PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (282561)

Clipboard (0)
None

Related Articles

1.  Variable expressivity of ciliopathy neurological phenotypes that encompass Meckel–Gruber syndrome and Joubert syndrome is caused by complex de-regulated ciliogenesis, Shh and Wnt signalling defects 
Human Molecular Genetics  2013;22(7):1358-1372.
The ciliopathies are a group of heterogeneous diseases with considerable variations in phenotype for allelic conditions such as Meckel–Gruber syndrome (MKS) and Joubert syndrome (JBTS) even at the inter-individual level within families. In humans, mutations in TMEM67 (also known as MKS3) cause both MKS and JBTS, with TMEM67 encoding the orphan receptor meckelin (TMEM67) that localizes to the ciliary transition zone. We now describe the Tmem67tm1(Dgen/H) knockout mouse model that recapitulates the brain phenotypic variability of these human ciliopathies, with categorization of Tmem67 mutant animals into two phenotypic groups. An MKS-like incipient congenic group (F6 to F10) manifested very variable neurological features (including exencephaly, and frontal/occipital encephalocele) that were associated with the loss of primary cilia, diminished Shh signalling and dorsalization of the caudal neural tube. The ‘MKS-like’ group also had high de-regulated canonical Wnt/β-catenin signalling associated with hyper-activated Dishevelled-1 (Dvl-1) localized to the basal body. Conversely, a second fully congenic group (F > 10) had less variable features pathognomonic for JBTS (including cerebellar hypoplasia), and retention of abnormal bulbous cilia associated with mild neural tube ventralization. The ‘JBTS-like’ group had de-regulated low levels of canonical Wnt signalling associated with the loss of Dvl-1 localization to the basal body. Our results suggest that modifier alleles partially determine the variation between MKS and JBTS, implicating the interaction between Dvl-1 and meckelin, or other components of the ciliary transition zone. The Tmem67tm1(Dgen/H) line is unique in modelling the variable expressivity of phenotypes in these two ciliopathies.
doi:10.1093/hmg/dds546
PMCID: PMC3596847  PMID: 23283079
2.  Novel TMEM67 Mutations and Genotype-phenotype Correlates in Meckelin-related Ciliopathies 
Human mutation  2010;31(5):E1319-E1331.
Human ciliopathies are hereditary conditions caused by defects of proteins expressed at the primary cilium. Among ciliopathies, Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS) and nephronophthisis (NPH) present clinical and genetic overlap, being allelic at several loci. One of the most interesting gene is TMEM67, encoding the transmembrane protein meckelin. We performed mutation analysis of TMEM67 in 341 probands, including 265 JSRD representative of all clinical subgroups and 76 MKS fetuses. We identified 33 distinct mutations, of which 20 were novel, in 8/10 (80%) JS with liver involvement (COACH phenotype) and 12/76 (16%) MKS fetuses. No mutations were found in other JSRD subtypes, confirming the strong association between TMEM67 mutations and liver involvement. Literature review of all published TMEM67 mutated cases was performed to delineate genotype-phenotype correlates. In particular, comparison of the types of mutations and their distribution along the gene in lethal versus non lethal phenotypes showed in MKS patients a significant enrichment of missense mutations falling in TMEM67 exons 8 to 15, especially when in combination with a truncating mutation. These exons encode for a region of unknown function in the extracellular domain of meckelin.
doi:10.1002/humu.21239
PMCID: PMC2918781  PMID: 20232449
TMEM67; MKS3; Joubert syndrome; Meckel syndrome; congenital hepatic fibrosis; COACH syndrome
3.  A Transition Zone Complex Regulates Mammalian Ciliogenesis and Ciliary Membrane Composition 
Nature genetics  2011;43(8):776-784.
Mutations in genes encoding ciliary components cause ciliopathies, but how many of these mutations disrupt ciliary function is unclear. We investigated Tectonic1 (Tctn1), a regulator of mouse Hedgehog signaling, and found that it is essential for ciliogenesis in some, but not all, tissues. Cell types that do not require Tctn1 for ciliogenesis require it to localize select membrane-associated proteins to the cilium, including Arl13b, AC3, Smoothened and Pkd2. Tctn1 forms a complex with multiple ciliopathy proteins associated with Meckel (MKS) and Joubert (JBTS) syndromes, including Mks1, Tmem216, Tmem67, Cep290, B9d1, Tctn2, and Cc2d2a. Components of the Tectonic ciliopathy complex colocalize at the transition zone, a region between the basal body and ciliary axoneme. Like Tctn1, loss of complex components Tctn2, Tmem67 or Cc2d2a causes tissue-specific defects in ciliogenesis and ciliary membrane composition. Consistent with a shared function for complex components, we identified a mutation in TCTN1 that causes JBTS. Thus, a transition zone complex of MKS and JBTS proteins regulates ciliary assembly and trafficking, suggesting that transition zone dysfunction is the cause of these ciliopathies.
