PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (884356)

Clipboard (0)
None

Related Articles

1.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer 
PLoS Medicine  2006;3(10):e420.
Background
Nuclear factor erythroid-2 related factor 2 (NRF2) is a redox-sensitive transcription factor that positively regulates the expression of genes encoding antioxidants, xenobiotic detoxification enzymes, and drug efflux pumps, and confers cytoprotection against oxidative stress and xenobiotics in normal cells. Kelch-like ECH-associated protein 1 (KEAP1) negatively regulates NRF2 activity by targeting it to proteasomal degradation. Increased expression of cellular antioxidants and xenobiotic detoxification enzymes has been implicated in resistance of tumor cells against chemotherapeutic drugs.
Methods and Findings
Here we report a systematic analysis of the KEAP1 genomic locus in lung cancer patients and cell lines that revealed deletion, insertion, and missense mutations in functionally important domains of KEAP1 and a very high percentage of loss of heterozygosity at 19p13.2, suggesting that biallelic inactivation of KEAP1 in lung cancer is a common event. Sequencing of KEAP1 in 12 cell lines and 54 non-small-cell lung cancer (NSCLC) samples revealed somatic mutations in KEAP1 in a total of six cell lines and ten tumors at a frequency of 50% and 19%, respectively. All the mutations were within highly conserved amino acid residues located in the Kelch or intervening region domain of the KEAP1 protein, suggesting that these mutations would likely abolish KEAP1 repressor activity. Evaluation of loss of heterozygosity at 19p13.2 revealed allelic losses in 61% of the NSCLC cell lines and 41% of the tumor samples. Decreased KEAP1 activity in cancer cells induced greater nuclear accumulation of NRF2, causing enhanced transcriptional induction of antioxidants, xenobiotic metabolism enzymes, and drug efflux pumps.
Conclusions
This is the first study to our knowledge to demonstrate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC. Loss of KEAP1 function leading to constitutive activation of NRF2-mediated gene expression in cancer suggests that tumor cells manipulate the NRF2 pathway for their survival against chemotherapeutic agents.
Biallelic inactivation ofKEAP1, a frequent genetic alteration in NSCLC, is associated with activation of the NRF2 pathway which leads to expression of genes that contribute to resistance against chemotherapeutic drugs.
Editors' Summary
Background.
Lung cancer is the most common cause of cancer-related death worldwide. More than 150,000 people in the US alone die every year from this disease, which can be split into two basic types—small cell lung cancer and non-small-cell lung cancer (NSCLC). Four out of five lung cancers are NSCLCs, but both types are mainly caused by smoking. Exposure to chemicals in smoke produces changes (or mutations) in the genetic material of the cells lining the lungs that cause the cells to grow uncontrollably and to move around the body. In more than half the people who develop NSCLC, the cancer has spread out of the lungs before it is diagnosed, and therefore can't be removed surgically. Stage IV NSCLC, as this is known, is usually treated with chemotherapy—toxic chemicals that kill the fast-growing cancer cells. However, only 2% of people with stage IV NSCLC are still alive two years after their diagnosis, mainly because their cancer cells become resistant to chemotherapy. They do this by making proteins that destroy cancer drugs (detoxification enzymes) or that pump them out of cells (efflux pumps) and by making antioxidants, chemicals that protect cells against the oxidative damage caused by many chemotherapy agents.
Why Was This Study Done?
To improve the outlook for patients with lung cancer, researchers need to discover exactly how cancer cells become resistant to chemotherapy drugs. Detoxification enzymes, efflux pumps, and antioxidants normally protect cells from environmental toxins and from oxidants produced by the chemical processes of life. Their production is regulated by nuclear factor erythroid-2 related factor 2 (NRF2). The activity of this transcription factor (a protein that controls the expression of other proteins) is controlled by the protein Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 holds NRF2 in the cytoplasm of the cell (the cytoplasm surrounds the cell's nucleus, where the genetic material is stored) when no oxidants are present and targets it for destruction. When oxidants are present, KEAP1 no longer interacts with NRF2, which moves into the nucleus and induces the expression of the proteins that protect the cell against oxidants and toxins. In this study, the researchers investigated whether changes in KEAP1 might underlie the drug resistance seen in lung cancer.
What Did the Researchers Do and Find?
The researchers looked carefully at the gene encoding KEAP1 in tissue taken from lung tumors and in several lung cancer cell lines—tumor cells that have been grown in a laboratory. They found mutations in parts of KEAP1 known to be important for its function in half the cell lines and a fifth of the tumor samples. They also found that about half of the samples had lost part of one copy of the KEAP1 gene—cells usually have two copies of each gene. Five of the six tumors with KEAP1 mutations had also lost one copy of KEAP1—geneticists call this biallelic inactivation. This means that these tumors should have no functional KEAP1. When the researchers checked this by staining the tumors for NRF2, they found that the tumor cells had more NRF2 than normal cells and that it accumulated in the nucleus. In addition, the tumor cells made more detoxification enzymes, efflux proteins, and antioxidants than normal cells. Finally, the researchers showed that lung cancer cells with KEAP1 mutations were more resistant to chemotherapy drugs than normal lung cells were.
What Do These Findings Mean?
These results indicate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC and suggest that the loss of KEAP1 activity is one way that lung tumors can increase their NRF2 activity and develop resistance to chemotherapeutic drugs. More lung cancer samples need to be examined to confirm this result, and similar studies need to be done in other cancers to see whether loss of KEAP1 activity is a common mechanism by which tumors become resistant to chemotherapy. If such studies confirm that high NRF2 activity (either through mutation or by some other route) is often associated with a poor tumor response to chemotherapy, then the development of NRF2 inhibitors might help to improve treatment outcomes in patients with chemotherapy-resistant tumors.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030420.
