PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (964517)

Clipboard (0)
None

Related Articles

1.  Human Platelets Attenuate Aspergillus Species via Granule-Dependent Mechanisms 
The Journal of infectious diseases  2008;198(8):1243-1246.
Using laser scanning microscopy, we investigated whether platelets are capable of internalizing Aspergillus conidia and examined Aspergillus-platelet adherence. The influence of platelets on fungal growth was evaluated by assessing galactomannan (GM) release, hyphal elongation, and colony size. A secretion assay with [3H]-serotonin (5-hydroxytryptamine [5-HT]) was performed. Exposure to platelets resulted in significantly decreased GM release (P<.05), hyphal elongation (P<.001), colony size, pig-mentation, and 5-HT release (P<.05). A lack of antifungal effects was observed with the microfilament inhibitor cytochalasin D. Platelets attenuate the virulence of Aspergillus species in vitro on the basis of granule-dependent effects.
doi:10.1086/591458
PMCID: PMC2980866  PMID: 18752432
2.  Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole 
The authors screen for compounds that show synergistic antifungal activity when combined with the widely-used fungistatic drug fluconazole. Chemogenomic profiling explains the mode of action of synergistic drugs and allows the prediction of additional drug synergies.
The authors screen for compounds that show synergistic antifungal activity when combined with the widely-used fungistatic drug fluconazole. Chemogenomic profiling explains the mode of action of synergistic drugs and allows the prediction of additional drug synergies.
Chemical screens with a library enriched for known drugs identified a diverse set of 148 compounds that potentiated the action of the antifungal drug fluconazole against the fungal pathogens Cryptococcus neoformans, Cryptococcus gattii and Candida albicans, and the model yeast Saccharomyces cerevisiae, often in a species-specific manner.Chemogenomic profiles of six confirmed hits in S. cerevisiae revealed different modes of action and enabled the prediction of additional synergistic combinations; three-way synergistic interactions exhibited even stronger synergies at low doses of fluconazole.The synergistic combination of fluconazole and the antidepressant sertraline was active against fluconazole-resistant clinical fungal isolates and in an in vivo model of Cryptococcal infection.
Rising fungal infection rates, especially among immune-suppressed individuals, represent a serious clinical challenge (Gullo, 2009). Cancer, organ transplant and HIV patients, for example, often succumb to opportunistic fungal pathogens. The limited repertoire of approved antifungal agents and emerging drug resistance in the clinic further complicate the effective treatment of systemic fungal infections. At the molecular level, the paucity of fungal-specific essential targets arises from the conserved nature of cellular functions from yeast to humans, as well as from the fact that many essential yeast genes can confer viability at a fraction of wild-type dosage (Yan et al, 2009). Although only ∼1100 of the ∼6000 genes in yeast are essential, almost all genes become essential in specific genetic backgrounds in which another non-essential gene has been deleted or otherwise attenuated, an effect termed synthetic lethality (Tong et al, 2001). Genome-scale surveys suggest that over 200 000 binary synthetic lethal gene combinations dominate the yeast genetic landscape (Costanzo et al, 2010). The genetic buffering phenomenon is also manifest as a plethora of differential chemical–genetic interactions in the presence of sublethal doses of bioactive compounds (Hillenmeyer et al, 2008). These observations frame the difficulty of interdicting network functions in eukaryotic pathogens with single agent therapeutics. At the same time, however, this genetic network organization suggests that judicious combinations of small molecule inhibitors of both essential and non-essential targets may elicit additive or synergistic effects on cell growth (Sharom et al, 2004; Lehar et al, 2008). Unbiased screens for drugs that synergistically enhance a specific bioactive effect, but which are not themselves individually active—termed a syncretic combination—are one means to substantially elaborate chemical space (Keith et al, 2005). Indeed, compounds that enhance the activity of known agents in model yeast and cancer cell line systems have been identified both by focused small molecule library screens and by computational methods (Borisy et al, 2003; Lehar et al, 2007; Nelander et al, 2008; Jansen et al, 2009; Zinner et al, 2009).
To extend the stratagem of chemical synthetic lethality to clinically relevant fungal pathogens, we screened a bioactive library of known drugs for synergistic enhancers of the widely used fungistatic drug fluconazole against the clinically relevant pathogens C. albicans, C. neoformans and C. gattii, as well as the genetically tractable budding yeast S. cerevisiae. Fluconazole is an azole drug that inhibits lanosterol 14α-demethylase, the gene product of ERG11, an essential cytochrome P450 enzyme in the ergosterol biosynthetic pathway (Groll et al, 1998). We identified 148 drugs that potentiate the antifungal action of fluconazole against the four species. These syncretic compounds had not been previously recognized in the clinic as antifungal agents, and many acted in a species-specific manner, often in a potent fungicidal manner.
To understand the mechanisms of synergism, we interrogated six syncretic drugs—trifluoperazine, tamoxifen, clomiphene, sertraline, suloctidil and L-cycloserine—in genome-wide chemogenomic profiles of the S. cerevisiae deletion strain collection (Giaever et al, 1999). These profiles revealed that membrane, vesicle trafficking and lipid biosynthesis pathways are targeted by five of the synergizers, whereas the sphingolipid biosynthesis pathway is targeted by L-cycloserine. Cell biological assays confirmed the predicted membrane disruption effects of the former group of compounds, which may perturb ergosterol metabolism, impair fluconazole export by drug efflux pumps and/or affect active import of fluconazole (Kuo et al, 2010; Mansfield et al, 2010). Based on the integration of chemical–genetic and genetic interaction space, a signature set of deletion strains that are sensitive to the membrane active synergizers correctly predicted additional drug synergies with fluconazole. Similarly, the L-cycloserine chemogenomic profile correctly predicted a synergistic interaction between fluconazole and myriocin, another inhibitor of sphingolipid biosynthesis. The structure of genetic networks suggests that it should be possible to devise higher order drug combinations with even greater selectivity and potency (Sharom et al, 2004). In an initial test of this concept, we found that the combination of a non-synergistic pair drawn from the membrane active and sphingolipid target classes exhibited potent three-way synergism with a low dose of fluconazole. Finally, the combination of sertraline and fluconazole was active in a G. mellonella model of Cryptococcal infection, and was also efficacious against fluconazole-resistant clinical isolates of C. albicans and C. glabrata.
Collectively, these results demonstrate that the combinatorial redeployment of known drugs defines a powerful antifungal strategy and establish a number of potential lead combinations for future clinical assessment.