doi:10.1038/ng.891
PMCID: PMC3145011  PMID: 21725307
4.  Mutation Analysis of 18 Nephronophthisis-associated Ciliopathy Disease Genes using a DNA Pooling and Next-Generation Sequencing Strategy 
Journal of medical genetics  2010;48(2):105-116.
Background
Nephronophthisis-associated ciliopathies (NPHP-AC) comprise a group of autosomal recessive cystic kidney diseases that includes nephronophthisis (NPHP), Senior-Loken syndrome (SLS), Joubert syndrome (JBTS), and Meckel-Gruber syndrome (MKS). To date, causative mutations in NPHP-AC have been described for 18 different genes, rendering mutation analysis tedious and expensive. To overcome the broad genetic locus heterogeneity we devised a strategy of DNA pooling with consecutive massively parallel resequencing (MPR).
Methods
In 120 patients with severe NPHP-AC phenotypes we prepared 5 pools of genomic DNA with 24 patients each which were used as templates in order to PCR-amplify all 376 exons of 18 NPHP-AC genes (NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, RPGRIP1L, NEK8, TMEM67, INPP5E, TMEM216, AHI1, ARL13B, CC2D2A, TTC21B, MKS1, and XPNPEP3). PCR products were then subjected to MPR on a Illumina Genome-Analyzer and mutations were subsequently assigned to their respective mutation carrier via CEL I endonuclease-based heteroduplex screening and confirmed by Sanger sequencing.
Results
For proof of principle we used DNA from patients with known mutations and demonstrated the detection of 22 out of 24 different alleles (92% sensitivity). MPR led to the molecular diagnosis in 30/120 patients (25%) and we identified 54 pathogenic mutations (27 novel) in 7 different NPHP-AC genes. Additionally, in 24 patients we only found single heterozygous variants of unknown significance.
Conclusions
The combined approach of DNA pooling followed by MPR strongly facilitates mutation analysis in broadly heterogeneous single-gene disorders. The lack of mutations in 75% of patients in our cohort indicates further extensive heterogeneity in NPHP-AC.
doi:10.1136/jmg.2010.082552
PMCID: PMC3913043  PMID: 21068128
Next-generation sequencing; Ciliopathy; Nephronophthisis
5.  The Meckel syndrome protein meckelin (TMEM67) is a key regulator of cilia function but is not required for tissue planar polarity 
Human Molecular Genetics  2013;22(10):2024-2040.
Meckel syndrome (MKS) is a lethal disorder associated with renal cystic disease, encephalocele, ductal plate malformation and polydactyly. MKS is genetically heterogeneous and part of a growing list of syndromes called ciliopathies, disorders resulting from defective cilia. TMEM67 mutation (MKS3) is a major cause of MKS and the related ciliopathy Joubert syndrome, although the complete etiology of the disease is not well understood. To further investigate MKS3, we analyzed phenotypes in the Tmem67 null mouse (bpck) and in zebrafish tmem67 morphants. Phenotypes similar to those in human MKS and other ciliopathy models were observed, with additional eye, skeletal and inner ear abnormalities characterized in the bpck mouse. The observed disorganized stereociliary bundles in the bpck inner ear and the convergent extension defects in zebrafish morphants are similar to those found in planar cell polarity (PCP) mutants, a pathway suggested to be defective in ciliopathies. However, analysis of classical vertebrate PCP readouts in the bpck mouse and ciliary organization analysis in tmem67 morphants did not support a global loss of planar polarity. Canonical Wnt signaling was upregulated in cyst linings and isolated fibroblasts from the bpck mouse, but was unchanged in the retina and cochlea tissue, suggesting that increased Wnt signaling may only be linked to MKS3 phenotypes associated with elevated proliferation. Together, these data suggest that defective cilia loading, but not a global loss of ciliogenesis, basal body docking or PCP signaling leads to dysfunctional cilia in MKS3 tissues.
doi:10.1093/hmg/ddt054
PMCID: PMC3695649  PMID: 23393159
6.  Phenotypic spectrum and prevalence of INPP5E mutations in Joubert Syndrome and related disorders 
European Journal of Human Genetics  2013;21(10):1074-1078.
Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain–hindbrain malformation known as the ‘molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus.
doi:10.1038/ejhg.2012.305
PMCID: PMC3778343  PMID: 23386033
INPP5E; Joubert syndrome and related disorders; Meckel syndrome; ciliopathies
7.  MKS3/TMEM67 Mutations Are a Major Cause of COACH Syndrome, a Joubert Syndrome Related Disorder with Liver Involvement 
Human mutation  2009;30(2):E432-E442.
The acronym COACH defines an autosomal recessive condition of Cerebellar vermis hypo/aplasia, Oligophrenia, congenital Ataxia, Coloboma and Hepatic fibrosis. Patients present the “molar tooth sign”, a midbrain-hindbrain malformation pathognomonic for Joubert Syndrome (JS) and Related Disorders (JSRDs). The main feature of COACH is congenital hepatic fibrosis (CHF), resulting from malformation of the embryonic ductal plate. CHF is invariably found also in Meckel syndrome (MS), a lethal ciliopathy already found to be allelic with JSRDs at the CEP290 and RPGRIP1L genes. Recently, mutations in the MKS3 gene (approved symbol TMEM67), causative of about 7% MS cases, have been detected in few Meckel-like and pure JS patients. Analysis of MKS3 in 14 COACH families identified mutations in 8 (57%). Features such as colobomas and nephronophthisis were found only in a subset of mutated cases. These data confirm COACH as a distinct JSRD subgroup with core features of JS plus CHF, which major gene is MKS3, and further strengthen gene-phenotype correlates in JSRDs.
doi:10.1002/humu.20924
PMCID: PMC2635428  PMID: 19058225
COACH syndrome; MKS3; TMEM67; Joubert syndrome and related disorders; congenital hepatic fibrosis
8.  Clinical and molecular features of Joubert syndrome and related disorders 
Joubert syndrome (JBTS; OMIM 213300) is a rare, autosomal recessive disorder characterized by a specific congenital malformation of the hindbrain and a broad spectrum of other phenotypic findings that is now known to be caused by defects in the structure and/or function of the primary cilium. The complex hindbrain malformation that is characteristic of JBTS can be identified on axial magnetic resonance imaging and is known as the molar tooth sign (MTS); other diagnostic criteria include intellectual disability, hypotonia, and often, abnormal respiratory pattern and/or abnormal eye movements. In addition, a broad spectrum of other anomalies characterize Joubert syndrome and related disorders (JSRD), and may include retinal dystrophy, ocular coloboma, oral frenulae and tongue tumors, polydactyly, cystic renal disease (including cystic dysplasia or juvenile nephronophthisis), and congenital hepatic fibrosis. The clinical course can be variable, but most children with this condition survive infancy to reach adulthood. At least 8 genes cause JSRD, with some genotype-phenotype correlations emerging, including the association between mutations in the MKS3 gene and hepatic fibrosis characteristic of the JSRD subtype known as COACH syndrome. Several of the causative genes for JSRD are implicated in other ciliary disorders, such as juvenile nephronophthisis and Meckel syndrome, illustrating the close association between these conditions and their overlapping clinical features that reflect a shared etiology involving the primary cilium.
doi:10.1002/ajmg.c.30229
PMCID: PMC2797758  PMID: 19876931
Joubert syndrome; COACH syndrome; molar tooth sign; ciliary disorder; ciliopathy; cerebellar vermis hypoplasia
9.  B9D1 is revealed as a novel Meckel syndrome (MKS) gene by targeted exon-enriched next-generation sequencing and deletion analysis 
Human Molecular Genetics  2011;20(13):2524-2534.
Meckel syndrome (MKS) is an embryonic lethal, autosomal recessive disorder characterized by polycystic kidney disease, central nervous system defects, polydactyly and liver fibrosis. This disorder is thought to be associated with defects in primary cilia; therefore, it is classed as a ciliopathy. To date, six genes have been commonly associated with MKS (MKS1, TMEM67, TMEM216, CEP290, CC2D2A and RPGRIP1L). However, mutation screening of these genes revealed two mutated alleles in only just over half of our MKS cohort (46 families), suggesting an even greater level of genetic heterogeneity. To explore the full genetic complexity of MKS, we performed exon-enriched next-generation sequencing of 31 ciliopathy genes in 12 MKS pedigrees using RainDance microdroplet-PCR enrichment and IlluminaGAIIx next-generation sequencing. In family M456, we detected a splice-donor site change in a novel MKS gene, B9D1. The B9D1 protein is structurally similar to MKS1 and has been shown to be of importance for ciliogenesis in Caenorhabditis elegans. Reverse transcriptase–PCR analysis of fetal RNA revealed, hemizygously, a single smaller mRNA product with a frameshifting exclusion of B9D1 exon 4. ArrayCGH showed that the second mutation was a 1.713 Mb de novo deletion completely deleting the B9D1 allele. Immunofluorescence analysis highlighted a significantly lower level of ciliated patient cells compared to controls, confirming a role for B9D1 in ciliogenesis. The fetus inherited an additional likely pathogenic novel missense change to a second MKS gene, CEP290; p.R2210C, suggesting oligogenic inheritance in this disorder.