US National Cancer Institute information on lung cancer and on cancer treatment
MedlinePlus entries on small cell lung cancer and NSCLC Cancer Research UK information on lung cancer
Wikipedia entries on lung cancer and chemotherapy (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030420
PMCID: PMC1584412  PMID: 17020408
2.  Keap1 Controls Postinduction Repression of the Nrf2-Mediated Antioxidant Response by Escorting Nuclear Export of Nrf2▿  
Molecular and Cellular Biology  2007;27(18):6334-6349.
The transcription factor Nrf2 regulates cellular redox homeostasis. Under basal conditions, Keap1 recruits Nrf2 into the Cul3-containing E3 ubiquitin ligase complex for ubiquitin conjugation and subsequent proteasomal degradation. Oxidative stress triggers activation of Nrf2 through inhibition of E3 ubiquitin ligase activity, resulting in increased levels of Nrf2 and transcriptional activation of Nrf2-dependent genes. In this study, we identify Keap1 as a key postinduction repressor of Nrf2 and demonstrate that a nuclear export sequence (NES) in Keap1 is required for termination of Nrf2-antioxidant response element (ARE) signaling by escorting nuclear export of Nrf2. We provide evidence that ubiquitination of Nrf2 is carried out in the cytosol. Furthermore, we show that Keap1 nuclear translocation is independent of Nrf2 and the Nrf2-Keap1 complex does not bind the ARE. Collectively, our results suggest the following mechanism of postinduction repression: upon recovery of cellular redox homeostasis, Keap1 translocates into the nucleus to dissociate Nrf2 from the ARE. The Nrf2-Keap1 complex is then transported out of the nucleus by the NES in Keap1. Once in the cytoplasm, the Keap1-Nrf2 complex associates with the E3 ubiquitin ligase, resulting in degradation of Nrf2 and termination of the Nrf2 signaling pathway. Hence, postinduction repression of the Nrf2-mediated antioxidant response is controlled by the nuclear export function of Keap1 in alliance with the cytoplasmic ubiquitination and degradation machinery.
doi:10.1128/MCB.00630-07
PMCID: PMC2099624  PMID: 17636022
3.  Dihydro-CDDO-Trifluoroethyl Amide (dh404), a Novel Nrf2 Activator, Suppresses Oxidative Stress in Cardiomyocytes 
PLoS ONE  2009;4(12):e8391.
Targeting Nrf2 signaling appears to be an attractive approach for the treatment of maladaptive cardiac remodeling and dysfunction; however, pharmacological modulation of the Nrf2 pathway in the cardiovascular system remains to be established. Herein, we report that a novel synthetic triterpenoid derivative, dihydro-CDDO-trifluoroethyl amide (dh404), activates Nrf2 and suppresses oxidative stress in cardiomyocytes. Dh404 interrupted the Keap1-Cul3-Rbx1 E3 ligase complex-mediated Nrf2 ubiquitination and subsequent degradation saturating the binding capacity of Keap1 to Nrf2, thereby rendering more Nrf2 to be translocated into the nuclei to activate Nrf2-driven gene transcription. A mutant Keap1 protein containing a single cysteine-to-serine substitution at residue 151 within the BTB domain of Keap1 was resistant to dh404-induced stabilization of Nrf2 protein. In addition, dh404 did not dissociate the interaction of Nrf2 with the Keap1-Cul3-Rbx1 E3 ligase complex. Thus, it is likely that dh404 inhibits the ability of Keap1-Cul3-Rbx1 E3 ligase complex to target Nrf2 for ubiquitination and degradation via modifying Cys-151 of Keap1 to change the conformation of the complex. Moreover, dh404 was able to stabilize Nrf2 protein, to enhance Nrf2 nuclear translocation, to activate Nrf2-driven transcription, and to suppress angiotensin II (Ang II)-induced oxidative stress in cardiomyocytes. Knockdown of Nrf2 almost blocked the anti-oxidative effect of dh404. Dh404 activated Nrf2 signaling in the heart. Taken together, dh404 appears to be a novel Nrf2 activator with a therapeutic potential for cardiac diseases via suppressing oxidative stress.
doi:10.1371/journal.pone.0008391
PMCID: PMC2791441  PMID: 20027226
4.  USP15 negatively regulates Nrf2 through deubiquitination of Keap1 
Molecular cell  2013;51(1):68-79.
Summary
Nrf2 is a master regulator of the antioxidant response. Under basal conditions Nrf2 is polyubiquitinated by the Keap1-Cul3-E3 ligase and degraded by the 26S-proteasome. In response to Nrf2 inducers there is a switch in polyubiquitination from Nrf2 to Keap1. Currently, regulation of the Nrf2-Keap1 pathway by ubiquitination is largely understood. However, the mechanism responsible for removal of ubiquitin conjugated to Nrf2 or Keap1 remains unknown. Here we report that the deubiquitinating enzyme, USP15, specifically deubiquitinates Keap1, which suppresses the Nrf2 pathway. We demonstrated that deubiquitinated-Keap1 incorporates into the Keap1-Cul3-E3 ligase complex more efficiently, enhancing the complex stability and enzymatic activity. Consequently, there is an increase in Nrf2 protein degradation and a reduction in Nrf2 target gene expression. Furthermore, USP15-siRNA enhances chemoresistance of cells through upregulation of Nrf2. These findings further our understanding of how the Nrf2-Keap1 pathway is regulated, which is imperative in targeting this pathway for chemoprevention or chemotherapy.
doi:10.1016/j.molcel.2013.04.022
PMCID: PMC3732832  PMID: 23727018
Nrf2; Keap1; USP15; Cul3; ubiquitination; deubiquitination; antioxidant response; chemoresistance
5.  Distinct Cysteine Residues in Keap1 Are Required for Keap1-Dependent Ubiquitination of Nrf2 and for Stabilization of Nrf2 by Chemopreventive Agents and Oxidative Stress 
Molecular and Cellular Biology  2003;23(22):8137-8151.
