PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (901298)

Clipboard (0)
None

Related Articles

1.  Protection of Mice against Lethal Challenge with 2009 H1N1 Influenza A Virus by 1918-Like and Classical Swine H1N1 Based Vaccines 
PLoS Pathogens  2010;6(1):e1000745.
The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years) with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es) might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA) monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI) assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918–1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs) raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009 pandemic H1N1 virus. This data provides a mechanistic basis for the protection seen in the older population, and emphasizes a rationale for including vaccination of the younger, naïve population. Our results also support the notion that pigs can act as an animal reservoir where influenza virus HAs become antigenically frozen for long periods of time, facilitating the generation of human pandemic viruses.
Author Summary
Influenza A viruses generally infect individuals of all ages and cause severe respiratory disease in very young children and elderly people (>65 years). However, the 2009 pandemic H1N1 virus infection is predominantly seen in children and adults (<35 years of age), but rarely in people older than 65 years of age. Recent serological studies indicate that older people carry antibodies that recognize the 2009 H1N1 virus. This suggests that they may have been exposed to or vaccinated with an influenza virus similar to 2009 H1N1 virus. In this study, we wanted to identify the older H1N1 virus(es) that may confer protection to the elderly population. Using 11 different inactivated influenza A viruses that have circulated between 1918 to 2007, we immunized mice and challenged them with a lethal dose of the 2009 novel H1N1 virus. We find that mice vaccinated with human H1N1 viruses that circulated in 1918 and in 1943 were protected from the 2009 H1N1 virus. Also, the 1976 swine origin H1N1 virus, against which nearly 40 million people were immunized in 1976 in the United States, protects mice from death by the 2009 H1N1 virus. This indicates that people carrying antibodies against H1N1 viruses that circulated between 1918–1943 and to the 1976 swine origin H1N1 virus are likely to be protected against the 2009 pandemic H1N1. Importantly, our data underscores the significance of vaccinating people under 35 year of age, since the majority of them do not have protective antibodies against the 2009 H1N1, and provide a possible mechanism by which pandemic viruses could arise from antigenically frozen influenza viruses harbored in the swine population.
doi:10.1371/journal.ppat.1000745
PMCID: PMC2813279  PMID: 20126449
2.  Optimizing the Dose of Pre-Pandemic Influenza Vaccines to Reduce the Infection Attack Rate 
PLoS Medicine  2007;4(6):e218.
Background
The recent spread of avian influenza in wild birds and poultry may be a precursor to the emergence of a 1918-like human pandemic. Therefore, stockpiles of human pre-pandemic vaccine (targeted at avian strains) are being considered. For many countries, the principal constraint for these vaccine stockpiles will be the total mass of antigen maintained. We tested the hypothesis that lower individual doses (i.e., less than the recommended dose for maximum protection) may provide substantial extra community-level benefits because they would permit wider vaccine coverage for a given total size of antigen stockpile.
Methods and Findings
We used a mathematical model to predict infection attack rates under different policies. The model incorporated both an individual's response to vaccination at different doses and the process of person-to-person transmission of pandemic influenza. We found that substantial reductions in the attack rate are likely if vaccines are given to more people at lower doses. These results are applicable to all three vaccine candidates for which data are available. As a guide to the magnitude of the effect, we simulated epidemics based on historical studies of immunogenicity. For example, for one of the vaccines for which data are available, the attack rate would drop from 67.6% to 58.7% if 160 out of the total US population of 300 million were given an optimal dose rather than 20 out of 300 million given the maximally protective dose (as promulgated in the US National Pandemic Preparedness Plan). Our results are conservative with respect to a number of alternative assumptions about the precise nature of vaccine protection. We also considered a model variant that includes a single high-risk subgroup representing children. For smaller stockpile sizes that allow vaccine to be offered only to the high-risk group at the optimal dose, the predicted benefits of using the homogenous model formed a lower bound in the presence of a risk group, even when the high-risk group was twice as infective and twice as susceptible.
Conclusions
In addition to individual-level protection (i.e., vaccine efficacy), the population-level implications of pre-pandemic vaccine programs should be considered when deciding on stockpile size and dose. Our results suggest that a lower vaccine dose may be justified in order to increase population coverage, thereby reducing the infection attack rate overall.
Steven Riley and colleagues examine the potential benefits of "stretching" a limited supply of vaccine and suggest that substantial reductions in the attack rate are possible if vaccines are given to more people at lower doses.
Editors' Summary
Background.
Every winter, millions of people catch influenza, a viral infection of the nose, throat, and airways. Most recover quickly, but the disease can be deadly. In the US, seasonal influenza outbreaks (epidemics) cause 36,000 excess deaths annually. And now there are fears that an avian (bird) influenza virus might trigger a human influenza pandemic—a global epidemic that could kill millions. Seasonal epidemics occur because flu viruses continually make small changes to their hemagglutinin and neuraminidase molecules, the viral proteins (antigens) that the immune system recognizes. Because of this “antigenic drift,” an immune system response (which can be induced by catching flu or by vaccination with disabled circulating influenza strains) that combats flu one year may provide only partial protection the next year. “Antigenic shift” (large changes in flu antigens) can cause pandemics because communities have no immunity to the changed virus.
Why Was This Study Done?
Although avian influenza virus, which contains a hemagglutinin type that differs from currently circulating human flu viruses, has caused a few cases of human influenza, it has not started a human pandemic yet because it cannot move easily between people. If it acquires this property, which will probably involve further small antigenic changes, it could kill millions of people before scientists can develop an effective vaccine against it. To provide some interim protection, many countries are preparing stockpiles of “pre-pandemic” vaccines targeted against the avian virus. The US, for example, plans to store enough pre-pandemic vaccine to provide maximum protection to 20 million people (including key health workers) out of its population of 300 million. But, given a limited stockpile of pre-pandemic vaccine, might giving more people a lower dose of vaccine, which might reduce the number of people susceptible to infection and induce herd immunity by preventing efficient transmission of the flu virus, be a better way to limit the spread of pandemic influenza? In this study, the researchers have used mathematical modeling to investigate this question.
What Did the Researchers Do and Find?
To predict the infection rates associated with different vaccination policies, the researchers developed a mathematical model that incorporates data on human immune responses induced with three experimental vaccines against the avian virus and historical data on the person–person transmission of previous pandemic influenza viruses. For all the vaccines, the model predicts that giving more people a low dose of the vaccine would limit the spread of influenza better than giving fewer people the high dose needed for full individual protection. For example, the researchers estimate that dividing the planned US stockpile of one experimental vaccine equally between 160 million people instead of giving it at the fully protective dose to 20 million people might avert about 27 million influenza cases in less than year. However, giving the maximally protective dose to the 9 million US health-care workers and using the remaining vaccine at a lower dose to optimize protection within the general population might avert only 14 million infections.
What Do These Findings Mean?
These findings suggest that, given a limited stockpile of pre-pandemic vaccine, increasing the population coverage of vaccination by using low doses of vaccine might reduce the overall influenza infection rate more effectively than vaccinating fewer people with fully protective doses of vaccine. However, because the researchers' model includes many assumptions, it can only give an indication of how different strategies might perform, not firm numbers for how many influenza cases each strategy is likely to avert. Before public-health officials use this or a similar model to help them decide the best way to use pre-pandemic vaccines to control a human influenza pandemic, they will need more information about the efficacy of these vaccines and about transmission rates of currently circulating viruses. They will also need to know whether pre-pandemic vaccines actually provide good protection against the pandemic virus, as assumed in this study, before they can recommend mass immunization with low doses of pre-pandemic vaccine, selective vaccination with high doses, or a mixed strategy.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040218.
US Centers for Disease Control and Prevention provide information on influenza and influenza vaccination for patients and health professionals (in English, Spanish, Filipino, Chinese, and Vietnamese)
The World Health Organization has a fact sheet on influenza and on the global response to avian influenza (in English, Spanish, French, Russian, Arabic, and Chinese)
The MedlinePlus online encyclopedia devotes a page to flu (in English and Spanish)
The UK Health Protection Agency information on avian, pandemic, and seasonal influenza
The US National Institute of Allergy and Infectious Diseases has a comprehensive feature called “focus on the flu”
doi:10.1371/journal.pmed.0040218
PMCID: PMC1892041  PMID: 17579511
3.  Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions 
PLoS Medicine  2007;4(1):e13.
Background
The highly pathogenic H5N1 avian influenza virus, which is now widespread in Southeast Asia and which diffused recently in some areas of the Balkans region and Western Europe, has raised a public alert toward the potential occurrence of a new severe influenza pandemic. Here we study the worldwide spread of a pandemic and its possible containment at a global level taking into account all available information on air travel.
Methods and Findings
We studied a metapopulation stochastic epidemic model on a global scale that considers airline travel flow data among urban areas. We provided a temporal and spatial evolution of the pandemic with a sensitivity analysis of different levels of infectiousness of the virus and initial outbreak conditions (both geographical and seasonal). For each spreading scenario we provided the timeline and the geographical impact of the pandemic in 3,100 urban areas, located in 220 different countries. We compared the baseline cases with different containment strategies, including travel restrictions and the therapeutic use of antiviral (AV) drugs. We investigated the effect of the use of AV drugs in the event that therapeutic protocols can be carried out with maximal coverage for the populations in all countries. In view of the wide diversity of AV stockpiles in different regions of the world, we also studied scenarios in which only a limited number of countries are prepared (i.e., have considerable AV supplies). In particular, we compared different plans in which, on the one hand, only prepared and wealthy countries benefit from large AV resources, with, on the other hand, cooperative containment scenarios in which countries with large AV stockpiles make a small portion of their supplies available worldwide.
Conclusions
We show that the inclusion of air transportation is crucial in the assessment of the occurrence probability of global outbreaks. The large-scale therapeutic usage of AV drugs in all hit countries would be able to mitigate a pandemic effect with a reproductive rate as high as 1.9 during the first year; with AV supply use sufficient to treat approximately 2% to 6% of the population, in conjunction with efficient case detection and timely drug distribution. For highly contagious viruses (i.e., a reproductive rate as high as 2.3), even the unrealistic use of supplies corresponding to the treatment of approximately 20% of the population leaves 30%–50% of the population infected. In the case of limited AV supplies and pandemics with a reproductive rate as high as 1.9, we demonstrate that the more cooperative the strategy, the more effective are the containment results in all regions of the world, including those countries that made part of their resources available for global use.
A metapopulation stochastic epidemic model for influenza shows the need to include air transportation when assessing the occurrence probability of global outbreaks. The impact of the use of antiviral drugs is also measured.
Editors' Summary
Background.
