking BER can enhance response to TMZ and therefore the BER pathway has emerged as an attractive target for reversing TMZ resistance. Our lab has recently reported that inhibition of BER leads to the accumulation of repair intermediates that induce energy depletion-mediated cell death via hyperactivation of poly(ADP-ribose) polymerase. Based on our observation that TMZ-induced cell death via BER inhibition is dependent on the availability of NAD+, we have hypothesized that combined BER and NAD+ biosynthesis inhibition will increase TMZ efficacy in glioblastoma cell lines greater than BER inhibition alone. Importantly, we find that the combination of BER and NAD+ biosynthesis inhibition significantly sensitizes glioma cells with elevated expression of MGMT and those deficient in MMR, two genotypes normally associated with TMZ resistance. Dual targeting of these two interacting pathways (DNA repair and NAD+ biosynthesis) may prove to be an effective treatment combination for patients with resistant and recurrent GBM.
PMCID: PMC3077901  PMID: 21406402
Glioblastoma multiforme; FK866; Base excision repair; temozolomide; methoxyamine
14.  The L84F polymorphic variant of human O6-methylguanine-DNA methyltransferase alters stability in U87MG glioma cells but not temozolomide sensitivity 
Neuro-Oncology  2009;11(1):22-32.
First-line therapy for patients with glioblastoma multiforme includes treatment with radiation and temozolomide (TMZ), an oral DNA alkylating chemotherapy. Sensitivity of glioma cells to TMZ is dependent on the level of cellular O6-methylguanine-DNA methyltransferase (MGMT) repair activity. Several common coding- region polymorphisms in the MGMT gene (L84F and the linked pair I143V/K178R) modify functional characteristics of MGMT and cancer risk. To determine whether these polymorphic changes influence the ability of MGMT to protect glioma cells from TMZ, we stably overexpressed enhanced green fluorescent protein (eGFP)-tagged MGMT constructs in U87MG glioma cells. We confirmed that the wild-type (WT) eGFP-MGMT protein is properly localized within the nucleus and found that L84F, I143V/K178R, and L84F/I143V/K178R eGFP-MGMT variants exhibited nuclear localization patterns indistinguishable from WT. Using MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H- tetrazolium bromide] proliferation and clonogenic survival assays, we confirmed that WT cells expressing eGFP-MGMT are resistant to TMZ treatment compared with control U87MG cells, and that each of the polymorphic eGFP-MGMT variants confers similar resistance to TMZ. However, upon exposure to O6-benzylguanine (O6-BG), a synthetic MGMT inhibitor, the L84F and L84F/I143V/K178R variants were degraded more rapidly than WT or I143V/K178R in a proteasome-dependent manner. Despite the increased O6-BG–stimulated protein turnover caused by the L84F alteration, cells expressing L84F eGFP-MGMT did not exhibit altered sensitivity to the combination of O6-BG and TMZ compared with WT cells. In conclusion, we demonstrated that the L84F polymorphic variant has altered protein turnover without modifying sensitivity of U87MG cells to TMZ or combined TMZ and O6-BG. These findings may provide a clue to determining the clinical significance of MGMT coding-region polymorphisms.
PMCID: PMC2718956  PMID: 18812520
glioma; O6-benzylguanine (O6-BG); O6-methylguanine-DNA methyltransferase (MGMT); polymorphism; temozolomide; U87MG
15.  Restoration of Sensitivity in Chemo — Resistant Glioma Cells by Cold Atmospheric Plasma 
PLoS ONE  2013;8(5):e64498.
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite multimodal treatments including surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent temozolomide (TMZ) has been shown to improve the overall survival in patients with malignant gliomas, especially in tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT) gene. However, intrinsic and acquired resistance towards TMZ makes it crucial to find new therapeutic strategies aimed at improving the prognosis of patients suffering from malignant gliomas. Cold atmospheric plasma is a new auspicious candidate in cancer treatment. In the present study we demonstrate the anti-cancer properties of different dosages of cold atmospheric plasma (CAP) both in TMZ-sensitive and TMZ-resistant cells by proliferation assay, immunoblotting, cell cycle analysis, and clonogenicity assay. Importantly, CAP treatment restored the responsiveness of resistant glioma cells towards TMZ therapy. Concomitant treatment with CAP and TMZ led to inhibition of cell growth and cell cycle arrest, thus CAP might be a promising candidate for combination therapy especially for patients suffering from GBMs showing an unfavorable MGMT status and TMZ resistance.
PMCID: PMC3660344  PMID: 23704990
16.  miR-221/222 Target the DNA Methyltransferase MGMT in Glioma Cells 
PLoS ONE  2013;8(9):e74466.