doi:10.1093/hmg/ddr151
PMCID: PMC3109998  PMID: 21493627
10.  Joubert Syndrome and related disorders 
Joubert syndrome (JS) and related disorders (JSRD) are a group of developmental delay/multiple congenital anomalies syndromes in which the obligatory hallmark is the molar tooth sign (MTS), a complex midbrain-hindbrain malformation visible on brain imaging, first recognized in JS. Estimates of the incidence of JSRD range between 1/80,000 and 1/100,000 live births, although these figures may represent an underestimate. The neurological features of JSRD include hypotonia, ataxia, developmental delay, intellectual disability, abnormal eye movements, and neonatal breathing dysregulation. These may be associated with multiorgan involvement, mainly retinal dystrophy, nephronophthisis, hepatic fibrosis and polydactyly, with both inter- and intra-familial variability. JSRD are classified in six phenotypic subgroups: Pure JS; JS with ocular defect; JS with renal defect; JS with oculorenal defects; JS with hepatic defect; JS with orofaciodigital defects. With the exception of rare X-linked recessive cases, JSRD follow autosomal recessive inheritance and are genetically heterogeneous. Ten causative genes have been identified to date, all encoding for proteins of the primary cilium or the centrosome, making JSRD part of an expanding group of diseases called "ciliopathies". Mutational analysis of causative genes is available in few laboratories worldwide on a diagnostic or research basis. Differential diagnosis must consider in particular the other ciliopathies (such as nephronophthisis and Senior-Loken syndrome), distinct cerebellar and brainstem congenital defects and disorders with cerebro-oculo-renal manifestations. Recurrence risk is 25% in most families, although X-linked inheritance should also be considered. The identification of the molecular defect in couples at risk allows early prenatal genetic testing, whereas fetal brain neuroimaging may remain uninformative until the end of the second trimester of pregnancy. Detection of the MTS should be followed by a diagnostic protocol to assess multiorgan involvement. Optimal management requires a multidisciplinary approach, with particular attention to respiratory and feeding problems in neonates and infants. Cognitive and behavioral assessments are also recommended to provide young patients with adequate neuropsychological support and rehabilitation. After the first months of life, global prognosis varies considerably among JSRD subgroups, depending on the extent and severity of organ involvement.
doi:10.1186/1750-1172-5-20
PMCID: PMC2913941  PMID: 20615230
11.  Mapping the Nephronophthisis-Joubert-Meckel-Gruber Protein Network Reveals Ciliopathy Disease Genes and Pathways 
Cell  2011;145(4):513-528.
Nephronophthisis (NPHP), Joubert (JBTS) and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins, and discovered three connected modules: “NPHP1-4-8” functioning at the apical surface; “NPHP5-6” at centrosomes; and “MKS” linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.
doi:10.1016/j.cell.2011.04.019
PMCID: PMC3383065  PMID: 21565611
12.  A meckelin–filamin A interaction mediates ciliogenesis 
Human Molecular Genetics  2011;21(6):1272-1286.
MKS3, encoding the transmembrane receptor meckelin, is mutated in Meckel–Gruber syndrome (MKS), an autosomal-recessive ciliopathy. Meckelin localizes to the primary cilium, basal body and elsewhere within the cell. Here, we found that the cytoplasmic domain of meckelin directly interacts with the actin-binding protein filamin A, potentially at the apical cell surface associated with the basal body. Mutations in FLNA, the gene for filamin A, cause periventricular heterotopias. We identified a single consanguineous patient with an MKS-like ciliopathy that presented with both MKS and cerebellar heterotopia, caused by an unusual in-frame deletion mutation in the meckelin C-terminus at the region of interaction with filamin A. We modelled this mutation and found it to abrogate the meckelin–filamin A interaction. Furthermore, we found that loss of filamin A by siRNA knockdown, in patient cells, and in tissues from FlnaDilp2 null mouse embryos results in cellular phenotypes identical to those caused by meckelin loss, namely basal body positioning and ciliogenesis defects. In addition, morpholino knockdown of flna in zebrafish embryos significantly increases the frequency of dysmorphology and severity of ciliopathy developmental defects caused by mks3 knockdown. Our results suggest that meckelin forms a functional complex with filamin A that is disrupted in MKS and causes defects in neuronal migration and Wnt signalling. Furthermore, filamin A has a crucial role in the normal processes of ciliogenesis and basal body positioning. Concurrent with these processes, the meckelin–filamin A signalling axis may be a key regulator in maintaining correct, normal levels of Wnt signalling.