A common feature of diverse chemopreventive agents is the ability to activate expression of a genetic program that protects cells from reactive chemical species that, if left unchecked, would cause mutagenic DNA damage. The bZIP transcription factor Nrf2 has emerged as a key regulator of this cancer-preventive genetic program. Nrf2 is normally sequestered in the cytoplasm by a protein known as Keap1. Chemopreventive agents allow Nrf2 to escape from Keap1-mediated repression, although the molecular mechanism(s) responsible for activation of Nrf2 is not understood. In this report, we demonstrate that Keap1 does not passively sequester Nrf2 in the cytoplasm but actively targets Nrf2 for ubiquitination and degradation by the proteosome under basal culture conditions. We have identified two critical cysteine residues in Keap1, C273 and C288, that are required for Keap1-dependent ubiquitination of Nrf2. Both sulforaphane, a chemopreventive isothiocyanate, and oxidative stress enable Nrf2 to escape Keap1-dependent degradation, leading to stabilization of Nrf2, increased nuclear localization of Nrf2, and activation of Nrf2-dependent cancer-protective genes. We have identified a third cysteine residue in Keap1, C151, that is uniquely required for inhibition of Keap1-dependent degradation of Nrf2 by sulforaphane and oxidative stress. This cysteine residue is also required for a novel posttranslational modification to Keap1 that is induced by oxidative stress. We propose that Keap1 is a component of a novel E3 ubiquitin ligase complex that is specifically targeted for inhibition by both chemopreventive agents and oxidative stress.
doi:10.1128/MCB.23.22.8137-8151.2003
PMCID: PMC262403  PMID: 14585973
6.  Insight into the Intermolecular Recognition Mechanism between Keap1 and IKKβ Combining Homology Modelling, Protein-Protein Docking, Molecular Dynamics Simulations and Virtual Alanine Mutation 
PLoS ONE  2013;8(9):e75076.
Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1), a substrate adaptor component of the Cullin3 (Cul3)-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor 2 (Nrf2) and IκB kinase β (IKKβ), which are involved in the redox control of gene transcription. However, compared to the Keap1-Nrf2 protein-protein interaction (PPI), the intermolecular recognition mechanism of Keap1 and IKKβ has been poorly investigated. In order to explore the binding pattern between Keap1 and IKKβ, the PPI model of Keap1 and IKKβ was investigated. The structure of human IKKβ was constructed by means of the homology modeling method and using reported crystal structure of Xenopus laevis IKKβ as the template. A protein-protein docking method was applied to develop the Keap1-IKKβ complex model. After the refinement and visual analysis of docked proteins, the chosen pose was further optimized through molecular dynamics simulations. The resulting structure was utilized to conduct the virtual alanine mutation for the exploration of hot-spots significant for the intermolecular interaction. Overall, our results provided structural insights into the PPI model of Keap1-IKKβ and suggest that the substrate specificity of Keap1 depend on the interaction with the key tyrosines, namely Tyr525, Tyr574 and Tyr334. The study presented in the current project may be useful to design molecules that selectively modulate Keap1. The selective recognition mechanism of Keap1 with IKKβ or Nrf2 will be helpful to further know the crosstalk between NF-κB and Nrf2 signaling.
doi:10.1371/journal.pone.0075076
PMCID: PMC3774807  PMID: 24066166
7.  Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex 
Molecular and Cellular Biology  2004;24(24):10941-10953.
The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2 and controls both the subcellular localization and steady-state levels of Nrf2. In this report, we demonstrate that Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex. Keap1 assembles into a functional E3 ubiquitin ligase complex with Cul3 and Rbx1 that targets multiple lysine residues located in the N-terminal Neh2 domain of Nrf2 for ubiquitin conjugation both in vivo and in vitro. Keap1-dependent ubiquitination of Nrf2 is inhibited following exposure of cells to quinone-induced oxidative stress and sulforaphane, a cancer-preventive isothiocyanate. A mutant Keap1 protein containing a single cysteine-to-serine substitution at residue 151 within the BTB domain of Keap1 is markedly resistant to inhibition by either quinone-induced oxidative stress or sulforaphane. Inhibition of Keap1-dependent ubiquitination of Nrf2 correlates with decreased association of Keap1 with Cul3. Neither quinone-induced oxidative stress nor sulforaphane disrupts association between Keap1 and Nrf2. Our results suggest that the ability of Keap1 to assemble into a functional E3 ubiquitin ligase complex is the critical determinant that controls steady-state levels of Nrf2 in response to cancer-preventive compounds and oxidative stress.
doi:10.1128/MCB.24.24.10941-10953.2004
PMCID: PMC533977  PMID: 15572695
8.  BTB Protein Keap1 Targets Antioxidant Transcription Factor Nrf2 for Ubiquitination by the Cullin 3-Roc1 Ligase 
Molecular and Cellular Biology  2005;25(1):162-171.
The concentrations and functions of many eukaryotic proteins are regulated by the ubiquitin pathway, which consists of ubiquitin activation (E1), conjugation (E2), and ligation (E3). Cullins are a family of evolutionarily conserved proteins that assemble by far the largest family of E3 ligase complexes. Cullins, via a conserved C-terminal domain, bind with the RING finger protein Roc1 to recruit the catalytic function of E2. Via a distinct N-terminal domain, individual cullins bind to a protein motif present in multiple proteins to recruit specific substrates. Cullin 3 (Cul3), but not other cullins, binds directly with BTB domains to constitute a potentially large number of BTB-CUL3-ROC1 E3 ubiquitin ligases. Here we report that the human BTB-Kelch protein Keap1, a negative regulator of the antioxidative transcription factor Nrf2, binds to CUL3 and Nrf2 via its BTB and Kelch domains, respectively. The KEAP1-CUL3-ROC1 complex promoted NRF2 ubiquitination in vitro and knocking down Keap1 or CUL3 by short interfering RNA resulted in NRF2 protein accumulation in vivo. We suggest that Keap1 negatively regulates Nrf2 function in part by targeting Nrf2 for ubiquitination by the CUL3-ROC1 ligase and subsequent degradation by the proteasome. Blocking NRF2 degradation in cells expressing both KEAP1 and NRF2 by either inhibiting the proteasome activity or knocking down Cul3, resulted in NRF2 accumulation in the cytoplasm. These results may reconcile previously observed cytoplasmic sequestration of NRF2 by KEAP1 and suggest a possible regulatory step between KEAP1-NRF2 binding and NRF2 degradation.
doi:10.1128/MCB.25.1.162-171.2005
PMCID: PMC538799  PMID: 15601839
9.  Physical and Functional Interaction of Sequestosome 1 with Keap1 Regulates the Keap1-Nrf2 Cell Defense Pathway* 
The Journal of Biological Chemistry  2010;285(22):16782-16788.