Resistance to widely used fungistatic drugs, particularly to the ergosterol biosynthesis inhibitor fluconazole, threatens millions of immunocompromised patients susceptible to invasive fungal infections. The dense network structure of synthetic lethal genetic interactions in yeast suggests that combinatorial network inhibition may afford increased drug efficacy and specificity. We carried out systematic screens with a bioactive library enriched for off-patent drugs to identify compounds that potentiate fluconazole action in pathogenic Candida and Cryptococcus strains and the model yeast Saccharomyces. Many compounds exhibited species- or genus-specific synergism, and often improved fluconazole from fungistatic to fungicidal activity. Mode of action studies revealed two classes of synergistic compound, which either perturbed membrane permeability or inhibited sphingolipid biosynthesis. Synergistic drug interactions were rationalized by global genetic interaction networks and, notably, higher order drug combinations further potentiated the activity of fluconazole. Synergistic combinations were active against fluconazole-resistant clinical isolates and an in vivo model of Cryptococcus infection. The systematic repurposing of approved drugs against a spectrum of pathogens thus identifies network vulnerabilities that may be exploited to increase the activity and repertoire of antifungal agents.
doi:10.1038/msb.2011.31
PMCID: PMC3159983  PMID: 21694716
antifungal; combination; pathogen; resistance; synergism
3.  Effects of Fluconazole on the Secretome, the Wall Proteome, and Wall Integrity of the Clinical Fungus Candida albicans ▿ † 
Eukaryotic Cell  2011;10(8):1071-1081.
Fluconazole is a commonly used antifungal drug that inhibits Erg11, a protein responsible for 14α-demethylation during ergosterol synthesis. Consequently, ergosterol is depleted from cellular membranes and replaced by toxic 14α-methylated sterols, which causes increased membrane fluidity and drug permeability. Surface-grown and planktonic cultures of Candida albicans responded similarly to fluconazole at 0.5 mg/liter, showing reduced biomass formation, severely reduced ergosterol levels, and almost complete inhibition of hyphal growth. There was no evidence of cell leakage. Mass spectrometric analysis of the secretome showed that its composition was strongly affected and included 17 fluconazole-specific secretory proteins. Relative quantification of 14N-labeled query walls relative to a reference standard mixture of 15N-labeled yeast and hyphal walls in combination with immunological analysis revealed considerable fluconazole-induced changes in the wall proteome as well. They were, however, similar for both surface-grown and planktonic cultures. Two major trends emerged: (i) decreased incorporation of hypha-associated wall proteins (Als3, Hwp1, and Plb5), consistent with inhibition of hyphal growth, and (ii) increased incorporation of putative wall repair-related proteins (Crh11, Pga4, Phr1, Phr2, Pir1, and Sap9). As exposure to the wall-perturbing drug Congo red led to a similar response, these observations suggested that fluconazole affects the wall. In keeping with this, the resistance of fluconazole-treated cells to wall-perturbing compounds decreased. We propose that fluconazole affects the integrity of both the cellular membranes and the fungal wall and discuss its potential consequences for antifungal therapy. We also present candidate proteins from the secretome for clinical marker development.
doi:10.1128/EC.05011-11
PMCID: PMC3165447  PMID: 21622905
4.  A Role for the Unfolded Protein Response (UPR) in Virulence and Antifungal Susceptibility in Aspergillus fumigatus 
PLoS Pathogens  2009;5(1):e1000258.
Filamentous fungi rely heavily on the secretory pathway, both for the delivery of cell wall components to the hyphal tip and the production and secretion of extracellular hydrolytic enzymes needed to support growth on polymeric substrates. Increased demand on the secretory system exerts stress on the endoplasmic reticulum (ER), which is countered by the activation of a coordinated stress response pathway termed the unfolded protein response (UPR). To determine the contribution of the UPR to the growth and virulence of the filamentous fungal pathogen Aspergillus fumigatus, we disrupted the hacA gene, encoding the major transcriptional regulator of the UPR. The ΔhacA mutant was unable to activate the UPR in response to ER stress and was hypersensitive to agents that disrupt ER homeostasis or the cell wall. Failure to induce the UPR did not affect radial growth on rich medium at 37°C, but cell wall integrity was disrupted at 45°C, resulting in a dramatic loss in viability. The ΔhacA mutant displayed a reduced capacity for protease secretion and was growth-impaired when challenged to assimilate nutrients from complex substrates. In addition, the ΔhacA mutant exhibited increased susceptibility to current antifungal agents that disrupt the membrane or cell wall and had attenuated virulence in multiple mouse models of invasive aspergillosis. These results demonstrate the importance of ER homeostasis to the growth and virulence of A. fumigatus and suggest that targeting the UPR, either alone or in combination with other antifungal drugs, would be an effective antifungal strategy.
Author Summary
The pathogenic mold Aspergillus fumigatus is the leading cause of airborne fungal infections in immunocompromised patients. The fungus normally resides in compost, an environment that challenges the organism to obtain nutrients by degrading complex organic polymers. This is accomplished by secreted enzymes, some of which may also contribute to nutrient acquisition during infection. Extracellular enzymes are folded in the endoplasmic reticulum (ER) prior to secretion. If the folding capacity of the ER is overwhelmed by increased secretory demand, the resulting ER stress triggers an adaptive response termed the unfolded protein response (UPR). In this study, we uncover a previously unknown function for the master transcriptional regulator of the UPR, HacA, in fungal virulence. In the absence of HacA, A. fumigatus was unable to secrete high levels of proteins and had reduced virulence in mice. In addition, loss of HacA caused a cell wall defect and increased susceptibility to two major classes of antifungal drugs used for the treatment of aspergillosis. These findings demonstrate that A. fumigatus relies on HacA for growth in the host environment and suggest that therapeutic targeting of the UPR could have merit against A. fumigatus, as well as other eukaryotic pathogens with highly developed secretory systems.
doi:10.1371/journal.ppat.1000258
PMCID: PMC2606855  PMID: 19132084
5.  Requirement for Ergosterol in V-ATPase Function Underlies Antifungal Activity of Azole Drugs 
PLoS Pathogens  2010;6(6):e1000939.
Ergosterol is an important constituent of fungal membranes. Azoles inhibit ergosterol biosynthesis, although the cellular basis for their antifungal activity is not understood. We used multiple approaches to demonstrate a critical requirement for ergosterol in vacuolar H+-ATPase function, which is known to be essential for fungal virulence. Ergosterol biosynthesis mutants of S. cerevisiae failed to acidify the vacuole and exhibited multiple vma− phenotypes. Extraction of ergosterol from vacuolar membranes also inactivated V-ATPase without disrupting membrane association of its subdomains. In both S. cerevisiae and the fungal pathogen C. albicans, fluconazole impaired vacuolar acidification, whereas concomitant ergosterol feeding restored V-ATPase function and cell growth. Furthermore, fluconazole exacerbated cytosolic Ca2+ and H+ surges triggered by the antimicrobial agent amiodarone, and impaired Ca2+ sequestration in purified vacuolar vesicles. These findings provide a mechanistic basis for the synergy between azoles and amiodarone observed in vitro. Moreover, we show the clinical potential of this synergy in treatment of systemic fungal infections using a murine model of Candidiasis. In summary, we demonstrate a new regulatory component in fungal V-ATPase function, a novel role for ergosterol in vacuolar ion homeostasis, a plausible cellular mechanism for azole toxicity in fungi, and preliminary in vivo evidence for synergism between two antifungal agents. New insights into the cellular basis of azole toxicity in fungi may broaden therapeutic regimens for patient populations afflicted with systemic fungal infections.