Seasonal outbreaks (epidemics) of influenza—a viral infection of the nose, throat, and airways—affect millions of people and kill about 500,000 individuals every year. Regular epidemics occur because flu viruses frequently make small changes in the viral proteins (antigens) recognized by the human immune system. Consequently, a person's immune-system response that combats influenza one year provides incomplete protection the next year. Occasionally, a human influenza virus appears that contains large antigenic changes. People have little immunity to such viruses (which often originate in birds or animals), so they can start a global epidemic (pandemic) that kills millions of people. Experts fear that a human influenza pandemic could be triggered by the avian H5N1 influenza virus, which is present in bird flocks around the world. So far, fewer than 300 people have caught this virus but more than 150 people have died.
Why Was This Study Done?
Avian H5N1 influenza has not yet triggered a human pandemic, because it rarely passes between people. If it does acquire this ability, it would take 6–8 months to develop a vaccine to provide protection against this new, potentially pandemic virus. Public health officials therefore need other strategies to protect people during the first few months of a pandemic. These could include international travel restrictions and the use of antiviral drugs. However, to get the most benefit from these interventions, public-health officials need to understand how influenza pandemics spread, both over time and geographically. In this study, the researchers have used detailed information on air travel to model the global spread of an emerging influenza pandemic and its containment.
What Did the Researchers Do and Find?
The researchers incorporated data on worldwide air travel and census data from urban centers near airports into a mathematical model of the spread of an influenza pandemic. They then used this model to investigate how the spread and health effects of a pandemic flu virus depend on the season in which it emerges (influenza virus thrives best in winter), where it emerges, and how infectious it is. Their model predicts, for example, that a flu virus originating in Hanoi, Vietnam, with a reproductive number (R0) of 1.1 (a measure of how many people an infectious individual infects on average) poses a very mild global threat. However, epidemics initiated by a virus with an R0 of more than 1.5 would often infect half the population in more than 100 countries. Next, the researchers used their model to show that strict travel restrictions would have little effect on pandemic evolution. More encouragingly, their model predicts that antiviral drugs would mitigate pandemics of a virus with an R0 up to 1.9 if every country had an antiviral drug stockpile sufficient to treat 5% of its population; if the R0 was 2.3 or higher, the pandemic would not be contained even if 20% of the population could be treated. Finally, the researchers considered a realistic scenario in which only a few countries possess antiviral stockpiles. In these circumstances, compared with a “selfish” strategy in which countries only use their antiviral drugs within their borders, limited worldwide sharing of antiviral drugs would slow down the spread of a flu virus with an R0 of 1.9 by more than a year and would benefit both drug donors and recipients.
What Do These Findings Mean?
Like all mathematical models, this model for the global spread of an emerging pandemic influenza virus contains many assumptions (for example, about viral behavior) that might affect the accuracy of its predictions. The model also does not consider variations in travel frequency between individuals or viral spread in rural areas. Nevertheless, the model provides the most extensive global simulation of pandemic influenza spread to date. Reassuringly, it suggests that an emerging virus with a low R0 would not pose a major public-health threat, since its attack rate would be limited and would not peak for more than a year, by which time a vaccine could be developed. Most importantly, the model suggests that cooperative sharing of antiviral drugs, which could be organized by the World Health Organization, might be the best way to deal with an emerging influenza pandemic.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040013.
The US Centers for Disease Control and Prevention has information about influenza for patients and professionals, including key facts about avian influenza and antiviral drugs
The US National Institute of Allergy and Infectious Disease features information on seasonal, avian, and pandemic flu
The US Department of Health and Human Services provides information on pandemic flu and avian flu, including advice to travelers
World Health Organization has fact sheets on influenza and avian influenza, including advice to travelers and current pandemic flu threat
The UK Health Protection Agency has information on seasonal, avian, and pandemic influenza
The UK Department of Health has a feature article on bird flu and pandemic influenza
doi:10.1371/journal.pmed.0040013
PMCID: PMC1779816  PMID: 17253899
4.  Antigenic Fingerprinting of H5N1 Avian Influenza Using Convalescent Sera and Monoclonal Antibodies Reveals Potential Vaccine and Diagnostic Targets 
PLoS Medicine  2009;6(4):e1000049.
Using whole-genome-fragment phage display libraries, Hana Golding and colleagues identify the viral epitopes recognized by serum antibodies in humans who have recovered from infection with H5N1 avian influenza.
Background
Transmission of highly pathogenic avian H5N1 viruses from poultry to humans have raised fears of an impending influenza pandemic. Concerted efforts are underway to prepare effective vaccines and therapies including polyclonal or monoclonal antibodies against H5N1. Current efforts are hampered by the paucity of information on protective immune responses against avian influenza. Characterizing the B cell responses in convalescent individuals could help in the design of future vaccines and therapeutics.
Methods and Findings
To address this need, we generated whole-genome–fragment phage display libraries (GFPDL) expressing fragments of 15–350 amino acids covering all the proteins of A/Vietnam/1203/2004 (H5N1). These GFPDL were used to analyze neutralizing human monoclonal antibodies and sera of five individuals who had recovered from H5N1 infection. This approach led to the mapping of two broadly neutralizing human monoclonal antibodies with conformation-dependent epitopes. In H5N1 convalescent sera, we have identified several potentially protective H5N1-specific human antibody epitopes in H5 HA[(-10)-223], neuraminidase catalytic site, and M2 ectodomain. In addition, for the first time to our knowledge in humans, we identified strong reactivity against PB1-F2, a putative virulence factor, following H5N1 infection. Importantly, novel epitopes were identified, which were recognized by H5N1-convalescent sera but did not react with sera from control individuals (H5N1 naïve, H1N1 or H3N2 seropositive).
Conclusion
This is the first study, to our knowledge, describing the complete antibody repertoire following H5N1 infection. Collectively, these data will contribute to rational vaccine design and new H5N1-specific serodiagnostic surveillance tools.
Editors' Summary
Background
Every winter, millions of people catch influenza, a viral infection of the airways. Most recover quickly but seasonal influenza outbreaks (epidemics) kill about half a million people annually. These epidemics occur because small but frequent changes in the viral proteins (antigens) to which the human immune system responds mean that an immune response produced one year by infection or through vaccination provides only partial protection against influenza the next year. Influenza viruses also occasionally appear that contain major antigenic changes. Human populations have little or no immunity to such viruses (which often originate in animals or birds), so they can start deadly global epidemics (pandemics ). Worryingly, the last influenza pandemic occurred in 1968 and many experts fear that another pandemic is now overdue. The trigger for such a pandemic, they think, could be the avian (bird) H5N1 influenza virus, which first appeared in 1996 in a goose in China. The name indicates the types of two major influenza antigens present in the virus: H5N1 carries type 5 hemagglutinin and type 1 neuraminidase.
Why Was This Study Done?
H5N1 has caused about 400 confirmed cases of human influenza and more than 250 deaths in the past decade but it has not started a human pandemic because it cannot pass easily between people. However, it could possibly acquire this ability at any time, so it is a priority to develop both vaccines that will provide protection against a pandemic H5N1 viral strain, as well as antibody-based antiviral therapies for people not protected by vaccination (antibodies are proteins produced by the immune system that help to fight infections; people can sometimes be protected from infection by injecting them with pre-prepared antibodies). To do this, scientists need to know how the human immune system responds to the H5N1 virus. In particular, they need to know which parts of the virus the immune system can detect and make antibodies against. In this study, therefore, the researchers characterize the specific antibody responses found in people recovering from infection with H5N1.
What Did the Researchers Do and Find?
The researchers made several “genome-fragment phage display libraries”, collections of bacterial viruses (phages) engineered so that each phage makes one of many possible short pieces (polypeptides) of a nonphage protein. Such “libraries” can be used to investigate which fragments are recognized by antibodies from a given source. In this case, several libraries were made that contained fragments of the genome of the H5N1 strain responsible for an outbreak of human influenza in Vietnam in 2004–2005 (A/Vietnam/1203/2004). The researchers used these libraries to analyze the antibodies made by five Vietnamese people recovering from infection with A/Vietnam/1203/2004. H5N1 convalescent blood samples, the researchers report, contained antibodies that recognized small regions (“epitopes”) in several viral proteins, including hemagglutinin, neuraminidase, a structural protein called M2, and a viral protein called PB1-F2 that is partly responsible for the severity of H5N1 infections. Several of the novel epitopes identified were not recognized by antibodies in blood taken from people recovering from infection with other influenza viruses. The researchers also used their phage display libraries to analyze two neutralizing human monoclonal antibodies generated from patients infected with A/Vietnam/1203/2004 (neutralizing antibodies protect mice against normally lethal challenge with H5N1; monoclonal antibodies are generated in the laboratory by creating continuously growing cell lines that produce a single type of antibody). Importantly, both of the neutralizing monoclonal antibodies recognized “noncontinuous conformation-dependent epitopes”—protein sequences that are not adjacent to one another in the polypeptide sequence of the protein, but that lie close together in space because of the way the protein is folded up.
What Do These Findings Mean?
Although some aspects of the antibody repertoire produced in people exposed to the H5N1 influenza virus may have been missed in this analysis, these findings provide important and detailed new information about how the human immune system responds to infection with this virus. In particular, they show that people recovering from H5N1 infection make a diverse range of antibodies against several viral proteins for at least six months and identify specific parts of H5N1 that may be particularly good at stimulating a protective immune response. This information can now be used to help design vaccines against H5N1 and antibody-based therapies for the treatment of H5N1 infections, and to develop new tools for monitoring outbreaks of avian influenza in human populations.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000049.
This study is further discussed in a PLoS Medicine Perspective by Malik Peiris
The US Centers for Disease Control and Prevention provides information for about influenza for patients and professionals, including specific information on avian and pandemic influenza (in several languages)
The World Health Organization provides information on influenza (in several languages) and on H5N1 avian influenza (in several languages), and a global timeline about H5N1 avian influenza infection in birds and people
The UK Health Protection Agency provides information on avian, pandemic, and epidemic (seasonal) influenza
MedlinePlus provides a list of links to other information about influenza and bird flu (in English and Spanish)
doi:10.1371/journal.pmed.1000049
PMCID: PMC2661249  PMID: 19381279
5.  Predicting the Antigenic Structure of the Pandemic (H1N1) 2009 Influenza Virus Hemagglutinin 
PLoS ONE  2010;5(1):e8553.