Glioblastoma multiforme (GBM) is one of the most deadly types of cancer. To date, the best clinical approach for treatment is based on administration of temozolomide (TMZ) in combination with radiotherapy. Much evidence suggests that the intracellular level of the alkylating enzyme O6-methylguanine–DNA methyltransferase (MGMT) impacts response to TMZ in GBM patients. MGMT expression is regulated by the methylation of its promoter. However, evidence indicates that this is not the only regulatory mechanism present. Here, we describe a hitherto unknown microRNA-mediated mechanism of MGMT expression regulation. We show that miR-221 and miR-222 are upregulated in GMB patients and that these paralogues target MGMT mRNA, inducing greater TMZ-mediated cell death. However, miR-221/miR-222 also increase DNA damage and, thus, chromosomal rearrangements. Indeed, miR-221 overexpression in glioma cells led to an increase in markers of DNA damage, an effect rescued by re-expression of MGMT. Thus, chronic miR-221/222-mediated MGMT downregulation may render cells unable to repair genetic damage. This, associated also to miR-221/222 oncogenic potential, may poor GBM prognosis.
PMCID: PMC3798259  PMID: 24147153
17.  Expression of CD74 in high Grade Gliomas: A Potential Role in Temozolomide Resistance 
Journal of neuro-oncology  2010;100(2):177-186.
Temozolomide (TMZ) is the most effective chemotherapeutic agent for glioblastoma (GBM). Resistance to this methylating agent is linked to DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). However, in recent studies MGMT status was not completely accurate as a predictor of TMZ response in GBM, suggesting other mechanisms of resistance. As part of an effort aimed at discovery of genes involved in TMZ resistance in GBM, the expression of CD74 was evaluated in GBM patient samples and the influence of CD74 on TMZ response was evaluated in GBM tumor models. Reverse transcription-polymerase-chain reaction (RT-PCR) demonstrated differential expression of CD74 mRNA among the GBM xenografts; 8 of 20 (40%) expressed CD74 mRNA. In a preliminary evaluation of whether CD74 expression might influence TMZ response, CD74 mRNA expression levels were inversely associated with in vivo TMZ resistance in 20 GBM xenograft lines (median survival 122 vs. 62.5 days; r=−0.48 p = 0.032). In follow up to this observation, CD74 shRNA knock down in U87 cells significantly suppressed in vitro proliferation and increased TMZ sensitivity as compared to a non-specific control shRNA. Consistent with an effect on proliferation and survival, silencing of CD74 by shRNA was associated with reduced Akt and Erk1/2 activation in response to stimulation by CD74 ligand macrophage-migration inhibition factor (MIF). Lastly, expression of CD74 protein was assessed in patient samples (9 anaplastic astrocytoma [AA], and 62 GBM) by immunohistochemistry, and appreciable expression was observed in 28% of samples. Collectively, these findings suggest that CD74 is expressed in a subset of high grade gliomas and may contribute to TMZ resistance.
PMCID: PMC3233976  PMID: 20443131
CD74; glioblastoma xenografts; temozolomide; resistance
18.  Expression of EGFRvIII in Glioblastoma: Prognostic Significance Revisited12 
Neoplasia (New York, N.Y.)  2011;13(12):1113-1121.
The epidermal growth factor receptor variant III (EGFRvIII) is associated with increased proliferation of glioma cells. However, the impact of EGFRvIII on survival of patients with glioblastoma (GBM) has not been definitively established. In the present study, we prospectively evaluated 73 patients with primary GBM treated with surgical resection and standard radio/chemotherapy. The EGFRvIII was assessed by reverse transcription-polymerase chain reaction (PCR), O6-methylguanine methyltransferase (MGMT) promoter methylation was assessed by methylation-specific PCR, and phosphatase and tension homolog (PTEN) expression was assessed by immunohistochemistry. In 14 patients of this series, who presented with tumor recurrence, EGFRvIII was determined by real-time PCR. Sensitivity to temozolomide (TMZ) was assessed in vitro on GBM neurosphere cell cultures with different patterns of EGFRvIII expression. Age 60 years or younger, preoperative Karnofsky Performance Status score of 70 or higher, recursive partitioning analysis score III and IV, methylated MGMT, and Ki67 index of 20% or less were significantly associated with longer overall survival (OS; P = .0069, P = .0035, P = .0007, P = .0437, and P = .0286, respectively). EGFRvIII identified patients with significantly longer OS (P = .0023) and the association of EGFRvIII/Ki67 of 20% or less, EGFRvIII/normal PTEN, EGFRvIII/methylated MGMT, and EGFRvIII/normal PTEN/methylated MGMT identified subgroups of GBM patients with better prognosis. In recurred GBMs, EGFRvIII expression was approximately two-fold lower than in primary tumors. In vitro, the EGFRvIII-negative GBM neurosphere cells were more resistant to TMZ than the positive ones. In conclusion, in contrast with previous studies, we found that EGFRvIII is associated with prolonged survival of GBM patients treated with surgery and radio/chemotherapy. Depletion of EGFRvIII in recurrent GBMs as well as differential sensitivity to TMZ in vitro indicates that the EGFRvIII-negative cell fraction is involved in resistance to radio/chemotherapy and tumor repopulation.