Nrf2 regulates the expression of numerous cytoprotective genes in mammalian cells. The activity of Nrf2 is regulated by the Cul3 adaptor Keap1, yet little is known regarding mechanisms of regulation of Keap1 itself. Here, we have used immunopurification of Keap1 and mass spectrometry, in addition to immunoblotting, to identify sequestosome 1 (SQSTM1) as a cellular binding partner of Keap1. SQSTM1 serves as a scaffold in various signaling pathways and shuttles polyubiquitinated proteins to the proteasomal and lysosomal degradation machineries. Ectopic expression of SQSTM1 led to a decrease in the basal protein level of Keap1 in a panel of cells. Furthermore, RNA interference (RNAi) depletion of SQSTM1 resulted in an increase in the protein level of Keap1 and a concomitant decrease in the protein level of Nrf2 in the absence of changes in Keap1 or Nrf2 mRNA levels. The increased protein level of Keap1 in cells depleted of SQSTM1 by RNAi was linked to a decrease in its rate of degradation; the half-life of Keap1 was almost doubled by RNAi depletion of SQSTM1. The decreased level of Nrf2 in cells depleted of SQSTM1 by RNAi was associated with decreases in the mRNA levels, protein levels, and function of several Nrf2-regulated cell defense genes. SQSTM1 was dispensable for the induction of the Keap1-Nrf2 pathway, as Nrf2 activation by tert-butylhydroquinone or iodoacetamide was not affected by RNAi depletion of SQSTM1. These findings demonstrate a physical and functional interaction between Keap1 and SQSTM1 and reveal an additional layer of regulation in the Keap1-Nrf2 pathway.
doi:10.1074/jbc.M109.096545
PMCID: PMC2878012  PMID: 20378532
Antioxidant; Gene Regulation; Oxidative Stress; Protein-Protein Interactions; Signal Transduction; Keap1; Nrf2; SQSTM1
10.  Direct interaction between Nrf2 and p21Cip1/WAF1 upregulates the Nrf2-mediated antioxidant response 
Molecular cell  2009;34(6):663-673.
Summary
In response to oxidative stress, Nrf2 and p21 Cip1/WAF1 are both upregulated to protect cells from oxidative damage. Nrf2 is constantly ubiquitinated by a Keap1 dimer that interacts with a weak-binding 29DLG motif and a strong-binding 79ETGE motif in Nrf2, resulting in degradation of Nrf2. Modification of the redox-sensitive cysteine residues on Keap1 disrupts the Keap1-29DLG binding, leading to diminished Nrf2 ubiquitination and activation of the antioxidant response. However, the underlying mechanism by which p21 protects cells from oxidative damage remains unclear. Here, we present molecular and genetic evidence suggesting that the antioxidant function of p21 is mediated through activation of Nrf2 by stabilizing the Nrf2 protein. The 154KRR motif in p21 directly interacts with the 29DLG and 79ETGE motifs in Nrf2, and thus, competes with Keap1 for Nrf2 binding, compromising ubiquitination of Nrf2. Furthermore, the physiological significance of our findings was demonstrated in vivo using p21-deficient mice.
doi:10.1016/j.molcel.2009.04.029
PMCID: PMC2714804  PMID: 19560419
11.  Regulation of Nrf2 – An update 
Free radical biology & medicine  2013;66:10.1016/j.freeradbiomed.2013.02.008.
Nrf2:INrf2 (Keap1) are cellular sensors of oxidative and electrophilic stress. Nrf2 is a nuclear factor that controls the expression and coordinated induction of a battery of genes which encode detoxifying enzymes, drug transporters (MRPs), anti-apoptotic proteins and proteasomes. In the basal state, Nrf2 is constantly degraded in the cytoplasm by its inhibitor, INrf2. INrf2 functions as an adapter for Cul3/Rbx1 E3 ubiquitin ligase mediated degradation of Nrf2. Chemicals including antioxidants, tocopherols including α-tocopherol (vitamin E), phytochemicals and radiations antagonize the Nrf2:INrf2 interaction and leads to the stabilization and activation of Nrf2. The signaling events involve pre-induction, induction and post-induction responses that tightly control Nrf2 activation and repression back to the basal state. Oxidative/electrophilic signals activate unknown tyrosine kinase(s) in a pre-induction response which phosphorylates specific residues on Nrf2 negative-regulators, INrf2, Fyn and Bach1, leading to their nuclear export, ubiquitination and degradation. This prepares nuclei for unhindered import of Nrf2. Oxidative/electrophilic modification of INrf2cysteine151 followed by PKC phosphorylation of Nrf2serine40 in the induction response results in the escape or release of Nrf2 from INrf2. Nrf2 is thus stabilized and translocates to the nucleus resulting in a coordinated activation of gene expression. This is followed by a post-induction response that controls the ‘switching off’ of Nrf2-activated gene expression. GSK3β under the control of AKT and PI3K, phosphorylates Fyn leading to Fyn nuclear localization. Fyn phosphorylates Nrf2Y568 resulting in nuclear export and degradation of Nrf2. The activation and repression of Nrf2 provides protection against oxidative/electrophilic stress and associated diseases, including cancer. However, deregulation of INrf2 and Nrf2 due to mutations may lead to nuclear accumulation of Nrf2 that reduces apoptosis and promotes oncogenesis and drug resistance.
doi:10.1016/j.freeradbiomed.2013.02.008
PMCID: PMC3773280  PMID: 23434765
Nrf2; INrf2(Keap1); Antioxidants; Vitamins; Phytochemicals; ROS; Signaling; Regulation; Chemoprotection; Oncogenesis
12.  Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition of Ubiquitination Activity of Keap1†  
Molecular and Cellular Biology  2006;26(1):221-229.