The pandemic influenza virus (2009 H1N1) was recently introduced into the human population. The hemagglutinin (HA) gene of 2009 H1N1 is derived from “classical swine H1N1” virus, which likely shares a common ancestor with the human H1N1 virus that caused the pandemic in 1918, whose descendant viruses are still circulating in the human population with highly altered antigenicity of HA. However, information on the structural basis to compare the HA antigenicity among 2009 H1N1, the 1918 pandemic, and seasonal human H1N1 viruses has been lacking. By homology modeling of the HA structure, here we show that HAs of 2009 H1N1 and the 1918 pandemic virus share a significant number of amino acid residues in known antigenic sites, suggesting the existence of common epitopes for neutralizing antibodies cross-reactive to both HAs. It was noted that the early human H1N1 viruses isolated in the 1930s–1940s still harbored some of the original epitopes that are also found in 2009 H1N1. Interestingly, while 2009 H1N1 HA lacks the multiple N-glycosylations that have been found to be associated with an antigenic change of the human H1N1 virus during the early epidemic of this virus, 2009 H1N1 HA still retains unique three-codon motifs, some of which became N-glycosylation sites via a single nucleotide mutation in the human H1N1 virus. We thus hypothesize that the 2009 H1N1 HA antigenic sites involving the conserved amino acids will soon be targeted by antibody-mediated selection pressure in humans. Indeed, amino acid substitutions predicted here are occurring in the recent 2009 H1N1 variants. The present study suggests that antibodies elicited by natural infection with the 1918 pandemic or its early descendant viruses play a role in specific immunity against 2009 H1N1, and provides an insight into future likely antigenic changes in the evolutionary process of 2009 H1N1 in the human population.
doi:10.1371/journal.pone.0008553
PMCID: PMC2797400  PMID: 20049332
6.  Prophylactic and Therapeutic Efficacy of Human Monoclonal Antibodies against H5N1 Influenza 
PLoS Medicine  2007;4(5):e178.
Background
New prophylactic and therapeutic strategies to combat human infections with highly pathogenic avian influenza (HPAI) H5N1 viruses are needed. We generated neutralizing anti-H5N1 human monoclonal antibodies (mAbs) and tested their efficacy for prophylaxis and therapy in a murine model of infection.
Methods and Findings
Using Epstein-Barr virus we immortalized memory B cells from Vietnamese adults who had recovered from infections with HPAI H5N1 viruses. Supernatants from B cell lines were screened in a virus neutralization assay. B cell lines secreting neutralizing antibodies were cloned and the mAbs purified. The cross-reactivity of these antibodies for different strains of H5N1 was tested in vitro by neutralization assays, and their prophylactic and therapeutic efficacy in vivo was tested in mice. In vitro, mAbs FLA3.14 and FLD20.19 neutralized both Clade I and Clade II H5N1 viruses, whilst FLA5.10 and FLD21.140 neutralized Clade I viruses only. In vivo, FLA3.14 and FLA5.10 conferred protection from lethality in mice challenged with A/Vietnam/1203/04 (H5N1) in a dose-dependent manner. mAb prophylaxis provided a statistically significant reduction in pulmonary virus titer, reduced associated inflammation in the lungs, and restricted extrapulmonary dissemination of the virus. Therapeutic doses of FLA3.14, FLA5.10, FLD20.19, and FLD21.140 provided robust protection from lethality at least up to 72 h postinfection with A/Vietnam/1203/04 (H5N1). mAbs FLA3.14, FLD21.140 and FLD20.19, but not FLA5.10, were also therapeutically active in vivo against the Clade II virus A/Indonesia/5/2005 (H5N1).
Conclusions
These studies provide proof of concept that fully human mAbs with neutralizing activity can be rapidly generated from the peripheral blood of convalescent patients and that these mAbs are effective for the prevention and treatment of H5N1 infection in a mouse model. A panel of neutralizing, cross-reactive mAbs might be useful for prophylaxis or adjunctive treatment of human cases of H5N1 influenza.
Cameron Simmons and colleagues provide proof of concept that human monoclonal antibodies with neutralizing activity can be rapidly generated from peripheral blood of convalescent patients and are effective in preventing and treating H5N1 infection in a mouse model.
Editors' Summary
Background.
Every year, millions of people catch influenza, a viral disease of the nose, throat, and airways. Although most recover, influenza outbreaks (epidemics) kill about half a million people annually. Epidemics occur because small but frequent changes in the viral proteins (antigens) to which the immune system responds mean that an immune response produced one year provides only partial protection against influenza the next year. Human flu viruses also occasionally appear that contain major antigenic changes. People have little or no immunity to such viruses (which often originate in animals or birds), so these viruses can start deadly pandemics—global epidemics. The Spanish flu pandemic in 1918/9, Asian flu in 1957, and Hong Kong flu in 1968 all killed millions. Experts believe that another pandemic is overdue and may be triggered by the avian H5N1 influenza virus—the name indicates that this bird virus carries type 5 hemagglutinin and type 1 neuraminidase, the two major flu antigens. H5N1, which rapidly kills infected birds, is now present in flocks around the world and, since 1997, it has caused 258 cases of human flu and 153 deaths. People have caught H5N1 through close contact with infected birds but, luckily, H5N1 rarely passes between people.
Why Was This Study Done?
H5N1 might acquire the ability to move between people and start a human influenza pandemic at any time. Some of the H5N1 viruses are resistant to the antiviral drugs used to treat flu and there will inevitably be a lag of some months between the emergence of a human pandemic H5N1 strain and the bulk production of a vaccine effective against it. Thus, new preventative and therapeutic strategies are needed to combat human infections with H5N1. One possibility is passive immunotherapy—treating people with antibodies (proteins that recognize antigens) that can stop H5N1 from infecting cells (so-called neutralizing antibodies). In this study, the researchers have generated neutralizing human monoclonal antibodies (laboratory-produced preparations that contain one type of human antibody) and tested their ability to halt viral growth in mice infected with H5N1.
What Did the Researchers Do and Find?
Patients who have survived infection with H5N1 make neutralizing antibodies, so the researchers isolated and immortalized the immune cells making these antibodies from the patients' blood. They grew up each cell separately and purified the antibody that the cells made. These monoclonal antibodies were then tested for their ability to neutralize H5N1 and other flu viruses in the laboratory. The researchers identified several that neutralized the H5N1 strain with which the patients were originally infected and chose two for further study. In the test tube, the four antibodies neutralized closely related H5N1 viruses and an H5N1 virus from a different lineage (clade) that has also caused human disease, in addition to the original H5N1 virus, although with different efficacies. In mice, the antibodies provided protection from infection with the original virus when given a day before or one to three days after infection. Three antibodies also partly protected the mice against H5N1 from a different clade. Finally, the researchers showed that the antibodies protected mice by limiting viral replication, by lessening the deleterious effects of the virus in the lungs, and by stopping viral spread out of the lungs.
What Do These Findings Mean?
These results indicate that passive immunotherapy with human monoclonal antibodies could help to combat avian H5N1 if (or when) it starts a human pandemic. Passive immunotherapy is already used to prevent infections with several other viruses. In addition, a crude form of the approach—early treatment of patients with plasma (the liquid portion of blood) from convalescent patients—halved the death rate during the Spanish flu pandemic. Large amounts of pure monoclonal antibodies can be relatively easily made for clinical use, and this study indicates that some monoclonal antibodies neutralize H5N1 viruses from different clades. The researchers sound a note of caution, however: Before passive immunotherapy can help to halt an H5N1 pandemic, they warn, the monoclonal antibodies will have to be tested to see whether they can neutralize not only all the currently circulating H5N1 viruses but also any emerging pandemic versions, which might be antigenically distinct.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040178.
US Centers for Disease Control and Prevention information about influenza for patients and professionals including key facts about avian influenza
US National Institute of Allergy and Infectious Disease feature on seasonal, avian, and pandemic flu
World Health Organization factsheet on influenza and information on avian influenza, including latest figures for confirmed human cases
UK Health Protection Agency information on seasonal, avian, and pandemic influenza
Wikipedia pages on passive immunity and monoclonal antibodies (note: Wikipedia is an online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0040178
PMCID: PMC1880850  PMID: 17535101
7.  Reducing the Impact of the Next Influenza Pandemic Using Household-Based Public Health Interventions 
PLoS Medicine  2006;3(9):e361.
Background
The outbreak of highly pathogenic H5N1 influenza in domestic poultry and wild birds has caused global concern over the possible evolution of a novel human strain [1]. If such a strain emerges, and is not controlled at source [2,3], a pandemic is likely to result. Health policy in most countries will then be focused on reducing morbidity and mortality.
Methods and Findings
We estimate the expected reduction in primary attack rates for different household-based interventions using a mathematical model of influenza transmission within and between households. We show that, for lower transmissibility strains [2,4], the combination of household-based quarantine, isolation of cases outside the household, and targeted prophylactic use of anti-virals will be highly effective and likely feasible across a range of plausible transmission scenarios. For example, for a basic reproductive number (the average number of people infected by a typically infectious individual in an otherwise susceptible population) of 1.8, assuming only 50% compliance, this combination could reduce the infection (symptomatic) attack rate from 74% (49%) to 40% (27%), requiring peak quarantine and isolation levels of 6.2% and 0.8% of the population, respectively, and an overall anti-viral stockpile of 3.9 doses per member of the population. Although contact tracing may be additionally effective, the resources required make it impractical in most scenarios.
Conclusions
National influenza pandemic preparedness plans currently focus on reducing the impact associated with a constant attack rate, rather than on reducing transmission. Our findings suggest that the additional benefits and resource requirements of household-based interventions in reducing average levels of transmission should also be considered, even when expected levels of compliance are only moderate.
Voluntary household-based quarantine and external isolation are likely to be effective in limiting the morbidity and mortality of an influenza pandemic, even if such a pandemic cannot be entirely prevented, and even if compliance with these interventions is moderate.
Editors' Summary
Background.
Naturally occurring variation in the influenza virus can lead both to localized annual epidemics and to less frequent global pandemics of catastrophic proportions. The most destructive of the three influenza pandemics of the 20th century, the so-called Spanish flu of 1918–1919, is estimated to have caused 20 million deaths. As evidenced by ongoing tracking efforts and news media coverage of H5N1 avian influenza, contemporary approaches to monitoring and communications can be expected to alert health officials and the general public of the emergence of new, potentially pandemic strains before they spread globally.
Why Was This Study Done?
In order to act most effectively on advance notice of an approaching influenza pandemic, public health workers need to know which available interventions are likely to be most effective. This study was done to estimate the effectiveness of specific preventive measures that communities might implement to reduce the impact of pandemic flu. In particular, the study evaluates methods to reduce person-to-person transmission of influenza, in the likely scenario that complete control cannot be achieved by mass vaccination and anti-viral treatment alone.