Author Summary
Systemic fungal infections impose a significant threat to public health and therapeutic options to treat these diseases remain limited. Azoles represent the largest category of anti-fungal drugs and repress fungal growth by inhibiting biosynthesis of ergosterol, an important constituent of fungal membranes. Despite the wide use of azoles in the clinic for decades, the cellular basis for their antifungal mechanism remains elusive. In this study, we use a range of genetic, cellular and biochemical approaches to reveal a requirement for ergosterol in vacuolar H+-ATPase function. V-ATPase plays essential roles in diverse cellular processes, and is required for fungal virulence. Concomitant ergosterol feeding restores vacuolar acidification and growth in cells treated with fluconazole. These results suggest that the critical requirement for ergosterol in V-ATPase function may underlie the antifungal activity of azoles. Moreover, we show in a mouse Candidiasis model that combining an ion homeostasis-disruptive drug with azole is an effective approach to treat fungal infections.
doi:10.1371/journal.ppat.1000939
PMCID: PMC2880581  PMID: 20532216
6.  Monoclonal Antibodies to Hyphal Exoantigens Derived from the Opportunistic Pathogen Aspergillus terreus ▿ 
Aspergillus terreus has been difficult to identify in cases of aspergillosis, and clinical identification has been restricted to the broad identification of aspergillosis lesions in affected organs or the detection of fungal carbohydrates. As a result, there is a clinical need to identify species-specific biomarkers that can be used to detect invasive A. terreus disease. Monoclonal antibodies (MAbs) were developed to a partially purified preparation of cytolytic hyphal exoantigens (HEA) derived from A. terreus culture supernatant (CSN). Twenty-three IgG1 isotype murine MAbs were developed and tested for cross-reactivity against hyphal extracts of 54 fungal species. Sixteen MAbs were shown to be specific for A. terreus. HEA were detected in conidia, hyphae, and in CSN of A. terreus. HEA were expressed in high levels in the hyphae during early stages of A. terreus growth at 37°C, whereas at room temperature the expression of HEA peaked by days 4 to 5. Expression kinetics of HEA in CSN showed a lag, with peak levels at later time points at room temperature and 37°C than in hyphal extracts. Serum spiking experiments demonstrated that human serum components do not inhibit detection of the HEA epitopes by MAb enzyme-linked immunosorbent assay (ELISA). Immunoprecipitation and proteomic analysis demonstrated that MAbs 13E11 and 12C4 immunoprecipitated a putative uncharacterized leucine aminopeptidase (Q0CAZ7), while MAb 19B2 recognized a putative dipeptidyl-peptidase V (DPP5). Studies using confocal laser scanning microscopy showed that the uncharacterized leucine aminopeptidase mostly localized to extracellular matrix structures while dipeptidyl-peptidase V was mostly confined to the cytoplasm.
doi:10.1128/CVI.05163-11
PMCID: PMC3165237  PMID: 21734068
7.  ChLae1 and ChVel1 Regulate T-toxin Production, Virulence, Oxidative Stress Response, and Development of the Maize Pathogen Cochliobolus heterostrophus 
PLoS Pathogens  2012;8(2):e1002542.
LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms). T-toxin production is significantly increased in the dark in wild type (WT), whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1) is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE) strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H2O2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and aerial hyphal growth, and negatively control melanin biosynthesis and asexual differentiation.
Author Summary
Filamentous fungi produce chemically diverse metabolites that broker positive and negative interactions with other organisms, manage host pathogenicity/virulence, nutritional and environmental stresses, and differentiation of the fungus. The maize pathogen Cochliobolus heterostrophus is notorious as the causal agent of the most economically devastating epidemic to date, in 1970. Disease severity was associated with appearance of a new race, producing T-toxin, a host selective toxin promoting high virulence to Texas male sterile cytoplasm maize, widely planted at the time. LaeA and VeA are central regulators of secondary metabolism in Aspergillus, coordinating metabolite production and differentiation in response to light. Given the significance of effector-type host selective toxins in pathogenic interactions, we characterized ChLae1 and ChVel1 and found that deletion and overexpression affect T-toxin production in planta and in vitro. Both chlorosis due to T-toxin and necrotic lesion formation are altered, establishing these as the first factors known to regulate both super virulence conferred by T-toxin, and basic pathogenicity, due to unknown factors. The mutants are also altered in oxidative stress responses, key to success in the infection court, asexual and sexual development, essential for fungal dissemination in the field, aerial hyphal growth, and pigment biosynthesis, essential for survival in the field.
doi:10.1371/journal.ppat.1002542
PMCID: PMC3285592  PMID: 22383877
8.  Inducible expression of beta defensins by human respiratory epithelial cells exposed to Aspergillus fumigatus organisms 
BMC Microbiology  2009;9:33.
Background
Aspergillus fumigatus, a saprophytic mould, is responsible for life-threatening, invasive pulmonary diseases in immunocompromised hosts. The role of the airway epithelium involves a complex interaction with the inhaled pathogen. Antimicrobial peptides with direct antifungal and chemotactic activities may boost antifungal immune response.
Results
The inducible expression of defensins by human bronchial epithelial 16HBE cells and A549 pneumocyte cells exposed to A. fumigatus was investigated. Using RT-PCR and real time PCR, we showed an activation of hBD2 and hBD9 defensin genes: the expression was higher in cells exposed to swollen conidia (SC), compared to resting conidia (RC) or hyphal fragments (HF). The kinetics of defensin expression was different for each one, evoking a putative distinct function for each investigated defensin. The decrease of defensin expression in the presence of heat-inactivated serum indicated a possible link between defensins and the proteins of the host complement system. The presence of defensin peptide hBD2 was revealed using immunofluorescence that showed a punctual cytoplasmic and perinuclear staining. Quantification of the cells stained with anti hBD2 antibody demonstrated that SC induced a greater number of cells that synthesized hBD2, compared to RC or HF. Labelling of the cells with anti-hBD-2 antibody showed a positive immunofluorescence signal around RC or SC in contrast to HF. This suggests co-localisation of hBD2 and digested conidia. The HBD2 level was highest in the supernatants of cells exposed to SC, as was determined by sandwich ELISA. Experiments using neutralising anti-interleukine-1β antibody reflect the autocrine mechanism of defensin expression induced by SC. Investigation of defensin expression at transcriptional and post-transcriptional levels demonstrated the requirement of transcription as well as new protein synthesis during A. fumigatus defensin induction. Finally, induced defensin expression in primary culture of human respiratory cells exposed to A. fumigatus points to the biological significance of described phenomena.