doi:10.1093/hmg/ddr557
PMCID: PMC3284117  PMID: 22121117
13.  Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment 
Cell Cycle  2012;11(20):3861-3875.
In addition to their role in motility, eukaryotic cilia serve as a distinct compartment for signal transduction and regulatory sequestration of biomolecules. Recent genetic and biochemical studies have revealed an extraordinary diversity of protein complexes involved in the biogenesis of cilia during each cell cycle. Mutations in components of these complexes are at the heart of human ciliopathies such as Nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS), Bardet-Biedl syndrome (BBS) and Joubert syndrome (JBTS). Despite intense studies, proteins in some of these complexes, such as the NPHP1-4-8 and the MKS, remain poorly understood. Using a combination of computational analyses we studied these complexes to identify novel domains in them which might throw new light on their functions and evolutionary origins. First, we identified both catalytically active and inactive versions of transglutaminase-like (TGL) peptidase domains in key ciliary/centrosomal proteins CC2D2A/MKS6, CC2D2B, CEP76 and CCDC135. These ciliary TGL domains appear to have originated from prokaryotic TGL domains that act as peptidases, either in a prokaryotic protein degradation system with the MoxR AAA+ ATPase, the precursor of eukaryotic dyneins and midasins, or in a peptide-ligase system with an ATP-grasp enzyme comparable to tubulin-modifying TTL proteins. We suggest that active ciliary TGL proteins are part of a cilia-specific peptidase system that might remove tubulin modifications or cleave cilia- localized proteins, while the inactive versions are likely to bind peptides and mediate key interactions during ciliogenesis. Second, we observe a vast radiation of C2 domains, which are key membrane-localization modules, in multiple ciliary proteins, including those from the NPHP1-4-8 and the MKS complexes, such as CC2D2A/MKS6, RPGRIP1, RPGRIP1L, NPHP1, NPHP4, C2CD3, AHI1/Jouberin and CEP76, most of which can be traced back to the last eukaryotic ancestor. Identification of these TGL and C2 domains aid in the proper reconstruction of the Y-shaped linkers, which are key structures in the transitional zone of cilia, by allowing precise prediction of the multiple membrane-contacting and protein-protein interaction sites in these structures. These findings help decipher key events in the evolutionary separation of the ciliary and nuclear compartments in course of the emergence of the eukaryotic cell.
doi:10.4161/cc.22068
PMCID: PMC3495828  PMID: 22983010
ciliogenesis; transglutaminase-like; membrane; tubulin-tyrosine ligase; C2; transition zone; Y-shaped linkers; evolution; origin of eukaryotes; ciliopathy
14.  MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis 
The Journal of Cell Biology  2011;192(6):1023-1041.
Eight proteins, defects in which are associated with Meckel-Gruber syndrome and nephronophthisis ciliopathies, work together as two functional modules at the transition zone to establish basal body/transition zone connections with the membrane and barricade entry of non-ciliary components into this organelle.
Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and related ciliopathies present with overlapping phenotypes and display considerable allelism between at least twelve different genes of largely unexplained function. We demonstrate that the conserved C. elegans B9 domain (MKS-1, MKSR-1, and MKSR-2), MKS-3/TMEM67, MKS-5/RPGRIP1L, MKS-6/CC2D2A, NPHP-1, and NPHP-4 proteins exhibit essential, collective functions at the transition zone (TZ), an underappreciated region at the base of all cilia characterized by Y-shaped assemblages that link axoneme microtubules to surrounding membrane. These TZ proteins functionally interact as members of two distinct modules, which together contribute to an early ciliogenic event. Specifically, MKS/MKSR/NPHP proteins establish basal body/TZ membrane attachments before or coinciding with intraflagellar transport–dependent axoneme extension and subsequently restrict accumulation of nonciliary components within the ciliary compartment. Together, our findings uncover a unified role for eight TZ-localized proteins in basal body anchoring and establishing a ciliary gate during ciliogenesis, and suggest that disrupting ciliary gate function contributes to phenotypic features of the MKS/NPHP disease spectrum.
doi:10.1083/jcb.201012116
PMCID: PMC3063147  PMID: 21422230
15.  Founder mutations and genotype-phenotype correlations in Meckel-Gruber syndrome and associated ciliopathies 
Cilia  2012;1:18.