What Did the Researchers Do and Find?
The researchers developed a mathematical model—essentially a computer simulation—to simulate the course of pandemic influenza in a hypothetical population at risk for infection at home, through external peer networks such as schools and workplaces, and through general community transmission. Parameters such as the distribution of household sizes, the rate at which individuals develop symptoms from nonpandemic viruses, and the risk of infection within households were derived from demographic and epidemiologic data from Hong Kong, as well as empirical studies of influenza transmission. A model based on these parameters was then used to calculate the effects of interventions including voluntary household quarantine, voluntary individual isolation in a facility outside the home, and contact tracing (that is, asking infectious individuals to identify people whom they may have infected and then warning those people) on the spread of pandemic influenza through the population. The model also took into account the anti-viral treatment of exposed, asymptomatic household members and of individuals in isolation, and assumed that all intervention strategies were put into place before the arrival of individuals infected with the pandemic virus.
  Using this model, the authors predicted that even if only half of the population were to comply with public health interventions, the proportion infected during the first year of an influenza pandemic could be substantially reduced by a combination of household-based quarantine, isolation of actively infected individuals in a location outside the household, and targeted prophylactic treatment of exposed individuals with anti-viral drugs. Based on an influenza-associated mortality rate of 0.5% (as has been estimated for New York City in the 1918–1919 pandemic), the magnitude of the predicted benefit of these interventions is a reduction from 49% to 27% in the proportion of the population who become ill in the first year of the pandemic, which would correspond to 16,000 fewer deaths in a city the size of Hong Kong (6.8 million people). In the model, anti-viral treatment appeared to be about as effective as isolation when each was used in combination with household quarantine, but would require stockpiling 3.9 doses of anti-viral for each member of the population. Contact tracing was predicted to provide a modest additional benefit over quarantine and isolation, but also to increase considerably the proportion of the population in quarantine.
What Do These Findings Mean?
This study predicts that voluntary household-based quarantine and external isolation can be effective in limiting the morbidity and mortality of an influenza pandemic, even if such a pandemic cannot be entirely prevented, and even if compliance with these interventions is far from uniform. These simulations can therefore inform preparedness plans in the absence of data from actual intervention trials, which would be impossible outside (and impractical within) the context of an actual pandemic. Like all mathematical models, however, the one presented in this study relies on a number of assumptions regarding the characteristics and circumstances of the situation that it is intended to represent. For example, the authors found that the efficacy of policies to reduce the rate of infection vary according to the ease with which a given virus spreads from person to person. Because this parameter (known as the basic reproductive ratio, R0) cannot be reliably predicted for a new viral strain based on past epidemics, the authors note that in an actual influenza pandemic rapid determinations of R0 in areas already involved would be necessary to finalize public health responses in threatened areas. Further, the implementation of the interventions that appear beneficial in this model would require devoting attention and resources to practical considerations, such as how to staff isolation centers and provide food and water to those in household quarantine. However accurate the scientific data and predictive models may be, their effectiveness can only be realized through well-coordinated local, as well as international, efforts.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030361.
• World Health Organization influenza pandemic preparedness page
• US Department of Health and Human Services avian and pandemic flu information site
• Pandemic influenza page from the Public Health Agency of Canada
• Emergency planning page on pandemic flu from the England Department of Health
• Wikipedia entry on pandemic influenza with links to individual country resources (note: Wikipedia is a free Internet encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030361
PMCID: PMC1526768  PMID: 16881729
8.  Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors 
Nature  2008;455(7212):532-536.
Investigation of the human antibody response to influenza virus infection has been largely limited to serology, with relatively little analysis at the molecular level. The 1918 H1N1 influenza virus pandemic was the most severe of the modern era1. Recent work has recovered the gene sequences of this unusual strain2, so that the 1918 pandemic virus could be reconstituted to display its unique virulence phenotypes3,4. However, little is known about adaptive immunity to this virus. We took advantage of the 1918 virus sequencing and the resultant production of recombinant 1918 hemagglutinin (HA) protein antigen to characterize at the clonal level neutralizing antibodies induced by natural exposure of survivors to the 1918 pandemic virus. In our study, each of 32 individuals tested that were born in or before 1915 exhibited seroreactivity with 1918 virus, nearly 90 years after the pandemic. Seven of 8 donor samples tested had circulating B cells that secreted antibodies that bound 1918 HA. We isolated B cells from subjects and generated five monoclonal antibodies that exhibited potent neutralizing activity against 1918 virus from three separate donors. These antibodies also cross-reacted with the genetically similar HA of a 1930 swine H1N1 influenza strain, but not with HAs of more contemporary human influenza viruses. The antibody genes exhibited an unusually high degree of somatic mutation. The antibodies bound to the 1918 HA protein with high affinity, exhibited exceptional virus neutralizing potency, and protected mice from lethal infection. Isolation of viruses that escaped inhibition suggested that the antibodies recognize classical antigenic sites on the HA surface. Thus, these studies reveal that survivors of the 1918 influenza pandemic possess highly functional, virus-neutralizing antibodies to this uniquely virulent virus, and that humans can sustain circulating B memory cells to viruses for many decades after exposure - well into the tenth decade of life.
doi:10.1038/nature07231
PMCID: PMC2848880  PMID: 18716625
9.  Influenza Human Monoclonal Antibody 1F1 Interacts with Three Major Antigenic Sites and Residues Mediating Human Receptor Specificity in H1N1 Viruses 
PLoS Pathogens  2012;8(12):e1003067.
Most monoclonal antibodies (mAbs) to the influenza A virus hemagglutinin (HA) head domain exhibit very limited breadth of inhibitory activity due to antigenic drift in field strains. However, mAb 1F1, isolated from a 1918 influenza pandemic survivor, inhibits select human H1 viruses (1918, 1943, 1947, and 1977 isolates). The crystal structure of 1F1 in complex with the 1918 HA shows that 1F1 contacts residues that are classically defined as belonging to three distinct antigenic sites, Sa, Sb and Ca2. The 1F1 heavy chain also reaches into the receptor binding site (RBS) and interacts with residues that contact sialoglycan receptors and determine HA receptor specificity. The 1F1 epitope is remarkably similar to the previously described murine HC63 H3 epitope, despite significant sequence differences between H1 and H3 HAs. Both antibodies potently inhibit receptor binding, but only HC63 can block the pH-induced conformational changes in HA that drive membrane fusion. Contacts within the RBS suggested that 1F1 may be sensitive to changes that alter HA receptor binding activity. Affinity assays confirmed that sequence changes that switch the HA to avian receptor specificity affect binding of 1F1 and a mAb possessing a closely related heavy chain, 1I20. To characterize 1F1 cross-reactivity, additional escape mutant selection and site-directed mutagenesis were performed. Residues 190 and 227 in the 1F1 epitope were found to be critical for 1F1 reactivity towards 1918, 1943 and 1977 HAs, as well as for 1I20 reactivity towards the 1918 HA. Therefore, 1F1 heavy-chain interactions with conserved RBS residues likely contribute to its ability to inhibit divergent HAs.
Author Summary
Influenza infection kills thousands of people every year and causes major pandemics every few decades. The most lethal outbreak of influenza known was the 1918 H1N1 influenza pandemic that killed an estimated 20 to 100 million people. The 1918 virus was likely introduced into the human population from birds. We previously described five human neutralizing antibodies from survivors of the 1918 pandemic that bind the hemagglutinin (HA) surface antigen. Here, we define the binding sites of antibodies 1F1 and 1I20 on the 1918 HA and demonstrate that these overlap with the glycan receptor binding site. The glycan specificity differs between human and avian viruses for the linkages of the sialylated sugar receptors [human (α2–6) or avian (α2–3)]. 1F1 and 1I20 binds viruses that contain HA residues that mediate preference for α2–6 sialylated sugars. Three other control antibodies were not affected by preferences for the linkages of the sialylated sugar receptors because they bind elsewhere. Since the receptor-binding site is relatively conserved, this may explain the cross-reactivity of 1F1 and the enhanced binding of 1F1 and 1I20 to HAs with human receptor specificity.
doi:10.1371/journal.ppat.1003067
PMCID: PMC3516549  PMID: 23236279
10.  Multiple Reassortment Events in the Evolutionary History of H1N1 Influenza A Virus Since 1918 
PLoS Pathogens  2008;4(2):e1000012.
The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized.
Author Summary
The periodic occurrence of influenza epidemics in humans caused by viruses of the A/H1N1 subtype remains a key question in viral epidemiology and evolution and a major issue for public health. Since the first documentation of A/H1N1 in humans in 1918, this virus has been associated with a variety of epidemics and influenza vaccine failures. Using 71 representative whole-genome sequences of A/H1N1 influenza virus sampled between 1918 and 2005, we show that reassortment occurs frequently throughout the evolutionary history of this virus. Critically, two of these reassortment events appear to be associated with particularly severe epidemics, those of 1947 and 1951. Our analysis reveals that the virus associated with the 1947 epidemic was composed of genome segments with differing phylogenetic histories, suggesting that this virus was created through an intra-subtype reassortment event. Notably, of the two main antigenic proteins, the segment encoding the HA (hemagglutinin) is related to isolates circulating in a later time period, while the NA (neuraminidase) is related to earlier sampled isolates. This explains previous observations that the HA circulating at this time exhibited extensive antigenic drift while the NA appeared to be conserved. In addition, a virus likely associated with the 1951 epidemic also appears to have been generated by a reassortment event. Overall, our findings suggest that reassortment is an important factor in the long-term evolution of influenza A virus, including the periodic emergence of epidemic viruses. However, to more fully capture the evolutionary history of this important virus, additional sequencing of influenza viruses from earlier time periods is clearly needed.
doi:10.1371/journal.ppat.1000012
PMCID: PMC2262849  PMID: 18463694
11.  A Comparative Analysis of Influenza Vaccination Programs 
PLoS Medicine  2006;3(10):e387.
Background
The threat of avian influenza and the 2004–2005 influenza vaccine supply shortage in the United States have sparked a debate about optimal vaccination strategies to reduce the burden of morbidity and mortality caused by the influenza virus.
Methods and Findings
We present a comparative analysis of two classes of suggested vaccination strategies: mortality-based strategies that target high-risk populations and morbidity-based strategies that target high-prevalence populations. Applying the methods of contact network epidemiology to a model of disease transmission in a large urban population, we assume that vaccine supplies are limited and then evaluate the efficacy of these strategies across a wide range of viral transmission rates and for two different age-specific mortality distributions.