The Keap1-Nrf2 system is the major regulatory pathway of cytoprotective gene expression against oxidative and/or electrophilic stresses. Keap1 acts as a stress sensor protein in this system. While Keap1 constitutively suppresses Nrf2 activity under unstressed conditions, oxidants or electrophiles provoke the repression of Keap1 activity, inducing the Nrf2 activation. However, the precise molecular mechanisms behind the liberation of Nrf2 from Keap1 repression in the presence of stress remain to be elucidated. We hypothesized that oxidative and electrophilic stresses induce the nuclear accumulation of Nrf2 by affecting the Keap1-mediated rapid turnover of Nrf2, since such accumulation was diminished by the protein synthesis inhibitor cycloheximide. While both the Cys273 and Cys288 residues of Keap1 are required for suppressing Nrf2 nuclear accumulation, treatment of cells with electrophiles or mutation of these cysteine residues to alanine did not affect the association of Keap1 with Nrf2 either in vivo or in vitro. Rather, these treatments impaired the Keap1-mediated proteasomal degradation of Nrf2. These results support the contention that Nrf2 protein synthesized de novo after exposure to stress accumulates in the nucleus by bypassing the Keap1 gate and that the sensory mechanism of oxidative and electrophilic stresses is closely linked to the degradation mechanism of Nrf2.
doi:10.1128/MCB.26.1.221-229.2006
PMCID: PMC1317630  PMID: 16354693
13.  SCF/β-TrCP Promotes Glycogen Synthase Kinase 3-Dependent Degradation of the Nrf2 Transcription Factor in a Keap1-Independent Manner▿  
Molecular and Cellular Biology  2011;31(6):1121-1133.
Regulation of transcription factor Nrf2 (NF-E2-related factor 2) involves redox-sensitive proteasomal degradation via the E3 ubiquitin ligase Keap1/Cul3. However, Nrf2 is controlled by other mechanisms that have not yet been elucidated. We now show that glycogen synthase kinase 3 (GSK-3) phosphorylates a group of Ser residues in the Neh6 domain of mouse Nrf2 that overlap with an SCF/β-TrCP destruction motif (DSGIS, residues 334 to 338) and promotes its degradation in a Keap1-independent manner. Nrf2 was stabilized by GSK-3 inhibitors in Keap1-null mouse embryo fibroblasts. Similarly, an Nrf2ΔETGE mutant, which cannot be degraded via Keap1, accumulated when GSK-3 activity was blocked. Phosphorylation of a Ser cluster in the Neh6 domain of Nrf2 stimulated its degradation because a mutant Nrf2ΔETGE 6S/6A protein, lacking these Ser residues, exhibited a longer half-life than Nrf2ΔETGE. Moreover, Nrf2ΔETGE 6S/6A was insensitive to β-TrCP regulation and exhibited lower levels of ubiquitination than Nrf2ΔETGE. GSK-3β enhanced ubiquitination of Nrf2ΔETGE but not that of Nrf2ΔETGE 6S/6A. The Nrf2ΔETGE protein but not Nrf2ΔETGE 6S/6A coimmunoprecipitated with β-TrCP, and this association was enhanced by GSK-3β. Our results show for the first time that Nrf2 is targeted by GSK-3 for SCF/β-TrCP-dependent degradation. We propose a “dual degradation” model to describe the regulation of Nrf2 under different pathophysiological conditions.
doi:10.1128/MCB.01204-10
PMCID: PMC3067901  PMID: 21245377
14.  CAND1-Mediated Substrate Adaptor Recycling Is Required for Efficient Repression of Nrf2 by Keap1 
Molecular and Cellular Biology  2006;26(4):1235-1244.
The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2. Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex to repress steady-state levels of Nrf2 and Nrf2-dependent transcription. Cullin-dependent ubiquitin ligase complexes have been proposed to undergo dynamic cycles of assembly and disassembly that enable substrate adaptor exchange or recycling. In this report, we have characterized the importance of substrate adaptor recycling for regulation of Keap1-mediated repression of Nrf2. Association of Keap1 with Cul3 was decreased by ectopic expression of CAND1 and was increased by small interfering RNA (siRNA)-mediated knockdown of CAND1. However, both ectopic overexpression and siRNA-mediated knockdown of CAND1 decreased the ability of Keap1 to target Nrf2 for ubiquitin-dependent degradation, resulting in stabilization of Nrf2 and activation of Nrf2-dependent gene expression. Neddylation of Cul3 on Lys 712 is required for Keap1-dependent ubiquitination of Nrf2 in vivo. However, the K712R mutant Cul3 molecule, which is not neddylated, can still assemble with Keap1 into a functional ubiquitin ligase complex in vitro. These results provide support for a model in which substrate adaptor recycling is required for efficient substrate ubiquitination by cullin-dependent E3 ubiquitin ligase complexes.
doi:10.1128/MCB.26.4.1235-1244.2006
PMCID: PMC1367193  PMID: 16449638
15.  Mechanism of Chemical Activation of Nrf2 
PLoS ONE  2012;7(4):e35122.