Background
Meckel-Gruber syndrome (MKS) is an autosomal recessive lethal condition that is a ciliopathy. MKS has marked phenotypic variability and genetic heterogeneity, with mutations in nine genes identified as causative to date.
Methods
Families diagnosed with Meckel-Gruber syndrome were recruited for research studies following informed consent. DNA samples were analyzed by microsatellite genotyping and direct Sanger sequencing.
Results
We now report the genetic analyses of 87 individuals from 49 consanguineous and 19 non-consanguineous families in an unselected cohort with reported MKS, or an associated severe ciliopathy in a kindred. Linkage and/or direct sequencing were prioritized for seven MKS genes (MKS1, TMEM216, TMEM67/MKS3, RPGRIP1L, CC2D2A, CEP290 and TMEM237) selected on the basis of reported frequency of mutations or ease of analysis. We have identified biallelic mutations in 39 individuals, of which 13 mutations are novel and previously unreported. We also confirm general genotype-phenotype correlations.
Conclusions
TMEM67 was the most frequently mutated gene in this cohort, and we confirm two founder splice-site mutations (c.1546 + 1 G > A and c.870-2A > G) in families of Pakistani ethnic origin. In these families, we have also identified two separate founder mutations for RPGRIP1L (c. 1945 C > T p.R649X) and CC2D2A (c. 3540delA p.R1180SfsX6). Two missense mutations in TMEM67 (c. 755 T > C p.M252T, and c. 1392 C > T p.R441C) are also probable founder mutations. These findings will contribute to improved genetic diagnosis and carrier testing for affected families, and imply the existence of further genetic heterogeneity in this syndrome.
doi:10.1186/2046-2530-1-18
PMCID: PMC3579735  PMID: 23351400
Meckel-Gruber syndrome; Genotype-phenotype; Founder mutation
16.  A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies 
Nature genetics  2009;41(6):739-745.
Despite rapid advances in disease gene identification, the predictive power of the genotype remains limited, in part due to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in patients with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss of function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the 229T-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.
doi:10.1038/ng.366
PMCID: PMC2783476  PMID: 19430481
17.  Evolutionarily Assembled cis-Regulatory Module at a Human Ciliopathy Locus 
Science (New York, N.Y.)  2012;335(6071):966-969.
Neighboring genes are often coordinately expressed within cis-regulatory modules, but evidence that nonparalogous genes share functions in mammals is lacking. Here, we report that mutation of either TMEM138 or TMEM216 causes a phenotypically indistinguishable human ciliopathy, Joubert syndrome. Despite a lack of sequence homology, the genes are aligned in a head-to-tail configuration and joined by chromosomal rearrangement at the amphibian-to-reptile evolutionary transition. Expression of the two genes is mediated by a conserved regulatory element in the noncoding intergenic region. Coordinated expression is important for their interdependent cellular role in vesicular transport to primary cilia. Hence, during vertebrate evolution of genes involved in ciliogenesis, nonparalogous genes were arranged to a functional gene cluster with shared regulatory elements.
doi:10.1126/science.1213506
PMCID: PMC3671610  PMID: 22282472
18.  Mouse models of ciliopathies: the state of the art 
Disease Models & Mechanisms  2012;5(3):299-312.
The ciliopathies are an apparently disparate group of human diseases that all result from defects in the formation and/or function of cilia. They include disorders such as Meckel-Grüber syndrome (MKS), Joubert syndrome (JBTS), Bardet-Biedl syndrome (BBS) and Alström syndrome (ALS). Reflecting the manifold requirements for cilia in signalling, sensation and motility, different ciliopathies exhibit common elements. The mouse has been used widely as a model organism for the study of ciliopathies. Although many mutant alleles have proved lethal, continued investigations have led to the development of better models. Here, we review current mouse models of a core set of ciliopathies, their utility and future prospects.
doi:10.1242/dmm.009340
PMCID: PMC3339824  PMID: 22566558
19.  CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium 
Nature Genetics  2012;44(2):193-199.