We find that the optimal strategy depends critically on the viral transmission level (reproductive rate) of the virus: morbidity-based strategies outperform mortality-based strategies for moderately transmissible strains, while the reverse is true for highly transmissible strains. These results hold for a range of mortality rates reported for prior influenza epidemics and pandemics. Furthermore, we show that vaccination delays and multiple introductions of disease into the community have a more detrimental impact on morbidity-based strategies than mortality-based strategies.
Conclusions
If public health officials have reasonable estimates of the viral transmission rate and the frequency of new introductions into the community prior to an outbreak, then these methods can guide the design of optimal vaccination priorities. When such information is unreliable or not available, as is often the case, this study recommends mortality-based vaccination priorities.
A comparative analysis of two classes of suggested vaccination strategies, mortality-based strategies that target high-risk populations and morbidity-based strategies that target high-prevalence populations.
Editors' Summary
Background.
Influenza—a viral infection of the nose, throat, and airways that is transmitted in airborne droplets released by coughing or sneezing—is a serious public health threat. Most people recover quickly from influenza, but some individuals, especially infants, old people, and individuals with chronic health problems, can develop pneumonia and die. In the US, seasonal outbreaks (epidemics) of flu cause an estimated 36,000 excess deaths annually. And now there are fears that avian influenza might start a human pandemic—a global epidemic that could kill millions. Seasonal outbreaks of influenza occur because flu viruses continually change the viral proteins (antigens) to which the immune system responds. “Antigenic drift”—small changes in these proteins—means that an immune system response that combats flu one year may not provide complete protection the next winter. “Antigenic shift”—large antigen changes—can cause pandemics because communities have no immunity to the changed virus. Annual vaccination with vaccines based on the currently circulating viruses controls seasonal flu epidemics; to control a pandemic, vaccines based on the antigenically altered virus would have to be quickly developed.
Why Was This Study Done?
Most countries target vaccination efforts towards the people most at risk of dying from influenza, and to health-care workers who are likely come into contact with flu patients. But is this the best way to reduce the burden of illness (morbidity) and death (mortality) caused by influenza, particularly at the start of a pandemic, when vaccine would be limited? Old people and infants are much less likely to catch and spread influenza than school children, students, and employed adults, so could vaccination of these sections of the population—instead of those most at risk of death—be the best way to contain influenza outbreaks? In this study, the researchers used an analytical method called “contact network epidemiology” to compare two types of vaccination strategies: the currently favored mortality-based strategy, which targets high-risk individuals, and a morbidity-based strategy, which targets those segments of the community in which most influenza cases occur.
What Did the Researchers Do and Find?
Most models of disease transmission assume that each member of a community is equally likely to infect every other member. But a baby is unlikely to transmit flu to, for example, an unrelated, housebound elderly person. Contact network epidemiology takes the likely relationships between people into account when modeling disease transmission. Using information from Vancouver, British Columbia, Canada, on household size, age distribution, and occupations, and other factors such as school sizes, the researchers built a model population of a quarter of a million interconnected people. They then investigated how different vaccination strategies controlled the spread of influenza in this population. The optimal strategy depended on the level of viral transmissibility—the likelihood that an infectious person transmits influenza to a susceptible individual with whom he or she has contact. For moderately transmissible flu viruses, a morbidity-based vaccination strategy, in which the people most likely to catch the flu are vaccinated, was more effective at containing seasonal and pandemic outbreaks than a mortality-based strategy, in which the people most likely to die if they caught the flu are vaccinated. For highly transmissible strains, this situation was reversed. The level of transmissibility at which this reversal occurred depended on several factors, including whether vaccination was delayed and how many times influenza was introduced into the community.
What Do These Findings Mean?
The researchers tested their models by checking that they could replicate real influenza epidemics and pandemics, but, as with all mathematical models, they included many assumptions about influenza in their calculations, which may affect their results. Also, because the contact network used data from Vancouver, their results might not be applicable to other cities, or to nonurban areas. Nevertheless, their findings have important public health implications. When there are reasonable estimates of the viral transmission rate, and it is known how often influenza is being introduced into a community, contact network models could help public health officials choose between morbidity- and mortality-based vaccination strategies. When the viral transmission rate is unreliable or unavailable (for example, at the start of a pandemic), the best policy would be the currently preferred strategy of mortality-based vaccination. More generally, the use of contact network models should improve estimates of how infectious diseases spread through populations and indicate the best ways to control human epidemics and pandemics.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030387.
US Centers for Disease Control and Prevention information about influenza for patients and professionals, including key facts on vaccination
US National Institute of Allergy and Infectious Diseases feature on seasonal, avian, and pandemic influenza
World Health Organization fact sheet on influenza, with links to information on vaccination
UK Health Protection Agency information on seasonal, avian, and pandemic influenza
MedlinePlus entry on influenza
doi:10.1371/journal.pmed.0030387
PMCID: PMC1584413  PMID: 17020406
12.  The nonadaptive nature of the H1N1 2009 Swine Flu pandemic contrasts with the adaptive facilitation of transmission to a new host 
Background
The emergence of the 2009 H1N1 Influenza pandemic followed a multiple reassortment event from viruses originally circulating in swines and humans, but the adaptive nature of this emergence is poorly understood.
Results
Here we base our analysis on 1180 complete genomes of H1N1 viruses sampled in North America between 2000 and 2010 in swine and human hosts. We show that while transmission to a human host might require an adaptive phase in the HA and NA antigens, the emergence of the 2009 pandemic was essentially nonadaptive. A more detailed analysis of the NA protein shows that the 2009 pandemic sequence is characterized by novel epitopes and by a particular substitution in loop 150, which is responsible for a nonadaptive structural change tightly associated with the emergence of the pandemic.
Conclusions
Because this substitution was not present in the 1918 H1N1 pandemic virus, we posit that the emergence of pandemics is due to epistatic interactions between sites distributed over different segments. Altogether, our results are consistent with population dynamics models that highlight the epistatic and nonadaptive rise of novel epitopes in viral populations, followed by their demise when the resulting virus is too virulent.
doi:10.1186/1471-2148-11-6
PMCID: PMC3024937  PMID: 21211019
13.  Isolation of a High Affinity Neutralizing Monoclonal Antibody against 2009 Pandemic H1N1 Virus That Binds at the ‘Sa’ Antigenic Site 
PLoS ONE  2013;8(1):e55516.
Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs) have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (KD = 2.1±0.4 pM) murine MAb, MA2077 that binds specifically to the hemagglutinin (HA) surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC50 = 0.08 µg/ml). MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 µg/ml) against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic) on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein ‘Sa’ and ‘Sb’ sites were independently mutated, localized the binding site of MA2077 within the ‘Sa’ antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus.
doi:10.1371/journal.pone.0055516
PMCID: PMC3561186  PMID: 23383214
14.  Monitoring the Impact of Influenza by Age: Emergency Department Fever and Respiratory Complaint Surveillance in New York City 
PLoS Medicine  2007;4(8):e247.
Background
The importance of understanding age when estimating the impact of influenza on hospitalizations and deaths has been well described, yet existing surveillance systems have not made adequate use of age-specific data. Monitoring influenza-related morbidity using electronic health data may provide timely and detailed insight into the age-specific course, impact and epidemiology of seasonal drift and reassortment epidemic viruses. The purpose of this study was to evaluate the use of emergency department (ED) chief complaint data for measuring influenza-attributable morbidity by age and by predominant circulating virus.
Methods and Findings
We analyzed electronically reported ED fever and respiratory chief complaint and viral surveillance data in New York City (NYC) during the 2001–2002 through 2005–2006 influenza seasons, and inferred dominant circulating viruses from national surveillance reports. We estimated influenza-attributable impact as observed visits in excess of a model-predicted baseline during influenza periods, and epidemic timing by threshold and cross correlation. We found excess fever and respiratory ED visits occurred predominantly among school-aged children (8.5 excess ED visits per 1,000 children aged 5–17 y) with little or no impact on adults during the early-2002 B/Victoria-lineage epidemic; increased fever and respiratory ED visits among children younger than 5 y during respiratory syncytial virus-predominant periods preceding epidemic influenza; and excess ED visits across all ages during the 2003–2004 (9.2 excess visits per 1,000 population) and 2004–2005 (5.2 excess visits per 1,000 population) A/H3N2 Fujian-lineage epidemics, with the relative impact shifted within and between seasons from younger to older ages. During each influenza epidemic period in the study, ED visits were increased among school-aged children, and each epidemic peaked among school-aged children before other impacted age groups.
Conclusions
Influenza-related morbidity in NYC was highly age- and strain-specific. The impact of reemerging B/Victoria-lineage influenza was focused primarily on school-aged children born since the virus was last widespread in the US, while epidemic A/Fujian-lineage influenza affected all age groups, consistent with a novel antigenic variant. The correspondence between predominant circulating viruses and excess ED visits, hospitalizations, and deaths shows that excess fever and respiratory ED visits provide a reliable surrogate measure of incident influenza-attributable morbidity. The highly age-specific impact of influenza by subtype and strain suggests that greater age detail be incorporated into ongoing surveillance. Influenza morbidity surveillance using electronic data currently available in many jurisdictions can provide timely and representative information about the age-specific epidemiology of circulating influenza viruses.
Don Olson and colleagues report that influenza-related morbidity in NYC from 2001 to 2006 was highly age- and strain-specific and conclude that surveillance using electronic data can provide timely and representative information about the epidemiology of circulating influenza viruses.
Editors' Summary
Background.
Seasonal outbreaks (epidemics) of influenza (a viral infection of the nose, throat, and airways) send millions of people to their beds every winter. Most recover quickly, but flu epidemics often disrupt daily life and can cause many deaths. Seasonal epidemics occur because influenza viruses continually make small changes to the viral proteins (antigens) that the human immune system recognizes. Consequently, an immune response that combats influenza one year may provide partial or no protection the following year. Occasionally, an influenza virus with large antigenic changes emerges that triggers an influenza pandemic, or global epidemic. To help prepare for both seasonal epidemics and pandemics, public-health officials monitor influenza-related illness and death, investigate unusual outbreaks of respiratory diseases, and characterize circulating strains of the influenza virus. While traditional influenza-related illness surveillance systems rely on relatively slow voluntary clinician reporting of cases with influenza-like illness symptoms, some jurisdictions have also started to use “syndromic” surveillance systems. These use electronic health-related data rather than clinical impression to track illness in the community. For example, increased visits to emergency departments for fever or respiratory (breathing) problems can provide an early warning of an influenza outbreak.
Why Was This Study Done?