Conclusion
Our findings provide evidence that respiratory epithelium might play an important role in the immune response during Aspergillus infection. Understanding the mechanisms of regulation of defensin expression may thus lead to new approaches that could enhance expression of antimicrobial peptides for potential therapeutic use during aspergillosis treatment.
doi:10.1186/1471-2180-9-33
PMCID: PMC2653505  PMID: 19208266
9.  Functional Characterization of Aspergillus nidulans ypkA, a Homologue of the Mammalian Kinase SGK 
PLoS ONE  2013;8(3):e57630.
The serum- and glucocorticoid-regulated protein kinase (SGK) is an AGC kinase involved in signal cascades regulated by glucocorticoid hormones and serum in mammals. The Saccharomyces cerevisiae ypk1 and ypk2 genes were identified as SGK homologues and Ypk1 was shown to regulate the balance of sphingolipids between the inner and outer plasma membrane. This investigation characterized the Aspergillus nidulans YPK1 homologue, YpkA, representing the first filamentous fungal YPK1 homologue. Two conditional mutant strains were constructed by replacing the endogenous ypk1 promoter with two different regulatable promoters, alcA (from the alcohol dehydrogenase gene) and niiA (from the nitrate reductase gene). Both constructs confirmed that ypkA was an essential gene in A. nidulans. Repression of ypkA caused decreased radial growth, a delay in conidial germination, deficient polar axis establishment, intense branching during late stages of growth, a lack of asexual spores, and a terminal phenotype. Membrane lipid polarization, endocytosis, eisosomes and vacuolar distribution were also affected by ypkA repression, suggesting that YpkA plays a role in hyphal morphogenesis via coordinating the delivery of cell membrane and wall constituents to the hyphal apex. The A. nidulans Pkh1 homologue pkhA was also shown to be an essential gene, and preliminary genetic analysis suggested that the ypkA gene is not directly downstream of pkhA or epistatic to pkhA, rather, ypkA and pkhA are genetically independent or in parallel. BarA is a homologue of the yeast Lag1 acyl-CoA-dependent ceramide synthase, which catalyzes the condensation of phytosphingosine with a fatty acyl-CoA to form phytoceramide. When barA was absent, ypkA repression was lethal to the cell. Therefore, there appears to be a genetic interaction between ypkA, barA, and the sphingolipid synthesis. Transcriptional profiling of ypkA overexpression and down-regulation revealed several putative YpkA targets associated with the observed phenotypes.
doi:10.1371/journal.pone.0057630
PMCID: PMC3589345  PMID: 23472095
10.  A GATA Transcription Factor Recruits Hda1 in Response to Reduced Tor1 Signaling to Establish a Hyphal Chromatin State in Candida albicans 
PLoS Pathogens  2012;8(4):e1002663.
Candida albicans is an important opportunistic fungal pathogen of immunocompromised individuals. One critical virulence attribute is its morphogenetic plasticity. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of the cAMP/PKA pathway and promoter recruitment of the histone deacetylase Hda1 under reduced Tor1 signaling. Molecular mechanisms for the temporal connection and the link to Tor1 signaling are not clear. Here, through a forward genetic screen, we report the identification of the GATA family transcription factor Brg1 as the factor that recruits Hda1 to promoters of hypha-specific genes during hyphal elongation. BRG1 expression requires both the removal of Nrg1 and a sub-growth inhibitory level of rapamycin; therefore, it is a sensitive readout of Tor1 signaling. Interestingly, promoters of hypha-specific genes are not accessible to Brg1 in yeast cells. Furthermore, ectopic expression of Brg1 cannot induce hyphae, but can sustain hyphal development. Nucleosome mapping of a hypha-specific promoter shows that Nrg1 binding sites are in nucleosome free regions in yeast cells, whereas Brg1 binding sites are occupied by nucleosomes. Nucleosome disassembly during hyphal initiation exposes the binding sites for both regulators. During hyphal elongation, Brg1-mediated Hda1 recruitment causes nucleosome repositioning and occlusion of Nrg1 binding sites. We suggest that nucleosome repositioning is the underlying mechanism for the yeast-hyphal transition. The hypha-specific regulator Ume6 is a key downstream target of Brg1 and functions after Brg1 as a built-in positive feedback regulator of the hyphal transcriptional program to sustain hyphal development. With the levels of Nrg1 and Brg1 dynamically and sensitively controlled by the two major cellular growth pathways, temporal changes in nucleosome positioning during the yeast-to-hypha transition provide a mechanism for signal integration and cell fate specification. This mechanism is likely used broadly in development.
Author Summary
Candida is part of the gut microflora in healthy individuals, but can disseminate and cause systemic disease when the host's immune system is suppressed. Its ability to grow as yeast and hyphae in response to environmental cues is a major virulence attribute. Hyphal development requires temporary clearing of the transcription inhibitor Nrg1 upon activation of cAMP/PKA for initiation and promoter recruitment of the histone deacetylase Hda1 under reduced Tor1 signaling for maintenance. Here, we show that, during hyphal initiation when Nrg1 is gone, expression of the GATA family transcription factor Brg1 is activated under reduced Tor1 signaling. Accumulated Brg1 recruits Hda1 to hyphal promoters to reposition nucleosomes, leading to obstruction of Nrg1 binding sites and sustained hyphal development. The nucleosome repositioning during the yeast-hyphal transition provides a mechanism for temporal integration of extracellular signals and cell-fate specification. The hypha-specific transcription factor Ume6 functions after Brg1 in this succession of feed-forward regulation of hyphal development. Since misregulation of either Nrg1 or Ume6 causes altered virulence, and Brg1 regulates both Nrg1 accessibility and Ume6 transcription, our findings should provide a better understanding of how Candida controls its morphological program in different host niches to exist as a commensal and a pathogen.
doi:10.1371/journal.ppat.1002663
PMCID: PMC3334898  PMID: 22536157
11.  The Antifungal Protein from Aspergillus giganteus Causes Membrane Permeabilization 
We investigated the inhibitory effects of the antifungal protein (AFP) from Aspergillus giganteus on the growth of several filamentous fungi. For this purpose, the MICs of AFP were determined and ranged from 0.1 μg/ml for Fusarium oxysporum to 200 μg/ml for Aspergillus nidulans. The antifungal activity of AFP was diminished in the presence of cations. We were able to show that incubation of AFP-sensitive fungi with the protein resulted in membrane permeabilization using an assay based on the uptake of the fluorescent dye SYTOX Green. No permeabilization by AFP could be detected at concentrations below the species-specific MIC. Furthermore, AFP-induced permeabilization could readily be detected after 5 min of incubation. Localization experiments with fluorescein isothiocyanate-labeled AFP and immunofluorescence staining with an AFP-specific antibody supported the observation that the protein interacts with membranes. After treatment of AFP-sensitive fungi with AFP, the protein was localized at the plasma membrane, whereas it was mainly detected inside the cells of AFP-resistant fungi. We conclude from these data that the growth-inhibitory effect of AFP is caused by permeabilization of the fungal membranes.
doi:10.1128/AAC.47.2.588-593.2003
PMCID: PMC151754  PMID: 12543664
12.  The Putative α-1,2-Mannosyltransferase AfMnt1 of the Opportunistic Fungal Pathogen Aspergillus fumigatus Is Required for Cell Wall Stability and Full Virulence▿  
Eukaryotic Cell  2008;7(10):1661-1673.