Tubulin glutamylation is a post-translational modification (PTM) occurring predominantly on ciliary axonemal tubulin and has been suggested to be important for ciliary function 1,2. However, its relationship to disorders of the primary cilium, termed ‘ciliopathies’, has not been explored. Here, in Joubert syndrome (JBTS) 3, we identify the JBTS15 locus and the responsible gene as CEP41, encoding a centrosomal protein of 41 KDa 4. We show that CEP41 is localized to the basal body/primary cilium, and regulates the ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme 5. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mouse, and induces cilia axonemal glutamylation defects. Our data identify loss of CEP41 as a cause of JBTS ciliopathy and highlight involvement of tubulin PTM in pathogenesis of the ciliopathy spectrum.
doi:10.1038/ng.1078
PMCID: PMC3267856  PMID: 22246503
20.  C2cd3 is required for cilia formation and Hedgehog signaling in mouse 
Development (Cambridge, England)  2008;135(24):4049-4058.
Cilia are essential for mammalian embryonic development as well as for the physiological activity of various adult organ systems. Despite the multiple crucial roles that cilia play, the mechanisms underlying ciliogenesis in mammals remain poorly understood. Taking a forward genetic approach, we have identified Hearty (Hty), a recessive lethal mouse mutant with multiple defects, including neural tube defects, abnormal dorsal-ventral patterning of the spinal cord, a defect in left-right axis determination and severe polydactyly (extra digits). By genetic mapping, sequence analysis of candidate genes and characterization of a second mutant allele, we identify Hty as C2cd3, a novel gene encoding a vertebrate-specific C2 domain-containing protein. Target gene expression and double-mutant analyses suggest that C2cd3 is an essential regulator of intracellular transduction of the Hedgehog signal. Furthering a link between Hedgehog signaling and cilia function, we find that cilia formation and proteolytic processing of Gli3 are disrupted in C2cd3 mutants. Finally, we observe C2cd3 protein at the basal body, consistent with its essential function in ciliogenesis. Interestingly, the human ortholog for this gene lies in proximity to the critical regions of Meckel-Gruber syndrome 2 (MKS2) and Joubert syndrome 2 (JBTS2), making it a potential candidate for these two human genetic disorders.
doi:10.1242/dev.029835
PMCID: PMC3120044  PMID: 19004860
Mouse; Cilia; Hedgehog signaling; Gli3; C2 domain; C2cd3; Embryonic patterning; Basal body
21.  Mutations in TMEM231 cause Meckel–Gruber syndrome 
Journal of Medical Genetics  2013;50(3):160-162.
Background
Meckel–Gruber syndrome (MKS) is a genetically heterogeneous severe ciliopathy characterised by early lethality, occipital encephalocele, polydactyly, and polycystic kidney disease.
Purpose
To report genetic analysis results in two families in which all known MKS diseases genes have been excluded.
Methods
In two consanguineous families with classical MKS in which autozygome-guided sequencing of previously reported MKS genes was negative, we performed exome sequencing followed by autozygome filtration.
Results
We identified one novel splicing mutation in TMEM231, which led to complete degradation of the mutant transcript in one family, and a novel missense mutation in the other, both in the homozygous state.
Conclusions
TMEM231 represents a novel MKS locus. The very recent identification of TMEM231 mutations in Joubert syndrome supports the growing appreciation of the overlap in the molecular pathogenesis between these two ciliopathies.
doi:10.1136/jmedgenet-2012-101431
PMCID: PMC3585488  PMID: 23349226
TMEM231; Joubert; Ciliopathy; Autozygome; Exome
22.  Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics  
The Journal of Clinical Investigation  2011;121(7):2662-2667.
Joubert syndrome (JBTS) is characterized by a specific brain malformation with various additional pathologies. It results from mutations in any one of at least 10 different genes, including NPHP1, which encodes nephrocystin-1. JBTS has been linked to dysfunction of primary cilia, since the gene products known to be associated with the disorder localize to this evolutionarily ancient organelle. Here we report the identification of a disease locus, JBTS12, with mutations in the KIF7 gene, an ortholog of the Drosophila kinesin Costal2, in a consanguineous JBTS family and subsequently in other JBTS patients. Interestingly, KIF7 is a known regulator of Hedgehog signaling and a putative ciliary motor protein. We found that KIF7 co-precipitated with nephrocystin-1. Further, knockdown of KIF7 expression in cell lines caused defects in cilia formation and induced abnormal centrosomal duplication and fragmentation of the Golgi network. These cellular phenotypes likely resulted from abnormal tubulin acetylation and microtubular dynamics. Thus, we suggest that modified microtubule stability and growth direction caused by loss of KIF7 function may be an underlying disease mechanism contributing to JBTS.
doi:10.1172/JCI43639
PMCID: PMC3223820  PMID: 21633164
23.  Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis) 
Journal of medical genetics  2009;47(1):8-21.