PMCID: PMC3257186  PMID: 22241957
19.  O6-Methylguanine-DNA Methyltransferase (MGMT) mRNA Expression Predicts Outcome in Malignant Glioma Independent of MGMT Promoter Methylation 
PLoS ONE  2011;6(2):e17156.
We analyzed prospectively whether MGMT (O6-methylguanine-DNA methyltransferase) mRNA expression gains prognostic/predictive impact independent of MGMT promoter methylation in malignant glioma patients undergoing radiotherapy with concomitant and adjuvant temozolomide or temozolomide alone. As DNA-methyltransferases (DNMTs) are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells, we analyzed further, whether MGMT promoter methylation is associated with upregulation of DNMT expression.
Methodology/Principal Findings
Adult patients with a histologically proven malignant astrocytoma (glioblastoma: N = 53, anaplastic astrocytoma: N = 10) were included. MGMT promoter methylation was determined by methylation-specific PCR (MSP) and sequencing analysis. Expression of MGMT and DNMTs mRNA were analysed by real-time qPCR. Prognostic factors were obtained from proportional hazards models. Correlation between MGMT mRNA expression and MGMT methylation status was validated using data from the Cancer Genome Atlas (TCGA) database (N = 229 glioblastomas). Low MGMT mRNA expression was strongly predictive for prolonged time to progression, treatment response, and length of survival in univariate and multivariate models (p<0.0001); the degree of MGMT mRNA expression was highly correlated with the MGMT promoter methylation status (p<0.0001); however, discordant findings were seen in 12 glioblastoma patients: Patients with methylated tumors with high MGMT mRNA expression (N = 6) did significantly worse than those with low transcriptional activity (p<0.01). Conversely, unmethylated tumors with low MGMT mRNA expression (N = 6) did better than their counterparts. A nearly identical frequency of concordant and discordant findings was obtained by analyzing the TCGA database (p<0.0001). Expression of DNMT1 and DNMT3b was strongly upregulated in tumor tissue, but not correlated with MGMT promoter methylation and MGMT mRNA expression.
MGMT mRNA expression plays a direct role for mediating tumor sensitivity to alkylating agents. Discordant findings indicate methylation-independent pathways of MGMT expression regulation. DNMT1 and DNMT3b are likely to be involved in CGI methylation. However, their exact role yet has to be defined.
PMCID: PMC3041820  PMID: 21365007
20.  Minimally cytotoxic doses of temozolomide produce radiosensitization in human glioblastoma cells regardless of MGMT expression1 
Molecular cancer therapeutics  2010;9(5):1208-1218.
Concurrent treatment with the methylating agent temozolomide (TMZ) during radiotherapy (RT) has yielded the first significant improvement in survival of adult glioblastomas (GBMs) in the last three decades. However, improved survival is observed in a minority of patients, most frequently those whose tumors display CpG methylation of the MGMT (O6-methylguanine-DNA methyltransferase) promoter, and adult GBMs remain invariably fatal. Some, though not all, pre-clinical studies have shown that TMZ can increase radiosensitivity in GBM cells that lack MGMT, the sole activity in human cells that removes O6-meG from DNA. Here, we systematically examined the TMZ dose dependence of radiation killing in established GBM cell lines that differ in ability to remove O6-meG or tolerate its lethality. Our results show that minimally cytotoxic doses of TMZ can produce dose-dependent radiosensitization in MGMT-deficient cells, MGMT-proficient cells, and MGMT-deficient cells that lack mismatch repair, a process that renders cells tolerant of the lethality of O6-meG. In cells that either possess or lack MGMT activity, radiosensitization requires exposure to TMZ before but not after radiation, and is accompanied by formation of double-strand breaks within 45 min of radiation. Moreover, suppressing alkyladenine-DNA glycosylase, the only activity in human cells that excises 3-meA from DNA, reduces the TMZ dose dependence of radiosensitization, indicating that radiosensitization is mediated by 3-meA as well as by O6-meG. These results provide novel information on which to base further mechanistic study of radiosensitization by TMZ in human GBM cells, and to develop strategies to improve the outcome of concurrent TMZ-RT.