NF-E2 related factor-2 (Nrf2) promotes the transcription of many cytoprotective genes and is a major drug target for prevention of cancer and other diseases. Indeed, the cancer-preventive activities of several well-known chemical agents were shown to depend on Nrf2 activation. It is well known that chemopreventive Nrf2 activators stabilize Nrf2 by blocking its ubiquitination, but previous studies have indicated that this process occurs exclusively in the cytoplasm. Kelch-like ECH-associated protein 1 (Keap1) binds to Nrf2 and orchestrates Nrf2 ubiquitination, and it has been a widely-held view that inhibition of Nrf2 ubiquitination by chemopreventive agents results from the dissociation of Nrf2 from its repressor Keap1. Here, we show that while the activation of Nrf2 by prototypical chemical activators, including 5,6-dihydrocyclopenta-1,2-dithiole-3-thione (CPDT) and sulforaphane (SF), results solely from inhibition of its ubiquitination, such inhibition occurs predominantly in the nucleus. Moreover, the Nrf2 activators promote Nrf2 association with Keap1, rather than disassociation, which appears to result from inhibition of Nrf2 phosphorylation at Ser40. Available evidence suggests the Nrf2 activators may block Nrf2 ubiquitination by altering Keap1 conformation via reaction with the thiols of specific Keap1 cysteines. We further show that while the inhibitory effects of CPDT and SF on Nrf2 ubiquitination depend entirely on Keap1, Nrf2 is also degraded by a Keap1-independent mechanism. These findings provide significant new insight about Nrf2 activation and suggest that exogenous chemical activators of Nrf2 enter the nucleus to exert most of their inhibitory impact on Nrf2 ubiquitination and degradation.
doi:10.1371/journal.pone.0035122
PMCID: PMC3338841  PMID: 22558124
16.  Kinetic, Thermodynamic, and Structural Characterizations of the Association between Nrf2-DLGex Degron and Keap1 
Molecular and Cellular Biology  2014;34(5):832-846.
Transcription factor Nrf2 (NF-E2-related factor 2) coordinately regulates cytoprotective gene expression, but under unstressed conditions, Nrf2 is degraded rapidly through Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination. Nrf2 harbors two Keap1-binding motifs, DLG and ETGE. Interactions between these two motifs and Keap1 constitute a key regulatory nexus for cellular Nrf2 activity through the formation of a two-site binding hinge-and-latch mechanism. In this study, we determined the minimum Keap1-binding sequence of the DLG motif, the low-affinity latch site, and defined a new DLGex motif that covers a sequence much longer than that previously defined. We have successfully clarified the crystal structure of the Keap1-DC-DLGex complex at 1.6 Å. DLGex possesses a complicated helix structure, which interprets well the human-cancer-derived loss-of-function mutations in DLGex. In thermodynamic analyses, Keap1-DLGex binding is characterized as enthalpy and entropy driven, while Keap1-ETGE binding is characterized as purely enthalpy driven. In kinetic analyses, Keap1-DLGex binding follows a fast-association and fast-dissociation model, while Keap1-ETGE binding contains a slow-reaction step that leads to a stable conformation. These results demonstrate that the mode of DLGex binding to Keap1 is distinct from that of ETGE structurally, thermodynamically, and kinetically and support our contention that the DLGex motif serves as a converter transmitting environmental stress to Nrf2 induction as the latch site.
doi:10.1128/MCB.01191-13
PMCID: PMC4023822  PMID: 24366543
17.  Structure of the BTB Domain of Keap1 and Its Interaction with the Triterpenoid Antagonist CDDO 
PLoS ONE  2014;9(6):e98896.
The protein Keap1 is central to the regulation of the Nrf2-mediated cytoprotective response, and is increasingly recognized as an important target for therapeutic intervention in a range of diseases involving excessive oxidative stress and inflammation. The BTB domain of Keap1 plays key roles in sensing environmental electrophiles and in mediating interactions with the Cul3/Rbx1 E3 ubiquitin ligase system, and is believed to be the target for several small molecule covalent activators of the Nrf2 pathway. However, despite structural information being available for several BTB domains from related proteins, there have been no reported crystal structures of Keap1 BTB, and this has precluded a detailed understanding of its mechanism of action and interaction with antagonists. We report here the first structure of the BTB domain of Keap1, which is thought to contain the key cysteine residue responsible for interaction with electrophiles, as well as structures of the covalent complex with the antagonist CDDO/bardoxolone, and of the constitutively inactive C151W BTB mutant. In addition to providing the first structural confirmation of antagonist binding to Keap1 BTB, we also present biochemical evidence that adduction of Cys 151 by CDDO is capable of inhibiting the binding of Cul3 to Keap1, and discuss how this class of compound might exert Nrf2 activation through disruption of the BTB-Cul3 interface.
doi:10.1371/journal.pone.0098896
PMCID: PMC4045772  PMID: 24896564
18.  Physiological Significance of Reactive Cysteine Residues of Keap1 in Determining Nrf2 Activity▿  
Molecular and Cellular Biology  2008;28(8):2758-2770.
Keap1 and Cul3 constitute a unique ubiquitin E3 ligase that degrades Nrf2, a key activator of cytoprotective genes. Upon exposure to oxidants/electrophiles, the enzymatic activity of this ligase complex is inhibited and the complex fails to degrade Nrf2, resulting in the transcriptional activation of Nrf2 target genes. Keap1 possesses several reactive cysteine residues that covalently bond with electrophiles in vitro. To clarify the functional significance of each Keap1 cysteine residue under physiological conditions, we established a transgenic complementation rescue model. The transgenic expression of mutant Keap1(C273A) and/or Keap1(C288A) protein in Keap1 null mice failed to reverse constitutive Nrf2 activation, indicating that cysteine residues at positions 273 and 288 are essential for Keap1 to repress Nrf2 activity in vivo. In contrast, Keap1(C151S) retained repressor activity and mice expressing this molecule were viable. Mouse embryonic fibroblasts from Keap1(C151S) transgenic mice displayed decreased expression of Nrf2 target genes both before and after an electrophilic challenge, suggesting that Cys151 is important in facilitating Nrf2 activation. These results demonstrate critical roles of the cysteine residues in vivo in maintaining Keap1 function, such that Nrf2 is repressed under quiescent conditions and active in response to oxidants/electrophiles.
doi:10.1128/MCB.01704-07
PMCID: PMC2293100  PMID: 18268004
19.  Nrf2 Enhances Cholangiocyte Expansion in Pten-Deficient Livers 
Molecular and Cellular Biology  2014;34(5):900-913.