Objective
To identify genetic causes of COACH syndrome
Background
COACH syndrome is a rare autosomal recessive disorder characterised by Cerebellar vermis hypoplasia, Oligophrenia (developmental delay/mental retardation), Ataxia, Coloboma, and Hepatic fibrosis. The vermis hypoplasia falls in a spectrum of mid-hindbrain malformation called the molar tooth sign (MTS), making COACH a Joubert syndrome related disorder (JSRD).
Methods
In a cohort of 251 families with JSRD, 26 subjects in 23 families met criteria for COACH syndrome, defined as JSRD plus clinically apparent liver disease. Diagnostic criteria for JSRD were clinical findings (intellectual impairment, hypotonia, ataxia) plus supportive brain imaging findings (MTS or cerebellar vermis hypoplasia). MKS3/TMEM67 was sequenced in all subjects for whom DNA was available. In COACH subjects without MKS3 mutations, CC2D2A, RPGRIP1L and CEP290 were also sequenced.
Results
19/23 families (83%) with COACH syndrome carried MKS3 mutations, compared to 2/209 (1%) with JSRD but no liver disease. Two other families with COACH carried CC2D2A mutations, one family carried RPGRIP1L mutations, and one lacked mutations in MKS3, CC2D2A, RPGRIP1L and CEP290. Liver biopsies from three subjects, each with mutations in one of the three genes, revealed changes within the congenital hepatic fibrosis/ductal plate malformation spectrum. In JSRD with and without liver disease, MKS3 mutations account for 21/232 families (9%).
Conclusions
Mutations in MKS3 are responsible for the majority of COACH syndrome, with minor contributions from CC2D2A and RPGRIP1L; therefore, MKS3 should be the first gene tested in patients with JSRD plus liver disease and/or coloboma, followed by CC2D2A and RPGRIP1L.
doi:10.1136/jmg.2009.067249
PMCID: PMC3501959  PMID: 19574260
24.  CC2D2A mutations in Meckel and Joubert syndromes indicate a genotype-phenotype correlation 
Human mutation  2009;30(11):1574-1582.
The Meckel syndrome (MKS) is a lethal fetal disorder characterized by diffuse renal cystic dysplasia, polydactyly, a brain malformation that is usually occipital encephalocele and/or vermian agenesis, with intrahepatic biliary duct proliferation. Joubert syndrome (JBS) is a viable neurological disorder with a characteristic “molar tooth sign” (MTS) on axial images reflecting cerebellar vermian hypoplasia/dysplasia. Both conditions are classified as ciliopathies with an autosomal recessive mode of inheritance. Allelism of MS and JBS has been reported for TMEM67/MKS3, CEP290/MKS4, and RPGRIP1L/MKS5. Recently, one homozygous splice mutation with a founder effect was reported in the CC2D2A gene in Finnish fetuses with MKS, defining the 6th locus for MKS. Shortly thereafter, CC2D2A mutations were reported in JBS also. The analysis of the CC2D2A gene in our series of MKS fetuses, identified 14 novel truncating mutations in 11 cases. These results confirm the involvement of CC2D2A in MKS and reveal a major contribution of CC2D2A to the disease. We also identified three missense CC2D2A mutations in two JBS cases. Therefore and in accordance with the data reported regarding RPGRIP1L, our results indicate phenotype-genotype correlations, as missense and presumably hypomorphic mutations lead to JBS while all null alleles lead to MKS.
doi:10.1002/humu.21116
PMCID: PMC2783384  PMID: 19777577
Meckel-Gruber syndrome; MKS; Joubert syndrome; JBS; CC2D2A; ciliopathy
25.  Mutations in the inositol polyphosphate-5-phosphatase E gene link phosphatidyl inositol signaling to the ciliopathies 
Nature genetics  2009;41(9):1032-1036.
Phosphotidylinositol (PtdIns) signaling is tightly regulated, both spatially and temporally, by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events 1. Joubert Syndrome (JS) characterized by a specific midbrain-hindbrain malformation (“molar tooth sign”) and variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly 2, and is included in the newly emerging group of “ciliopathies”. In patients linking to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected in JS, and mutations promoted premature destabilization of cilia in response to stimulation. Thus, these data links PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly appreciated for its role in mediating cell signals and neuronal function.
doi:10.1038/ng.423
PMCID: PMC2746682  PMID: 19668216

Results 1-25 (282561)