Proteins entering the eukaryotic secretory pathway commonly are glycosylated. Important steps in this posttranslational modification are carried out by mannosyltransferases. In this study, we investigated the putative α-1,2-mannosyltransferase AfMnt1 of the human pathogenic mold Aspergillus fumigatus. AfMnt1 belongs to a family of enzymes that comprises nine members in Saccharomyces cerevisiae but only three in A. fumigatus. A Δafmnt1 mutant is viable and grows normally at 37°C, but its hyphal cell wall appears to be thinner than that of the parental strain. The lack of AfMnt1 leads to a higher sensitivity to calcofluor white and Congo red but not to sodium dodecyl sulfate. The growth of the mutant is abrogated at 48°C but can be restored by osmotic stabilization. The resulting colonies remain white due to a defect in the formation of conidia. Electron and immunofluorescence microscopy further revealed that the observed growth defect of the mutant at 48°C can be attributed to cell wall instability resulting in leakage at the hyphal tips. Using a red fluorescence fusion protein, we localized AfMnt1 in compact, brefeldin A-sensitive organelles that most likely represent fungal Golgi equivalents. The tumor necrosis factor alpha response of murine macrophages to hyphae was not affected by the lack of the afmnt1 gene, but the corresponding mutant was attenuated in a mouse model of infection. This and the increased sensitivity of the Δafmnt1 mutant to azoles, antifungal agents that currently are used to treat Aspergillus infections, suggest that α-1,2-mannosyltransferases are interesting targets for novel antifungal drugs.
doi:10.1128/EC.00221-08
PMCID: PMC2568062  PMID: 18708564
13.  In Vitro Activity of Caspofungin Combined with Sulfamethoxazole against Clinical Isolates of Aspergillus spp. 
Caspofungin (CAS) inhibits fungal cell wall synthesis. Sulfamethoxazole (SMX) inhibits folate biosynthesis and is active in vitro against Aspergillus spp. We studied the activities of the combination of CAS and SMX against 31 Aspergillus isolates and compared them with that of SMX combined with amphotericin B (AMB) or itraconazole (ITC). MICs and minimal effective concentrations (MECs) were determined by the NCCLS broth microdilution method. With MIC endpoints, the combination of SMX and CAS showed synergy or synergy to additivity against 29 of 31 isolates. With MEC endpoints, synergy to additivity was found against 12 of 31 isolates and indifference was displayed against the rest of them. SMX in combination with AMB or ITC was not truly synergistic, while synergy to additivity was found for SMX-AMB and SMX-ITC against 17 of 31 and 3 of 12 isolates, respectively. No antagonism was found with any of the drug combinations. Further analysis of the synergy of CAS and SMX was performed by detailed measurement of hyphal length by microscopy and time-dependent 2,3-bis(2-methoxy-4-nitro-5-[(sulfenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT)-based hyphal damage experiments. With MEC endpoints, the combination of CAS and SMX was characterized by a greater than 50% decrease in hyphal length compared to the hyphal lengths achieved with double the concentration of each drug alone. The XTT-based hyphal damage studies showed a statistically significant (P < 0.05) reduction in viability with CAS and SMX in combination compared to the viabilities achieved with double the concentration of each drug alone. These findings support the synergy results found by using MIC endpoints and suggest that visual MEC measurements may not be sufficient to identify the synergistic interactions seen by more sensitive, quantitative methods. Animal models are required to validate the significance of the synergy of CAS and SMX against Aspergillus spp. observed in vitro.
doi:10.1128/AAC.48.9.3279-3283.2004
PMCID: PMC514744  PMID: 15328085
14.  Heat Shock Protein 90 Is Required for Conidiation and Cell Wall Integrity in Aspergillus fumigatus 
Eukaryotic Cell  2012;11(11):1324-1332.
Heat shock protein 90 (Hsp90) is a eukaryotic molecular chaperone. Its involvement in the resistance of Candida albicans to azole and echinocandin antifungals is well established. However, little is known about Hsp90's function in the filamentous fungal pathogen Aspergillus fumigatus. We investigated the role of Hsp90 in A. fumigatus by genetic repression and examined its cellular localization under various stress conditions. Failure to generate a deletion strain of hsp90 suggested that it is essential. Genetic repression of Hsp90 was achieved by an inducible nitrogen-dependent promoter (pniiA-Hsp90) and led to decreased spore viability, decreased hyphal growth, and severe defects in germination and conidiation concomitant with the downregulation of the conidiation-specific transcription factors brlA, wetA, and abaA. Hsp90 repression potentiated the effect of cell wall inhibitors affecting the β-glucan structure of the cell wall (caspofungin, Congo red) and of the calcineurin inhibitor FK506, supporting a role in regulating cell wall integrity pathways. Moreover, compromising Hsp90 abolished the paradoxical effect of caspofungin. Pharmacological inhibition of Hsp90 by geldanamycin and its derivatives (17-AAG and 17-DMAG) resulted in similar effects. C-terminal green fluorescent protein (GFP) tagging of Hsp90 revealed mainly cytosolic distribution under standard growth conditions. However, treatment with caspofungin resulted in Hsp90 accumulation at the cell wall and at sites of septum formation, further highlighting its role in cell wall stress compensatory mechanisms. Targeting Hsp90 with fungal-specific inhibitors to cripple stress response compensatory pathways represents an attractive new antifungal strategy.
doi:10.1128/EC.00032-12
PMCID: PMC3486032  PMID: 22822234
15.  Colletotrichum trifolii TB3 Kinase, a COT1 Homolog, Is Light Inducible and Becomes Localized in the Nucleus during Hyphal Elongation 
Eukaryotic Cell  2002;1(4):626-633.
Colletotrichum trifolii is a fungal pathogen responsible for anthracnose disease of alfalfa. Previously, a serine/threonine protein kinase gene from this fungus (TB3), which is a functional homolog of the Neurospora crassa COT1 kinase, has been isolated in our laboratory and appears to be associated with hyphal elongation and branching. In this report we show that light treatment rapidly induces TB3 expression and hyphal branching frequency. Western analysis showed TB3 localization in both the cytoplasm and nucleus, but not in membranes. Moreover, indirect immunofluorescence indicated that TB3 levels were most abundant in the nucleus. To further evaluate the subcellular distribution of TB3, a TB3::GFP fusion construct was inserted into C. trifolii. Results indicated that the cellular location of TB3 changed during fungal growth and development. Consistent with previous observations, TB3 was localized in both the cytoplasm and the nucleus but was preferentially localized in the nucleus during extended hyphal growth. The amino terminus of TB3 contains two relatively long polyglutamine repeats. Yeast-based assays showed that these polyglutamine tracts can activate transcription. These results suggest that TB3 may be positioned in a signaling cascade regulating proper hyphal growth and development by functioning as a transcription factor.
doi:10.1128/EC.1.4.626-633.2002
PMCID: PMC117997  PMID: 12456010
16.  Screening for Antifungal Peptides and Their Modes of Action in Aspergillus nidulans▿ †  
Applied and Environmental Microbiology  2010;76(21):7102-7108.