PMCID: PMC2869471  PMID: 20457618
Alkyladenine-DNA glycosylase; brain tumor; 3-methyladenine; O6-methylguanine
21.  BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1α stability and MGMT expression 
Cell Death & Disease  2012;3(10):e412-.
Glioblastoma multiforme (GBM) is the most common brain tumour, characterized by a central and partially necrotic (i.e., hypoxic) core enriched in cancer stem cells (CSCs). We previously showed that the most hypoxic and immature (i.e., CSCs) GBM cells were resistant to Temozolomide (TMZ) in vitro, owing to a particularly high expression of O6-methylguanine-DNA-methyltransferase (MGMT), the most important factor associated to therapy resistance in GBM. Bone morphogenetic proteins (BMPs), and in particular BMP2, are known to promote differentiation and growth inhibition in GBM cells. For this reason, we investigated whether a BMP2-based treatment would increase TMZ response in hypoxic drug-resistant GBM-derived cells. Here we show that BMP2 induced strong differentiation of GBM stem-like cells and subsequent addition of TMZ caused dramatic increase of apoptosis. Importantly, we correlated these effects to a BMP2-induced downregulation of both hypoxia-inducible factor-1α (HIF-1α) and MGMT. We report here a novel mechanism involving the HIF-1α-dependent regulation of MGMT, highlighting the existence of a HIF-1α/MGMT axis supporting GBM resistance to therapy. As confirmed from this evidence, over-stabilization of HIF-1α in TMZ-sensitive GBM cells abolished their responsiveness to it. In conclusion, we describe a HIF-1α-dependent regulation of MGMT and suggest that BMP2, by down-modulating the HIF-1α/MGMT axis, should increase GBM responsiveness to chemotherapy, thus opening the way to the development of future strategies for GBM treatment.
PMCID: PMC3481140  PMID: 23076220
Glioblastoma; BMP2; temozolomide; hypoxia; HIF-1α; MGMT
22.  Predictive value of the SLC22A18 protein expression in glioblastoma patients receiving temozolomide therapy 
Our previous study showed that SLC22A18 downregulation and promoter methylation were associated with the development and progression of glioma and the elevated expression of SLC22A18 was found to increase the sensitivity of glioma U251 cells to the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). In this study, we investigated the predictive value of SLC22A18 promoter methylation and protein expression in glioblastoma multiforme (GBM) patients receiving temozolomide (TMZ) therapy.
Patients and methods
SLC22A18 promoter methylation and protein expression were examined by methylation-specific polymerase chain reaction (MSP) and Western blotting respectively, then we compared SLC22A18 promoter methylation and protein expression in tumor cell explants in regard to prediction of TMZ response and survival time of 86 GBM patients.
SLC22A18 promoter methylation was detected in 61 of 86 (71%) samples, whereas 36 of 86 (42%) cases were scored positive for SLC22A18 protein expression. Overall SLC22A18 promoter methylation was significantly related to SLC22A18 protein expression, but a subgroup of cases did not follow this association. Multivariate Cox regression analysis indicated that SLC22A18 protein expression, but not promoter methylation, was significantly correlated with TMZ therapy. SLC22A18 protein expression predicted a significantly shorter overall survival in 51 patients receiving TMZ therapy, whereas no differences in overall survival were observed in 35 patients without TMZ therapy.
These results show that lack of SLC22A18 protein expression is superior to promoter methylation as a predictive tumor biomarker in GBM patients receiving temozolomide therapy.
PMCID: PMC3610152  PMID: 23514245
23.  O6-methylguanine-DNA methyltransferase in glioma therapy: Promise and problems 
Biochimica et Biophysica Acta  2012;1826(1):71-82.