Rapid illness surveillance systems have been shown to detect flu outbreaks earlier than is possible through monitoring deaths from pneumonia or influenza. Increases in visits to emergency departments by children for fever or respiratory problems can provide an even earlier indicator. Researchers have not previously examined in detail how fever and respiratory problems by age group correlate with the predominant circulating respiratory viruses. Knowing details like this would help public-health officials detect and respond to influenza epidemics and pandemics. In this study, the researchers have used data collected between 2001 and 2006 in New York City emergency departments to investigate these aspects of syndromic surveillance for influenza.
What Did the Researchers Do and Find?
The researchers analyzed emergency department visits categorized broadly into a fever and respiratory syndrome (which provides an estimate of the total visits attributable to influenza) or more narrowly into an influenza-like illness syndrome (which specifically indicates fever with cough and/or sore throat) with laboratory-confirmed influenza surveillance data. They found that emergency department visits were highest during peak influenza periods, and that the affect on different age groups varied depending on the predominant circulating viruses. In early 2002, an epidemic reemergence of B/Victoria-lineage influenza viruses caused increased visits among school-aged children, while adult visits did not increase. By contrast, during the 2003–2004 season, when the predominant virus was an A/H3N2 Fujian-lineage influenza virus, excess visits occurred in all age groups, though the relative increase was greatest and earliest among school-aged children. During periods of documented respiratory syncytial virus (RSV) circulation, increases in fever and respiratory emergency department visits occurred in children under five years of age regardless of influenza circulation. Finally, the researchers found that excess visits to emergency departments for fever and respiratory symptoms preceded deaths from pneumonia or influenza by about two weeks.
What Do These Findings Mean?
These findings indicate that excess emergency department visits for fever and respiratory symptoms can provide a reliable and timely surrogate measure of illness due to influenza. They also provide new insights into how different influenza viruses affect people of different ages and how the timing and progression of each influenza season differs. These results, based on data collected over only five years in one city, might not be generalizable to other settings or years, warn the researchers. However, the present results strongly suggest that the routine monitoring of influenza might be improved by using electronic health-related data, such as emergency department visit data, and by examining it specifically by age group. Furthermore, by showing that school-aged children can be the first people to be affected by seasonal influenza, these results highlight the important role this age group plays in community-wide transmission of influenza, an observation that could influence the implementation of public-health strategies such as vaccination that aim to protect communities during influenza epidemics and pandemics.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040247.
• US Centers for Disease Control and Prevention provides information on influenza for patients and health professionals and on influenza surveillance in the US (in English, Spanish, and several other languages)
• World Health Organization has a fact sheet on influenza and on global surveillance for influenza (in English, Spanish, French, Russian, Arabic, and Chinese)
• The MedlinePlus encyclopedia contains a page on flu (in English and Spanish)
• US National Institute of Allergy and Infectious Diseases has a feature called “focus on flu”
• A detailed report from the US Centers for Disease Control and Prevention titled “Framework for Evaluating Public Health Surveillance Systems for Early Detection of Outbreaks” includes a simple description of syndromic surveillance
• The International Society for Disease Surveillance has a collaborative syndromic surveillance public wiki
• The Anthropology of the Contemporary Research Collaboratory includes working papers and discussions by cultural anthropologists studying modern vital systems security and syndromic surveillance
doi:10.1371/journal.pmed.0040247
PMCID: PMC1939858  PMID: 17683196
15.  Hedging against Antiviral Resistance during the Next Influenza Pandemic Using Small Stockpiles of an Alternative Chemotherapy 
PLoS Medicine  2009;6(5):e1000085.
Mathematically simulating an influenza pandemic, Joseph Wu and colleagues predict that using a secondary antiviral drug early in local epidemics would reduce global emergence of resistance to the primary stockpiled drug.
Background
The effectiveness of single-drug antiviral interventions to reduce morbidity and mortality during the next influenza pandemic will be substantially weakened if transmissible strains emerge which are resistant to the stockpiled antiviral drugs. We developed a mathematical model to test the hypothesis that a small stockpile of a secondary antiviral drug could be used to mitigate the adverse consequences of the emergence of resistant strains.
Methods and Findings
We used a multistrain stochastic transmission model of influenza to show that the spread of antiviral resistance can be significantly reduced by deploying a small stockpile (1% population coverage) of a secondary drug during the early phase of local epidemics. We considered two strategies for the use of the secondary stockpile: early combination chemotherapy (ECC; individuals are treated with both drugs in combination while both are available); and sequential multidrug chemotherapy (SMC; individuals are treated only with the secondary drug until it is exhausted, then treated with the primary drug). We investigated all potentially important regions of unknown parameter space and found that both ECC and SMC reduced the cumulative attack rate (AR) and the resistant attack rate (RAR) unless the probability of emergence of resistance to the primary drug pA was so low (less than 1 in 10,000) that resistance was unlikely to be a problem or so high (more than 1 in 20) that resistance emerged as soon as primary drug monotherapy began. For example, when the basic reproductive number was 1.8 and 40% of symptomatic individuals were treated with antivirals, AR and RAR were 67% and 38% under monotherapy if pA = 0.01. If the probability of resistance emergence for the secondary drug was also 0.01, then SMC reduced AR and RAR to 57% and 2%. The effectiveness of ECC was similar if combination chemotherapy reduced the probabilities of resistance emergence by at least ten times. We extended our model using travel data between 105 large cities to investigate the robustness of these resistance-limiting strategies at a global scale. We found that as long as populations that were the main source of resistant strains employed these strategies (SMC or ECC), then those same strategies were also effective for populations far from the source even when some intermediate populations failed to control resistance. In essence, through the existence of many wild-type epidemics, the interconnectedness of the global network dampened the international spread of resistant strains.
Conclusions
Our results indicate that the augmentation of existing stockpiles of a single anti-influenza drug with smaller stockpiles of a second drug could be an effective and inexpensive epidemiological hedge against antiviral resistance if either SMC or ECC were used. Choosing between these strategies will require additional empirical studies. Specifically, the choice will depend on the safety of combination therapy and the synergistic effect of one antiviral in suppressing the emergence of resistance to the other antiviral when both are taken in combination.
Editors' Summary
Background
Every winter, millions of people catch influenza—a viral infection of the airways—and about half a million people die as a result. These seasonal “epidemics” occur because small but frequent changes in the viral proteins (antigens) to which the human immune system responds mean that an immune response produced one year provides only partial protection against influenza the next year. Influenza viruses also occasionally appear that contain major antigenic changes. Human populations have little or no immunity to such viruses so they can start deadly pandemics (global epidemics). The 1918–19 influenza pandemic, for example, killed 40–50 million people. The last influenza pandemic was in 1968 and many experts fear the next pandemic might strike soon. To prepare for such an eventuality, scientists are trying to develop vaccines that might work against an emerging pandemic influenza virus. In addition, many governments are stockpiling antiviral drugs for the large-scale treatment of influenza and for targeted prophylaxis (prevention). Antiviral drugs prevent the replication of the influenza virus, thereby shortening the length of time that an infected person is ill and protecting uninfected people against infection. Their widespread use should, therefore, slow the spread of pandemic influenza.
Why Was This Study Done?
Although some countries are stockpiling more than one antiviral drug in preparation for an influenza pandemic, many countries are investing in large stockpiles of a single drug, oseltamivir (Tamiflu). But influenza viruses can become resistant to antiviral drugs and the widespread use of a single drug (the primary antiviral) is likely to increase the risk that a resistant strain will emerge. If this did happen, the ability of antiviral drugs to slow the spread of a pandemic would be greatly reduced. In this study, the researchers use a mathematical model of influenza transmission to investigate whether a small stockpile of a secondary antiviral drug could be used to prevent the adverse consequences of the emergence of antiviral-resistant pandemic influenza viruses.
What Did the Researchers Do and Find?
The researchers used their model of influenza transmission to predict how two strategies for the use of a small stockpile of a secondary antiviral might affect the cumulative attack rate (AR; the final proportion of the population infected) and the resistant attack rate (RAR; the proportion of the population infected with an influenza virus strain resistant to the primary drug, a measure that may reflect the impact of antiviral resistance on death rates during a pandemic). In a large, closed population, the model predicted that both “early combination chemotherapy” (treatment with both drugs together while both are available) and “sequential multi-drug chemotherapy” (treatment with the secondary drug until it is exhausted, then treatment with the primary drug) would reduce the AR and the RAR compared with monotherapy unless the probability of emergence of resistance to the primary drug was very low (resistance rarely occurred) or very high (resistance emerged as soon as the primary drug was used). The researchers then introduced international travel data into their model to investigate whether these two strategies could limit the development of antiviral resistance at a global scale. This analysis predicted that, provided the population that was the main source of resistant strains used one of the strategies, both strategies in distant, subsequently affected populations would be able to reduce the AR and RAR even if some intermediate populations failed to control resistance.
What Do These Findings Mean?
As with all mathematical models, the accuracy of these predictions depends on the assumptions used to build the model and the data fed into it. Nevertheless, these findings suggest that both of the proposed strategies for the use of small stockpiles of secondary antiviral drugs should limit the spread of drug-resistant influenza virus more effectively than monotherapy with the primary antiviral drug. Thus, small stockpiles of secondary antivirals could provide a hedge against the development of antiviral resistance during the early phases of an influenza pandemic and are predicted to be a worthwhile public-health investment. However, note the researchers, experimental studies—including determinations of which drugs are safe to use together, and how effectively a given combination prevents resistance compared with each drug used alone—are now needed to decide which of the strategies to recommend in real-life situations. In the context of the 2009 global spread of swine flu, these findings suggest that public health officials might consider zanamivir (Relenza) as the secondary antiviral drug for resistance-limiting strategies in countries that have stockpiled oseltamivir.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000085.
The US Centers for Disease Control and Prevention provides information about influenza for patients and professionals, including specific information on pandemic influenza and on influenza antiviral drugs
The World Health Organization provides information on influenza (in several languages) and has detailed guidelines on the use of vaccines and antivirals during influenza pandemics
The UK Health Protection Agency provides information on pandemic influenza
MedlinePlus provides a list of links to other information about influenza (in English and Spanish)
doi:10.1371/journal.pmed.1000085
PMCID: PMC2680070  PMID: 19440354
16.  Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets 
PLoS Medicine  2006;3(9):e360.
Background
Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic.
Methods and Findings
Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses.
Conclusions
The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.
Promising preclinical results on safety, immunogenicity, and efficacy against diverse H5N1 strains provide support for careful evaluation of live, attenuated H5N1 vaccines in clinical trials in humans.
Editors' Summary
Background.