Keap1-Nrf2 system plays a central role in the stress response. While Keap1 ubiquitinates Nrf2 for degradation under unstressed conditions, this Keap1 activity is abrogated in response to oxidative or electrophilic stresses, leading to Nrf2 stabilization and coordinated activation of cytoprotective genes. We recently found that nuclear accumulation of Nrf2 is significantly increased by simultaneous deletion of Pten and Keap1, resulting in the stronger activation of Nrf2 target genes. To clarify the impact of the cross talk between the Keap1-Nrf2 and Pten–phosphatidylinositide 3-kinase–Akt pathways on the liver pathophysiology, in this study we have conducted closer analysis of liver-specific Pten::Keap1 double-mutant mice (Pten::Keap1-Alb mice). The Pten::Keap1-Alb mice were lethal by 1 month after birth and displayed severe hepatomegaly with abnormal expansion of ductal structures comprising cholangiocytes in a Nrf2-dependent manner. Long-term observation of Pten::Keap1-Alb::Nrf2+/− mice revealed that the Nrf2-heterozygous mice survived beyond 1 month but developed polycystic liver fibrosis by 6 months. Gsk3 directing the Keap1-independent degradation of Nrf2 was heavily phosphorylated and consequently inactivated by the double deletion of Pten and Keap1 genes. Thus, liver-specific disruption of Keap1 and Pten augments Nrf2 activity through inactivation of Keap1-dependent and -independent degradation of Nrf2 and establishes the Nrf2-dependent molecular network promoting the hepatomegaly and cholangiocyte expansion.
doi:10.1128/MCB.01384-13
PMCID: PMC4023823  PMID: 24379438
20.  Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells 
The Journal of Cell Biology  2011;193(2):275-284.
Impaired autophagy stabilizes p62 and promotes tumorigenesis through activation of the Nrf2 transcription factor.
Suppression of autophagy is always accompanied by marked accumulation of p62, a selective autophagy substrate. Because p62 interacts with the Nrf2-binding site on Keap1, which is a Cullin 3–based ubiquitin ligase adapter protein, autophagy deficiency causes competitive inhibition of the Nrf2–Keap1 interaction, resulting in stabilization of Nrf2 followed by transcriptional activation of Nrf2 target genes. Herein, we show that liver-specific autophagy-deficient mice harbor adenomas linked to both the formation of p62- and Keap1-positive cellular aggregates and induction of Nrf2 targets. Importantly, similar aggregates were identified in more than 25% of human hepatocellular carcinomas (HCC), and induction of Nrf2 target genes was recognized in most of these tumors. Gene targeting of p62 in an HCC cell line markedly abrogates the anchorage-independent growth, whereas forced expression of p62, but not a Keap1 interaction-defective mutant, resulted in recovery of the growth defect. These results indicate the involvement of persistent activation of Nrf2 through the accumulation of p62 in hepatoma development.
doi:10.1083/jcb.201102031
PMCID: PMC3080263  PMID: 21482715
21.  KPNA6 (Importin α7)-Mediated Nuclear Import of Keap1 Represses the Nrf2-Dependent Antioxidant Response ▿  
Molecular and Cellular Biology  2011;31(9):1800-1811.
The transcription factor Nrf2 has emerged as a master regulator of cellular redox homeostasis. As an adaptive response to oxidative stress, Nrf2 activates the transcription of a battery of genes encoding antioxidants, detoxification enzymes, and xenobiotic transporters by binding the cis-antioxidant response element in the promoter regions of genes. The magnitude and duration of inducible Nrf2 signaling is delicately controlled at multiple levels by Keap1, which targets Nrf2 for redox-sensitive ubiquitin-mediated degradation in the cytoplasm and exports Nrf2 from the nucleus. However, it is not clear how Keap1 gains access to the nucleus. In this study, we show that Keap1 is constantly shuttling between the nucleus and the cytoplasm under physiological conditions. The nuclear import of Keap1 requires its C-terminal Kelch domain and is independent of Nrf1 and Nrf2. We have determined that importin α7, also known as karyopherin α6 (KPNA6), directly interacts with the Kelch domain of Keap1. Overexpression of KPNA6 facilitates Keap1 nuclear import and attenuates Nrf2 signaling, whereas knockdown of KPNA6 slows down Keap1 nuclear import and enhances the Nrf2-mediated adaptive response induced by oxidative stress. Furthermore, KPNA6 accelerates the clearance of Nrf2 protein from the nucleus during the postinduction phase, therefore promoting restoration of the Nrf2 protein to basal levels. These findings demonstrate that KPNA6-mediated Keap1 nuclear import plays an essential role in modulating the Nrf2-dependent antioxidant response and maintaining cellular redox homeostasis.
doi:10.1128/MCB.05036-11
PMCID: PMC3133232  PMID: 21383067
22.  Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase To Regulate Proteasomal Degradation of Nrf2 
Molecular and Cellular Biology  2004;24(16):7130-7139.