Many short cationic peptides have been identified as potent antimicrobial agents, but their modes of action are not well understood. Peptide synthesis on cellulose membranes has resulted in the generation of peptide libraries, while high-throughput assays have been developed to test their antibacterial activities. In this paper a microtiter plate-based screening method for fungi has been developed and used to test nine antibacterial peptides against the model fungus Aspergillus nidulans. Microscopical studies using sublethal peptide concentrations caused defects in polarized growth, including increased branch formation and depolarized hyphae. We characterized the mode of action for one of our target peptides, Sub5 (12 amino acids), which has already been shown to possess pharmacological potential as an antibacterial agent and is able to interact with ATP and ATP-dependent enzymes. The MIC for A. nidulans is 2 μg/ml, which is in the same range as the MICs reported for bacteria. Fluorescein isothiocyanate (FITC)-labeled Sub5 targeted the cytoplasmic membrane, particularly hyphal tips, and entered the cytoplasm after prolonged exposure, independent of endocytosis. Interestingly, Sub5 peptide treatment disturbed sterol-rich membrane domains, important for tip growth, at hyphal tips. A very similar peptide, FITC-P7, also accumulated on the cell membrane but did not have antibacterial or antifungal activity, suggesting that the cytoplasmic membrane is a first target for the Sub5 peptide; however, the antifungal activity seems to be correlated with the ability to enter the cytoplasm, where the peptides might act on other targets.
doi:10.1128/AEM.01560-10
PMCID: PMC2976221  PMID: 20833782
17.  Toll-like receptors (TLRs) expression and function in response to inactivate hyphae of Fusarium solani in immortalized human corneal epithelial cells 
Molecular Vision  2007;13:1953-1961.
Purpose
To evaluate the role of toll-like receptors (TLRs) in host responses to Fusarium solani by the use of cultured immortalized human corneal epithelial cells (HCEC) and to determine whether inactive hyphal fragments can induce an antifungal response in these cells.
Methods
Cultured HCEC cells were stimulated with inactive hyphal fragments from Fusarium solani, and the effect on expression of TLRs was determined by real-time polymerase chain reaction (PCR), immunofluorescence, and western blot analysis. Cells were also cocultured with hyphal fragment and hydrocortisone to determine whether hydrocortisone modulates the transcription of TLRs. The release of interleukin-6 (IL-6) and IL-8 was also measured using enzyme-linked immunosorbent assays (ELISA) in the presence and absence of specific blocking antibodies to TLR2 and TLR4.
Results
Incubation of HCECs with inactive hyphal fragments upregulated the expression of TLR2, 3, 4, and 6 mRNAs and increased the release of IL-6 and IL-8. Immunofluorescence staining and western blot analysis confirmed that expression of TLR2 and TLR4 was upregulated in response to hyphal fragments. This upregulation was further enhanced by cotreatment with hydrocortisone. Results from ELISA assays showed that the concentration of IL-6 was increased, and the concentration of IL-8 was decreased in supernatants of HCECs after treatment with both hydrocortisone and hyphal fragments. The release of IL-6 and IL-8 was also inhibited by incubation with anti-TLR2 and anti-TLR4 monoclonal antibodies.
Conclusions
HCECs are involved in the cornea immune response to fungal infections. TLR2 and TLR4 may play a crucial signaling role in response to Fusarium hyphae in HCECs. Glucocorticoids such as hydrocortisone can enhance the expression of the TLRs on the epithelium and thus may enhance the resistance to fungal infections in the cornea. These findings may provide crucial information for understanding the immune mechanisms of fungal keratitis and promote the design of new immune therapeutical approaches to fungal keratitis.
PMCID: PMC2185515  PMID: 17982419
18.  Calcineurin Plays Key Roles in the Dimorphic Transition and Virulence of the Human Pathogenic Zygomycete Mucor circinelloides 
PLoS Pathogens  2013;9(9):e1003625.
Many pathogenic fungi are dimorphic and switch between yeast and filamentous states. This switch alters host-microbe interactions and is critical for pathogenicity. However, in zygomycetes, whether dimorphism contributes to virulence is a central unanswered question. The pathogenic zygomycete Mucor circinelloides exhibits hyphal growth in aerobic conditions but switches to multi-budded yeast growth under anaerobic/high CO2 conditions. We found that in the presence of the calcineurin inhibitor FK506, Mucor exhibits exclusively multi-budded yeast growth. We also found that M. circinelloides encodes three calcineurin catalytic A subunits (CnaA, CnaB, and CnaC) and one calcineurin regulatory B subunit (CnbR). Mutations in the latch region of CnbR and in the FKBP12-FK506 binding domain of CnaA result in hyphal growth of Mucor in the presence of FK506. Disruption of the cnbR gene encoding the sole calcineurin B subunit necessary for calcineurin activity yielded mutants locked in permanent yeast phase growth. These findings reveal that the calcineurin pathway plays key roles in the dimorphic transition from yeast to hyphae. The cnbR yeast-locked mutants are less virulent than the wild-type strain in a heterologous host system, providing evidence that hyphae or the yeast-hyphal transition are linked to virulence. Protein kinase A activity (PKA) is elevated during yeast growth under anaerobic conditions, in the presence of FK506, or in the yeast-locked cnbR mutants, suggesting a novel connection between PKA and calcineurin. cnaA mutants lacking the CnaA catalytic subunit are hypersensitive to calcineurin inhibitors, display a hyphal polarity defect, and produce a mixture of yeast and hyphae in aerobic culture. The cnaA mutants also produce spores that are larger than wild-type, and spore size is correlated with virulence potential. Our results demonstrate that the calcineurin pathway orchestrates the yeast-hyphal and spore size dimorphic transitions that contribute to virulence of this common zygomycete fungal pathogen.
Author Summary
Calcineurin is a Ca2+/calmodulin-dependent, serine/threonine-specific protein phosphatase. In pathogenic fungi, calcineurin is involved in morphogenesis and virulence. Therefore, calcineurin is an attractive antifungal drug target. The roles of calcineurin in virulence have been established in both major human pathogenic fungi (Candida species, Cryptococcus neoformans/gattii, Aspergillus fumigatus) and in plant pathogenic fungi (Magnaporthe oryzae, Ustilago maydis/hordei). However, the role of calcineurin is currently unknown in pathogenic zygomycetes. We found that the calcineurin inhibitors FK506 and cyclosporine A inhibit the growth of a prevalent zygomycete pathogen, Mucor. This fungus grows as multi-budded yeast under anaerobic conditions, and we have found that even in aerated culture (which without FK506 would result in abundant hyphal growth), Mucor exhibits yeast growth when exposed to FK506. Mucor cnbR mutants that lack the calcineurin regulatory subunit essential for calcineurin activity, are locked in perpetual yeast phase growth, indicating that calcineurin is required for hyphal growth. We further demonstrated that these yeast-locked mutants are attenuated for virulence, illustrating that hyphae or the yeast-hyphal transition are linked to virulence. These findings indicate that: 1) calcineurin governs the yeast/hyphae morphogenic transition; 2) a link exists between respiration and the calcineurin pathway; and 3) calcineurin inhibitors are attractive anti-mucormycosis drug candidates.
doi:10.1371/journal.ppat.1003625
PMCID: PMC3764228  PMID: 24039585
19.  Use of Fluorescent Probes To Determine MICs of Amphotericin B and Caspofungin against Candida spp. and Aspergillus spp. 