Influenza A viruses are classified into subtypes according to two of the proteins from the virus surface, the hemagglutinin (HA) and neuraminidase (NA) proteins, each of which occurs naturally in several different versions. For example, the global epidemic (pandemic) of 1918–1919 was caused by an influenza virus containing subtype 1 hemagglutinin and subtype 1 neuraminidase (H1N1), the 1957–1958 pandemic involved an H2N2 virus, and the 1969 pandemic, H3N2. Since 1997, several serious outbreaks of H5N1 infection have occurred in poultry and in humans, raising concerns that H5N1 “bird flu” may cause the next human influenza pandemic. Although human-to-human transmission of H5N1 viruses appears limited, mortality rates in human outbreaks of the disease have been alarmingly high—approximately 50%. A protective vaccine against H5N1 influenza might not only benefit regions where transmission from poultry to humans occurs, but could conceivably avert global catastrophe in the event that H5N1 evolves such that human-to-human spread becomes more frequent.
Why Was This Study Done?
Several approaches are in progress to develop vaccines against H5N1 viruses. To date, the products that have been tested in humans have not been very effective in producing a strong immune response. To be optimal for human use, a vaccine would have to be very safe, remain stable in storage, and provide protection against influenza caused by naturally occurring H5N1 viruses that are not precisely identical to the ones used to make the vaccine. This study was done to develop a new H5N1 vaccine and to test it in animals.
What Did the Researchers Do and Find?
The researchers developed vaccines using three artificially constructed, weakened forms of the H5N1 influenza virus. The three vaccine viruses were constructed using flu virus proteins other than HA and NA from an artificially weakened (attenuated) strain of influenza. These were combined in laboratory-grown cells with HA and NA proteins from H5N1 viruses isolated from human cases during three different years: 2004, 2003, and 1997. They grew larger quantities of the resulting viruses in hen's eggs, and tested the vaccines in chickens, ferrets, and mice.
In tests of safety, the study found that, unlike the natural viruses from which they were derived, the vaccine strains did not cause death when injected into the bloodstream of chickens, and did not even cause infection when given through the birds' breathing passages. Similarly, while the natural viruses were lethal in mice at various doses, the vaccine strains did not cause death even at the highest dose. In ferrets, infection with the vaccine strains was limited to the upper respiratory tract, while the natural viruses spread to the lungs and other organs.
In tests of protection, all mice that had received any of the three vaccines survived following infection with any of the natural viruses (so-called viral challenge), while unvaccinated mice died following viral challenge. This occurred even though standard blood tests could not detect a strong immune responses following a single dose of vaccine. Challenge virus was detected in the lungs of the immunized mice, but at lower levels than in the unvaccinated mice. Mice given two doses of a vaccine showed stronger immunity on blood tests, and almost complete protection from respiratory infection following challenge. In addition, mice and ferrets that had received two doses of vaccine were protected against challenge with H5N1 strains from more recent outbreaks in Asia that differed substantially from the strains that were used for the vaccine.
What Do These Findings Mean?
This study shows that it is possible to create a live, attenuated vaccine based on a single H5N1 virus that can provide protection (in mice and ferrets, at least) against different H5N1 viruses that emerge years later. Attenuated influenza virus vaccines of this sort are unlikely to be useful to protect fowl because they do not infect or induce an immune response in chickens. However, while the safety and protection found in small animals are encouraging, it is not possible to know without human testing whether a vaccine that protects mice and ferrets will work in humans, or how this type of vaccine may compare with others being developed for use in humans against H5N1 influenza. Tests of one of the vaccines in human volunteers in carefully conducted clinical trials are currently under way.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030360.
WHO Influenza Pandemic Preparedness page
US Department of Health and Human Services Avian and Pandemic flu information site
Wikipedia entry on H5N1 (note: Wikipedia is a free Internet encyclopedia that anyone can edit)
CDC Avian Influenza Web page
doi:10.1371/journal.pmed.0030360
PMCID: PMC1564176  PMID: 16968127
17.  N-Linked Glycosylation of the Hemagglutinin Protein Influences Virulence and Antigenicity of the 1918 Pandemic and Seasonal H1N1 Influenza A Viruses 
Journal of Virology  2013;87(15):8756-8766.
The hemagglutinin (HA) protein is a major virulence determinant for the 1918 pandemic influenza virus; however, it encodes no known virulence-associated determinants. In comparison to seasonal influenza viruses of lesser virulence, the 1918 H1N1 virus has fewer glycosylation sequons on the HA globular head region. Using site-directed mutagenesis, we found that a 1918 HA recombinant virus, of high virulence, could be significantly attenuated in mice by adding two additional glycosylation sites (asparagine [Asn] 71 and Asn 286) on the side of the HA head. The 1918 HA recombinant virus was further attenuated by introducing two additional glycosylation sites on the top of the HA head at Asn 142 and Asn 172. In a reciprocal experimental approach, deletion of HA glycosylation sites (Asn 142 and Asn 177, but not Asn 71 and Asn 104) from a seasonal influenza H1N1 virus, A/Solomon Islands/2006 (SI/06), led to increased virulence in mice. The addition of glycosylation sites to 1918 HA and removal of glycosylation sites from SI/06 HA imposed constraints on the theoretical structure surrounding the glycan receptor binding sites, which in turn led to distinct glycan receptor binding properties. The modification of glycosylation sites for the 1918 and SI/06 viruses also caused changes in viral antigenicity based on cross-reactive hemagglutinin inhibition antibody titers with antisera from mice infected with wild-type or glycan mutant viruses. These results demonstrate that glycosylation patterns of the 1918 and seasonal H1N1 viruses directly contribute to differences in virulence and are partially responsible for their distinct antigenicity.
doi:10.1128/JVI.00593-13
PMCID: PMC3719814  PMID: 23740978
18.  Cross-Reactive Neuraminidase Antibodies Afford Partial Protection against H5N1 in Mice and Are Present in Unexposed Humans 
PLoS Medicine  2007;4(2):e59.
Background
A pandemic H5N1 influenza outbreak would be facilitated by an absence of immunity to the avian-derived virus in the human population. Although this condition is likely in regard to hemagglutinin-mediated immunity, the neuraminidase (NA) of H5N1 viruses (avN1) and of endemic human H1N1 viruses (huN1) are classified in the same serotype. We hypothesized that an immune response to huN1 could mediate cross-protection against H5N1 influenza virus infection.
Methods and Findings
Mice were immunized against the NA of a contemporary human H1N1 strain by DNA vaccination. They were challenged with recombinant A/Puerto Rico/8/34 (PR8) viruses bearing huN1 (PR8-huN1) or avN1 (PR8-avN1) or with H5N1 virus A/Vietnam/1203/04. Additional naïve mice were injected with sera from vaccinated mice prior to H5N1 challenge. Also, serum specimens from humans were analyzed for reactivity with avN1. Immunization elicited a serum IgG response to huN1 and robust protection against the homologous challenge virus. Immunized mice were partially protected from lethal challenge with H5N1 virus or recombinant PR8-avN1. Sera transferred from immunized mice to naïve animals conferred similar protection against H5N1 mortality. Analysis of human sera showed that antibodies able to inhibit the sialidase activity of avN1 exist in some individuals.
Conclusions
These data reveal that humoral immunity elicited by huN1 can partially protect against H5N1 infection in a mammalian host. Our results suggest that a portion of the human population could have some degree of resistance to H5N1 influenza, with the possibility that this could be induced or enhanced through immunization with seasonal influenza vaccines.
Humoral immunity against endemic human H1N1 influenza viruses can partially protect mice against H5N1 challenge, raising the possibility that a portion of the human population could have some degree of resistance against avian flu.
Editors' Summary
Background.
Every winter, millions of people catch influenza—a viral infection of the airways. Most recover quickly but influenza can kill infants, elderly people, and chronically ill individuals. To minimize these deaths, the World Health Organization recommends that vulnerable people be vaccinated against influenza every autumn. Annual vaccination is necessary because flu viruses continually make small changes to the viral proteins (antigens) that the immune system recognizes. Each year's vaccine contains disabled versions of the circulating strains of influenza A type H1N1 and H3N2 viruses, and of influenza B virus. The H and N refer to the major influenza A antigens (hemagglutinin and neuraminidase), and the numbers refer to the type of each antigen; different H1N1 and H3N2 virus strains contain small variations in their respective hemagglutinin and neuraminidase type. Vaccines provide protection against seasonal influenza outbreaks, but sometimes flu viruses emerge that contain major antigenic changes, such as a different hemagglutinin type. These viruses can start pandemics (global outbreaks) because populations have little immunity to them. Many scientists believe that avian (bird) H5N1 influenza virus (which has caused about 250 confirmed cases of human flu and 150 deaths) could trigger the next human pandemic.
Why Was This Study Done?
Avian influenza H5N1 virus has not started a human pandemic yet because it cannot move easily between people. If it acquires this property, it could kill millions before an effective vaccine could be developed, so researchers are looking for other ways to provide protection against avian H5N1. One possibility is that an immune response to the human type 1 neuraminidase (huN1) in circulating H1N1 influenza virus strains and vaccines could provide some protection against avian H5N1 influenza virus, which contains the closely related avian type 1 neuraminidase (avN1). In this study, the researchers have investigated this possibility in mice and in a small human study.
What Did the Researchers Do and Find?
The researchers immunized mice with DNA encoding the huN1 present in a circulating H1N1 virus. They then examined the immune response of the mice to this huN1 and to avN1 from an avian H5N1 virus isolated from a human patient (A/Vietnam/1203/04). Most of the mice made antibodies (proteins that recognize antigens) against huN1; a few also made detectable levels of antibodies against avN1. All the vaccinated mice survived infection with a man-made flu virus containing huN1, and half also survived infection with low doses of a man-made virus containing avN1 or A/Vietnam/1203/04. To test whether the antibodies made by the vaccinated mice were responsible for this partial protection, the researchers collected serum (the liquid part of blood that contains the antibodies) from them and injected it into unvaccinated mice. Again, about half of the mice survived infection with the H5N1 virus, which indicates that the huN1-induced immunity against H5N1 is largely mediated by antibodies. Finally, the researchers tested serum samples from 38 human volunteers for their ability to inhibit neuraminidase from an H1N1 virus and two H5N1 viruses (antibodies to neuraminidase reduce viral replication and disease severity by inhibiting neuraminidase activity). Most of the sera inhibited the enzyme from the H1N1 virus; and seven also inhibited the enzyme from both H5N1 viruses.
What Do These Findings Mean?