Gliomas are the most frequent adult primary brain tumor, and are invariably fatal. The most common diagnosis glioblastoma (GBM) afflicts 12,500 new patents in the U.S. annually, and has a median survival of approximately one year when treated with the current standard of care. Alkylating agents have long been central in the chemotherapy of GBM and other gliomas. The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), the principal human activity that removes cytotoxic O6-alkylguanine adducts from DNA, promotes resistance to anti-glioma alkylators, including temozolomide and BCNU, in GBM cell lines and xenografts. Moreover, MGMT expression assessed by immunohistochemistry, biochemical activity or promoter CpG methylation status is associated with the response of GBM to alkylator-based therapies, providing evidence that MGMT promotes clinical resistance to alkylating agents. These observations suggest a role for MGMT in directing adjuvant therapy of GBM and other gliomas. Promoter methylation status is the most clinically tractable measure of MGMT, and there is considerable enthusiasm for exploring its utility as a marker to assign therapy to individual patients. Here, we provide an overview of the biochemical, genetic and biological characteristics of MGMT as they relate to glioma therapy. We consider current methods to assess MGMT expression and discuss their utility as predictors of treatment response. Particular emphasis is given to promoter methylation status and the methodological and conceptual impediments that limit its use to direct treatment. We conclude by considering approaches that may improve the utility of MGMT methylation status in planning optimal therapies tailored to individual patients.
PMCID: PMC3340514  PMID: 22244911
alkylating agents; biomarker; glioblastoma; glioma; MGMT; chemotherapy resistance
24.  MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib 
Neuro-Oncology  2010;12(8):822-833.
Angiogenesis inhibitors, such as sunitinib, represent a promising strategy to improve glioblastoma (GBM) tumor response. In this study, we used the O6-methylguanine methyltransferase (MGMT)-negative GBM cell line U87MG stably transfected with MGMT (U87/MGMT) to assess whether MGMT expression affects the response to sunitinib. We showed that the addition of sunitinib to standard therapy (temozolomide [TMZ] and radiation therapy [RT]) significantly improved the response of MGMT-positive but not of MGMT-negative cells. Gene expression profiling revealed alterations in the angiogenic profile, as well as differential expression of several receptor tyrosine kinases targeted by sunitinib. MGMT-positive cells displayed higher levels of vascular endothelial growth factor receptor 1 (VEGFR-1) compared with U87/EV cells, whereas they displayed decreased levels of VEGFR-2. Depleting MGMT using O6-benzylguanine suggested that the expression of these receptors was directly related to the MGMT status. Also, we showed that MGMT expression was associated with a dramatic increase in the soluble VEGFR-1/VEGFA ratio, thereby suggesting a decrease in bioactive VEGFA and a shift towards an antiangiogenic profile. The reduced angiogenic potential of MGMT-positive cells is supported by: (i) the decreased ability of their secreted factors to induce endothelial tube formation in vitro and (ii) their low tumorigenicity in vivo compared with the MGMT-negative cells. Our study is the first to show a direct link between MGMT expression and decreased angiogenicity and tumorigenicity of GBM cells and suggests the combination of sunitinib and standard therapy as an alternative strategy for GBM patients with MGMT-positive tumors.
PMCID: PMC2940678  PMID: 20179017
GBM; MGMT; tumor angiogenesis; tyrosine kinase inhibitor
25.  Repair of 3-methyladenine and abasic sites by base excision repair mediates glioblastoma resistance to temozolomide 
Frontiers in Oncology  2012;2:176.
Alkylating agents have long played a central role in the adjuvant therapy of glioblastoma (GBM). More recently, inclusion of temozolomide (TMZ), an orally administered methylating agent with low systemic toxicity, during and after radiotherapy has markedly improved survival. Extensive in vitro and in vivo evidence has shown that TMZ-induced O6-methylguanine (O6-meG) mediates GBM cell killing. Moreover, low or absent expression of O6-methylguanine-DNA methyltransferase (MGMT), the sole human repair protein that removes O6-meG from DNA, is frequently associated with longer survival in GBMs treated with TMZ, promoting interest in developing inhibitors of MGMT to counter resistance. However, the clinical efficacy of TMZ is unlikely to be due solely to O6-meG, as the agent produces approximately a dozen additional DNA adducts, including cytotoxic N3-methyladenine (3-meA) and abasic sites. Repair of 3-meA and abasic sites, both of which are produced in greater abundance than O6-meG, is mediated by the base excision repair (BER) pathway, and occurs independently of removal of O6-meG. These observations indicate that BER activities are also potential targets for strategies to potentiate TMZ cytotoxicity. Here we review the evidence that 3-meA and abasic sites mediate killing of GBM cells. We also present in vitro and in vivo evidence that alkyladenine-DNA glycosylase, the sole repair activity that excises 3-meA from DNA, and Ape1, the major human abasic site endonuclease, mediate TMZ resistance in GBMs and represent potential anti-resistance targets.
PMCID: PMC3515961  PMID: 23230562
alkyladenine-DNA glycosylase; Ape1; apurinic endonuclease; DNA repair; treatment outcome; predictive marker

Results 1-25 (1301393)