Journal of Clinical Microbiology  2005;43(8):3788-3792.
We investigated the utility of mechanism-based fluorescent probes for determination of MICs (FMICs) of amphotericin B and caspofungin against Candida spp. and Aspergillus spp. Amphotericin B was selected as a membrane-active antifungal agent, and caspofungin was selected as a cell wall-active agent. FMICs were also compared to the MIC determined by CLSI (formerly NCCLS) methods. Five isolates per species of Candida albicans, Candida glabrata, Candida parapsilosis, Aspergillus fumigatus, and Aspergillus terreus were studied with either amphotericin B or caspofungin. The fluorescent probes, carboxyfluorescein diacetate (CFDA) for cytoplasmic esterase activity and dihexyloxacarbocyanine iodide (DiOC6) for cell membrane potential, were each added to their respective plates. MICs and FMICs were determined in at least three separate experiments (in duplicate). Fluorescence was measured using a 96-well plate fluorometer. For amphotericin B and caspofungin, the FMIC end point was the lowest concentration of drug at which the percent growth inhibition from treated organisms versus control organisms displayed 80% inhibition for amphotericin B and 50% inhibition for caspofungin as measured by a fluorescent signal. The MIC for amphotericin B was defined as the lowest concentration of antifungal displaying no visible growth for both Aspergillus and Candida spp. The MIC for caspofungin was the lowest concentration of drug that displayed a minimum effective concentration for Aspergillus spp. For Candida spp., the MIC for caspofungin was defined as the concentration at which the antifungal agent significantly inhibits the organism. The FMICs of both antifungals, as measured by the DiOC6 membrane probe, showed good agreement (83% to 100%), within one well dilution, with the MICs against amphotericin B and caspofungin for all species. Also, the FMICs measured by the CFDA cytoplasmic esterase probe reflecting damage due to cell wall or cell membrane showed strong agreement (79 to 100%) with the MICs of both amphotericin B and caspofungin for all species. There was no significant difference in comparisons of MIC and FMIC values (P ≥ 0.05). The use of fluorescent probes provides a mechanism-based method of determination of MICs of amphotericin B and caspofungin against Candida spp. and Aspergillus spp. that correlates well with standard methods.
doi:10.1128/JCM.43.8.3788-3792.2005
PMCID: PMC1233965  PMID: 16081911
20.  Comparison of Six DNA Extraction Methods for Recovery of Fungal DNA as Assessed by Quantitative PCR 
Journal of Clinical Microbiology  2005;43(10):5122-5128.
The detection of fungal pathogens in clinical samples by PCR requires the use of extraction methods that efficiently lyse fungal cells and recover DNA suitable for amplification. We used quantitative PCR assays to measure the recovery of DNA from two important fungal pathogens subjected to six DNA extraction methods. Aspergillus fumigatus conidia or Candida albicans yeast cells were added to bronchoalveolar lavage fluid and subjected to DNA extraction in order to assess the recovery of DNA from a defined number of fungal propagules. In order to simulate hyphal growth in tissue, Aspergillus fumigatus conidia were allowed to form mycelia in tissue culture media and then harvested for DNA extraction. Differences among the DNA yields from the six extraction methods were highly significant (P < 0.0001) in each of the three experimental systems. An extraction method based on enzymatic lysis of fungal cell walls (yeast cell lysis plus the use of GNOME kits) produced high levels of fungal DNA with Candida albicans but low levels of fungal DNA with Aspergillus fumigatus conidia or hyphae. Extraction methods employing mechanical agitation with beads produced the highest yields with Aspergillus hyphae. The MasterPure yeast method produced high levels of DNA from C. albicans but only moderate yields from A. fumigatus. A reagent from one extraction method was contaminated with fungal DNA, including DNA from Aspergillus and Candida species. In conclusion, the six extraction methods produce markedly differing yields of fungal DNA and thus can significantly affect the results of fungal PCR assays. No single extraction method was optimal for all organisms.
doi:10.1128/JCM.43.10.5122-5128.2005
PMCID: PMC1248488  PMID: 16207973
21.  Lipid Raft Polarization Contributes to Hyphal Growth in Candida albicans 
Eukaryotic Cell  2004;3(3):675-684.
The polarization of sterol- and sphingolipid-enriched domains (lipid rafts) has been linked to morphogenesis and cell movement in diverse cell types. In the yeast Saccharomyces cerevisiae, a dramatic polarization of sterol-rich domains to the shmoo tip was observed in pheromone-induced cells (M. Bagnat and K. Simons, Proc. Natl. Acad. Sci. USA 99:14183-14188, 2002). We therefore examined whether plasma membrane lipid polarization contributes to the ability of the fungal pathogen Candida albicans to grow in a highly polarized manner to form hyphae. Interestingly, staining with filipin revealed that membrane sterols were highly polarized to the leading edge of growth during all stages of hyphal growth. Budding and pseudohyphal cells did not display polarized staining. Filipin staining was also enriched at septation sites in hyphae, where colocalization with septin proteins was observed, suggesting a role for the septins in forming a boundary domain. Actin appeared to play a role in sterol polarization and hyphal morphogenesis in that both were disrupted by low concentrations of latrunculin A that did not prevent budding. Furthermore, blocking either sphingolipid biosynthesis with myriocin or sterol biosynthesis with ketoconazole resulted in a loss of ergosterol polarization and caused abnormal hyphal morphogenesis, suggesting that lipid rafts are involved. Since hyphal growth is required for the full virulence of C. albicans, these results suggest that membrane polarization may contribute to the pathogenesis of this organism.
doi:10.1128/EC.3.3.675-684.2004
PMCID: PMC420133  PMID: 15189988
22.  Use of the tetrazolium salt MTT to measure cell viability effects of the bacterial antagonist Lysobacter enzymogenes on the filamentous fungus Cryphonectria parasitica 
Antonie Van Leeuwenhoek  2013;103(6):1271-1280.