Transcription factor Nrf2 is a major regulator of genes encoding phase 2 detoxifying enzymes and antioxidant stress proteins in response to electrophilic agents and oxidative stress. In the absence of such stimuli, Nrf2 is inactive owing to its cytoplasmic retention by Keap1 and rapid degradation through the proteasome system. We examined the contribution of Keap1 to the rapid turnover of Nrf2 (half-life of less than 20 min) and found that a direct association between Keap1 and Nrf2 is required for Nrf2 degradation. In a series of domain function analyses of Keap1, we found that both the BTB and intervening-region (IVR) domains are crucial for Nrf2 degradation, implying that these two domains act to recruit ubiquitin-proteasome factors. Indeed, Cullin 3 (Cul3), a subunit of the E3 ligase complex, was found to interact specifically with Keap1 in vivo. Keap1 associates with the N-terminal region of Cul3 through the IVR domain and promotes the ubiquitination of Nrf2 in cooperation with the Cul3-Roc1 complex. These results thus provide solid evidence that Keap1 functions as an adaptor of Cul3-based E3 ligase. To our knowledge, Nrf2 and Keap1 are the first reported mammalian substrate and adaptor, respectively, of the Cul3-based E3 ligase system.
doi:10.1128/MCB.24.16.7130-7139.2004
PMCID: PMC479737  PMID: 15282312
23.  Analysis of dimerization of BTB-IVR domains of Keap1 and its interaction with Cul3, by molecular modeling 
Bioinformation  2013;9(9):450-455.
Oxidative damage has been associated with various neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease, as well as non-neurodegenerative conditions such as cancer and heart disease. The Keap1-Nrf2 system plays a central role in the protection of cells against oxidative and xenobiotic stress. The Nrf2 transcription function and its degradation by the proteasomal pathway (Keap1-Nrf2-Cul3-Roc1 complex) are regulated by the cytoplasmic repressor protein, Keap1 which possesses BTB, BACK (IVR region) and Kelch domains. The BTB-BACK domains are important for Keap1 homo-dimerization as well as to interact with Cullin-3 for Nrf2 degradation. The crystal structure of the Keap1-Kelch domain is known; however, that of the BTB-BACK domains are not yet determined. We present here, through molecular modeling studies, the analysis of Keap1-BTB dimerization, and of BTB-BACK domains role in complex with Cul3. The electrostatic charge distribution at the BTB dimer interface of Keap1 is significantly different from other known BTB containing protein structures. Another intriguing feature is also observed that the non-conserved residues at the BTB-BACK-Cul3 interface region may play critical role for differentiating Cul3 recognition by Keap1 from other adaptor proteins for their specific substrates proteasomal degradation.
doi:10.6026/97320630009450
PMCID: PMC3705614  PMID: 23847398
Nrf2; Keap1; BTB and IVR/BACK domains; Cul3; molecular modeling
24.  Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction 
Toxicology and applied pharmacology  2008;230(3):383-389.
Drinking water contaminated with arsenic, a human carcinogen, is a worldwide health issue. An understanding of cellular signaling events in response to arsenic exposure and rational designing of strategies to reduce arsenic damages by modulating signaling events are important to fight against arsenic-induced diseases. Previously, we reported that activation of the Nrf2-mediated cellular defense pathway confers protection against toxic effects induced by sodium arsenite [As(III)] or monomethylarsonous acid [MMA(III)]. Paradoxically, arsenic has been reported to induce the Nrf2-dependent signaling pathway. Here, we report the unique mechanism of Nrf2 induction by arsenic. Similar to tert-butylhydroquinone (tBHQ) or sulforaphane (SF), arsenic induced the Nrf2-dependent response through enhancing Nrf2 protein levels by inhibiting Nrf2 ubiquitination and degradation. However, the detailed action of arsenic in Nrf2 induction is different from that of tBHQ or SF. Arsenic markedly enhanced the interaction between Keap1 and Cul3, subunits of the E3 ubiquitin ligase for Nrf2, which led to impaired dynamic assembly/disassembly of the E3 ubiquitin ligase and thus decreased its ligase activity. Furthermore, induction of Nrf2 by arsenic is independent of the previously identified C151 residue in Keap1 that is required for Nrf2 activation by tBHQ or SF. Distinct mechanisms of Nrf2 activation by seemingly harmful and beneficial reagents provide a molecular basis to design Nrf2-activating agents for therapeutic intervention.
doi:10.1016/j.taap.2008.03.003
PMCID: PMC2610481  PMID: 18417180
25.  Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination 
Cancer research  2013;73(7):2199-2210.
Somatic mutations in the KEAP1 ubiquitin ligase or its substrate NRF2 (NFE2L2) commonly occur in human cancer, resulting in constitutive NRF2-mediated transcription of cytoprotective genes. However, many tumors display high NRF2 activity in the absence of mutation, supporting the hypothesis that alternative mechanisms of pathway activation exist. Previously, we and others discovered that via a competitive binding mechanism, the proteins WTX (AMER1), PALB2 and SQSTM1 bind KEAP1 to activate NRF2. Proteomic analysis of the KEAP1 protein interaction network revealed a significant enrichment of associated proteins containing an ETGE amino acid motif, which matches the KEAP1 interaction motif found in NRF2. Like WTX, PALB2, and SQSTM1, we found that the dipeptidyl peptidase 3 (DPP3) protein binds KEAP1 via an ‘ETGE’ motif to displace NRF2, thus inhibiting NRF2 ubiquitination and driving NRF2-dependent transcription. Comparing the spectrum of KEAP1 interacting proteins with the genomic profile of 178 squamous cell lung carcinomas characterized by The Cancer Genome Atlas revealed amplification and mRNA over-expression of the DPP3 gene in tumors with high NRF2 activity but lacking NRF2 stabilizing mutations. We further show that tumor-derived mutations in KEAP1 are hypomorphic with respect to NRF2 inhibition and that DPP3 over-expression in the presence of these mutants further promotes NRF2 activation. Collectively, our findings further support the competition model of NRF2 activation and suggest that ‘ETGE’-containing proteins like DPP3 contribute to NRF2 activity in cancer.
doi:10.1158/0008-5472.CAN-12-4400
PMCID: PMC3618590  PMID: 23382044

Results 1-25 (884356)