Despite substantial interest investigating bacterial mechanisms of fungal growth inhibition, there are few methods available that quantify fungal cell death during direct interactions with bacteria. Here we describe an in vitro cell suspension assay using the tetrazolium salt MTT as a viability stain to assess direct effects of the bacterial antagonist Lysobacter enzymogenes on hyphal cells of the filamentous fungus Cryphonectria parasitica. The effects of bacterial cell density, fungal age and the physiological state of fungal mycelia on fungal cell viability were evaluated. As expected, increased bacterial cell density correlated with reduced fungal cell viability over time. Bacterial effects on fungal cell viability were influenced by both age and physiological state of the fungal mycelium. Cells obtained from 1-week-old mycelia lost viability faster compared with those from 2-week-old mycelia. Likewise, hyphal cells obtained from the lower layer of the mycelial pellicle lost viability more quickly compared with cells from the upper layer of the mycelial pellicle. Fungal cell viability was compared between interactions with L. enzymogenes wildtype strain C3 and a mutant strain, DCA, which was previously demonstrated to lack in vitro antifungal activity. Addition of antibiotics eliminated contributions to MTT-formazan production by bacterial cells, but not by fungal cells, demonstrating that mutant strain DCA had lost complete capacity to reduce fungal cell viability. These results indicate this cell suspension assay can be used to quantify bacterial effects on fungal cells, thus providing a reliable method to differentiate strains during bacterial/fungal interactions.
doi:10.1007/s10482-013-9907-3
PMCID: PMC3656244  PMID: 23529159
Bacterial/fungal interaction; Viability stain; Antifungal; Antagonism; Biological control
23.  Inhibitors of cellular signalling are cytotoxic or block the budded-to-hyphal transition in the pathogenic yeast Candida albicans 
Journal of Medical Microbiology  2009;58(Pt 6):779-790.
The pathogenic yeast Candida albicans can grow in multiple morphological states including budded, pseudohyphal and true hyphal forms. The ability to interconvert between budded and hyphal forms, herein termed the budded-to-hyphal transition (BHT), is important for C. albicans virulence, and is regulated by multiple environmental and cellular signals. To identify small-molecule inhibitors of known cellular processes that can also block the BHT, a microplate-based morphological assay was used to screen the BIOMOL–Institute of Chemistry and Cell Biology (ICCB) Known Bioactives collection from the ICCB-Longwood Screening Facility (Harvard Medical School, Boston, MA, USA). Of 480 molecules tested, 53 were cytotoxic to C. albicans and 16 were able to block the BHT without inhibiting budded growth. These 16 BHT inhibitors affected protein kinases, protein phosphatases, Ras signalling pathways, G protein-coupled receptors, calcium homeostasis, nitric oxide and guanylate cyclase signalling, and apoptosis in mammalian cells. Several of these molecules were also able to inhibit filamentous growth in other Candida species, as well as the pathogenic filamentous fungus Aspergillus fumigatus, suggesting a broad fungal host range for these inhibitory molecules. Results from secondary assays, including hyphal-specific transcription and septin localization analysis, were consistent with the inhibitors affecting known BHT signalling pathways in C. albicans. Therefore, these molecules will not only be invaluable in deciphering the signalling pathways regulating the BHT, but also may serve as starting points for potential new antifungal therapeutics.
doi:10.1099/jmm.0.006841-0
PMCID: PMC2742683  PMID: 19429755
24.  Inhibitors of Cellular Signaling are Cytotoxic or Block the Budded-to-Hyphal Transition in the Pathogenic Yeast Candida albicans 
Journal of medical microbiology  2009;58(Pt 6):779-790.
Summary
Pathogenic yeast Candida albicans can grow in multiple morphological states including budded, pseudohyphal, and true hyphal forms. The ability to interconvert between budded and hyphal forms, herein termed the budded-to-hyphal transition (BHT), is important for C. albicans virulence and is regulated by multiple environmental and cellular signals. To identify small molecule inhibitors of known cellular processes that can also block the BHT, a microplate-based morphological assay was used to screen the BIOMOL-ICCB Known Bioactives collection from the ICCB-Longwood Screening Facility. Of 480 molecules tested, 53 were cytotoxic to C. albicans and 16 were able to block the BHT without inhibiting budded growth. These 16 BHT inhibitors affect protein kinases, protein phosphatases, Ras signaling pathways, G-protein coupled receptors, calcium homeostasis, nitric oxide and guanylyl cyclase signaling, and apoptosis in mammalian cells. Several of these molecules were also able to inhibit filamentous growth in other Candida species as well as the pathogenic filamentous fungi Aspergillus fumigatus, suggesting a broad fungal host range for these inhibitory molecules. Results from secondary assays, including hyphal-specific transcription and septin localization, are consistent with the inhibitors affecting known BHT signaling pathways in C. albicans. Therefore, these molecules will not only be invaluable in deciphering the signaling pathways regulating the BHT, but also may serve as starting points for potential new antifungal therapeutics.
doi:10.1099/jmm.0.006841-0
PMCID: PMC2742683  PMID: 19429755
Candida albicans; budded-to-hyphal transition; cell signaling; small molecules
25.  Involvement of CD14 and Toll-Like Receptors in Activation of Human Monocytes by Aspergillus fumigatus Hyphae 
Infection and Immunity  2001;69(4):2402-2406.
Invasive fungal infections represent an increasing problem associated with high mortality. The present study was undertaken to identify leukocyte subsets that are activated by hyphal fragments in a whole-human-blood model, as well as to examine the involvement of CD14 and Toll-like receptors (TLRs) in activation of monocytes by hyphae. Incubation of whole human blood with hyphal fragments from Aspergillus fumigatus and Scedosporium prolificans for 6 h caused induction of mRNAs for tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 in T cells, B cells, and monocytes, but not in granulocytes, as analyzed by reverse transcription-PCR with mRNA isolated from very pure populations of these leukocyte subsets. In primary adherent human monocytes, induction of TNF-α by hyphal fragments was dependent on plasma. Heat treatment of plasma at 56°C for 30 min strongly reduced the ability of plasma to prime for activation. Pretreatment of human monocytes with different concentrations (1, 3, and 10 μg/ml) of monoclonal antibody (MAb) HTA125 (anti-TLR4) or MAb 18D11 (anti-CD14) for 30 min inhibited the release of TNF-α induced by hyphal fragments in a dose-dependent manner. Maximal inhibitions of 35 and 70% were obtained with 10 μg of HTA125 and 18D11 per ml, respectively. In contrast, pretreatment with MAb TL2.1 (anti-TLR2) did not affect signaling induced by hyphae. Pretreatment with the lipid A antagonist B975 blocked lipopolysaccharide signaling but did not inhibit TNF-α production induced by hyphal fragments. Our results suggest that T cells, B cells, and monocytes are involved in the innate immune response to invasive fungal pathogens and that serum components are relevant for activation of monocytes by hyphae. CD14 and TLR4 may be involved in signaling of Aspergillus hyphae in monocytes, but further studies to elucidate this issue are warranted.
doi:10.1128/IAI.69.4.2402-2406.2001
PMCID: PMC98172  PMID: 11254600

Results 1-25 (964517)