These findings indicate that a vaccine containing huN1 induces the production of antibodies in mice that partly protect them against H5N1 infection. In addition, the human study suggests that some people may have some degree of resistance to H5N1 influenza because of exposure to H1N1 viruses or routine influenza vaccination. These results, while intriguing, don't show that there is actual protection, but it seems well worth doing additional work to address this question. The researchers also suggest that many more people might have been infected already with H5N1 but their strong H1N1 immunity meant they had only mild symptoms, and this hypothesis also deserves further investigation. Overall, these findings raise the possibility that seasonal influenza vaccination may provide some protection against pandemic H5N1. It is worth discussing whether, even while further studies are underway, seasonal vaccination should be increased, especially in areas where H5N1 is present in birds.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040059.
A related PLoS Medicine Perspective article by Laura Gillim-Ross and Kanta Subbarao is available
US Centers for Disease Control and Prevention provides information about influenza for patients and professionals, including key facts about avian influenza and vaccination
US National Institute of Allergy and Infectious Disease has a feature on seasonal, avian and pandemic flu
World Health Organization has fact sheets on influenza and influenza vaccines, and information on avian influenza
UK Health Protection Agency provides information on seasonal, avian, and pandemic influenza
doi:10.1371/journal.pmed.0040059
PMCID: PMC1796909  PMID: 17298168
19.  N-Linked Glycosylation in the Hemagglutinin of Influenza A Viruses 
Yonsei Medical Journal  2012;53(5):886-893.
Since the 1918 influenza A virus (IAV) pandemic, H1N1 viruses have circulated in human populations. The hemagglutinin (HA) of IAV determines viral antigenicity and often undergoes N-linked glycosylation (NLG) at several sites. Interestingly, structural analysis of the 1918 and 2009 H1N1 pandemic viruses revealed antigenic similarities attributable to the conserved epitopes and the NLG statuses of their HA proteins. NLG of the globular head of HA is known to modulate the antigenicity, fusion activity, virulence, receptor-binding specificity, and immune evasion of IAV. In addition, the HA of IAV often retains additional mutations. These supplemental mutations compensate for the attenuation of viral properties resulting from the introduced NLG. In human H1N1 viruses, the number and location of NLG sites has been regulated in accordance with the antigenic variability of the NLG-targeted antibody-binding site. The relationship between the NLG and the antigenic variance in HA appears to be stably controlled in the viral context.
doi:10.3349/ymj.2012.53.5.886
PMCID: PMC3423856  PMID: 22869469
Glycosylation; hemagglutinin; influenza virus; pandemic
20.  The 1918 influenza pandemic: Lessons for 2009 and the future 
Critical care medicine  2010;38(4 Suppl):e10-e20.
The 1918 to 1919 H1N1 influenza pandemic is among the most deadly events in recorded human history, having killed an estimated 50 to 100 million persons. Recent H5N1 avian influenza epizootics associated with sporadic human fatalities have heightened concern that a new influenza pandemic, one at least as lethal as that of 1918, could be developing. In early 2009, a novel pandemic H1N1 influenza virus appeared, but it has not exhibited unusually high pathogenicity. Nevertheless, because this virus spreads globally, some scientists predict that mutations will increase its lethality. Therefore, to accurately predict, plan, and respond to current and future influenza pandemics, we must first better-understand the events and experiences of 1918.
Although the entire genome of the 1918 influenza virus has been sequenced, many questions about the pandemic it caused remain unanswered. In this review, we discuss the origin of the 1918 pandemic influenza virus, the pandemic’s unusual epidemiologic features and the causes and demographic patterns of fatality, and how this information should impact our response to the current 2009 H1N1 pandemic and future pandemics. After 92 yrs of research, fundamental questions about influenza pandemics remain unanswered. Thus, we must remain vigilant and use the knowledge we have gained from 1918 and other influenza pandemics to direct targeted research and pandemic influenza preparedness planning, emphasizing prevention, containment, and treatment.
doi:10.1097/CCM.0b013e3181ceb25b
PMCID: PMC3180813  PMID: 20048675
infectious diseases; influenza; influenza virus; pandemic; pathogenesis; pneumonia; viral diseases
21.  Complete-Proteome Mapping of Human Influenza A Adaptive Mutations: Implications for Human Transmissibility of Zoonotic Strains 
PLoS ONE  2010;5(2):e9025.
Background
There is widespread concern that H5N1 avian influenza A viruses will emerge as a pandemic threat, if they become capable of human-to-human (H2H) transmission. Avian strains lack this capability, which suggests that it requires important adaptive mutations. We performed a large-scale comparative analysis of proteins from avian and human strains, to produce a catalogue of mutations associated with H2H transmissibility, and to detect their presence in avian isolates.
Methodology/Principal Findings
We constructed a dataset of influenza A protein sequences from 92,343 public database records. Human and avian sequence subsets were compared, using a method based on mutual information, to identify characteristic sites where human isolates present conserved mutations. The resulting catalogue comprises 68 characteristic sites in eight internal proteins. Subtype variability prevented the identification of adaptive mutations in the hemagglutinin and neuraminidase proteins. The high number of sites in the ribonucleoprotein complex suggests interdependence between mutations in multiple proteins. Characteristic sites are often clustered within known functional regions, suggesting their functional roles in cellular processes. By isolating and concatenating characteristic site residues, we defined adaptation signatures, which summarize the adaptive potential of specific isolates. Most adaptive mutations emerged within three decades after the 1918 pandemic, and have remained remarkably stable thereafter. Two lineages with stable internal protein constellations have circulated among humans without reassorting. On the contrary, H5N1 avian and swine viruses reassort frequently, causing both gains and losses of adaptive mutations.
Conclusions
Human host adaptation appears to be complex and systemic, involving nearly all influenza proteins. Adaptation signatures suggest that the ability of H5N1 strains to infect humans is related to the presence of an unusually high number of adaptive mutations. However, these mutations appear unstable, suggesting low pandemic potential of H5N1 in its current form. In addition, adaptation signatures indicate that pandemic H1N1/09 strain possesses multiple human-transmissibility mutations, though not an unusually high number with respect to swine strains that infected humans in the past. Adaptation signatures provide a novel tool for identifying zoonotic strains with the potential to infect humans.
doi:10.1371/journal.pone.0009025
PMCID: PMC2815782  PMID: 20140252
22.  Glycan Shielding of the Influenza Virus Hemagglutinin Contributes to Immunopathology in Mice 
Rationale: Pandemic influenza viruses historically have had few potential sites for N-linked glycosylation on the globular head of the hemagglutinin (HA) on emergence from the avian reservoir. Gain of glycans within antigenic sites of the HA during adaptation to the mammalian lung facilitates immune evasion.
Objectives: In this study, we sought to determine in mice how exposure to highly glycosylated viruses affects immunity to poorly glycosylated variants to model the emergence of a novel pandemic strain of a circulating subtype.
Methods: We engineered the 1968 H3N2 pandemic strain to express an additional two or four potential sites for glycosylation on the globular head of the HA. Mice were infected sequentially with highly glycosylated variants followed by poorly glycosylated variants and monitored for immune responses and disease.
Measurements and Main Results: The mutant with four additional glycosylation sites (+4 virus) elicited significantly lower antibody responses than the wild-type or +2 virus and was unable to elicit neutralizing antibodies. Mice infected with the +4 virus and then challenged with wild-type virus were not protected from infection and experienced significant T-cell–mediated immunopathology. Infection with a recent seasonal H1N1 virus followed by infection with the 2009 pandemic H1N1 elicited similar responses.
Conclusions: These data suggest that sequential infection with viral strains with different surface glycosylation can prime the host for immunopathology if a neutralizing antibody response matching the T-cell response is not present. This mechanism may have contributed to severe disease in young adults infected with the 2009 pandemic virus.
doi:10.1164/rccm.201007-1184OC
PMCID: PMC3159075  PMID: 20935106
influenza virus; glycosylation; pandemic; immunopathology; pneumonia
23.  Antigenic Drift of the Pandemic 2009 A(H1N1) Influenza Virus in a Ferret Model 
PLoS Pathogens  2013;9(5):e1003354.
Surveillance data indicate that most circulating A(H1N1)pdm09 influenza viruses have remained antigenically similar since they emerged in humans in 2009. However, antigenic drift is likely to occur in the future in response to increasing population immunity induced by infection or vaccination. In this study, sequential passaging of A(H1N1)pdm09 virus by contact transmission through two independent series of suboptimally vaccinated ferrets resulted in selection of variant viruses with an amino acid substitution (N156K, H1 numbering without signal peptide; N159K, H3 numbering without signal peptide; N173K, H1 numbering from first methionine) in a known antigenic site of the viral HA. The N156K HA variant replicated and transmitted efficiently between naïve ferrets and outgrew wildtype virus in vivo in ferrets in the presence and absence of immune pressure. In vitro, in a range of cell culture systems, the N156K variant rapidly adapted, acquiring additional mutations in the viral HA that also potentially affected antigenic properties. The N156K escape mutant was antigenically distinct from wildtype virus as shown by binding of HA-specific antibodies. Glycan binding assays demonstrated the N156K escape mutant had altered receptor binding preferences compared to wildtype virus, which was supported by computational modeling predictions. The N156K substitution, and culture adaptations, have been detected in human A(H1N1)pdm09 viruses with N156K preferentially reported in sequences from original clinical samples rather than cultured isolates. This study demonstrates the ability of the A(H1N1)pdm09 virus to undergo rapid antigenic change to evade a low level vaccine response, while remaining fit in a ferret transmission model of immunization and infection. Furthermore, the potential changes in receptor binding properties that accompany antigenic changes highlight the importance of routine characterization of clinical samples in human A(H1N1)pdm09 influenza surveillance.
Author Summary
Infection with influenza virus leads to significant morbidity and mortality. Annual vaccination may prevent subsequent disease by inducing neutralizing antibodies to currently circulating strains in the human population. To escape this antibody response, influenza A viruses undergo continuous genetic variation as they replicate, enabling viruses with advantageous antigenic mutations to spread and cause disease in naïve or previously immune or vaccinated individuals. To date, the 2009 pandemic virus (A(H1N1)pdm09) has not undergone significant antigenic drift, with the result that the vaccine remains well-matched and should provide good protection to A(H1N1)pdm09 circulating viruses. In this study, we induced antigenic drift in an A(H1N1)pdm09 virus in the ferret model. A single amino acid mutation emerged in the dominant surface glycoprotein, hemagglutinin, which had a multifaceted effect, altering both antigenicity and virus receptor specificity. The mutant virus could not be isolated using routine cell culture methods without the virus acquiring additional amino acid changes, yet was fit in vivo. The implications for surveillance of circulating influenza virus are significant as current assays commonly used to assess vaccine mismatch, as well as to produce isolates for vaccine manufacture, are biased against identification of viruses containing only this mutation.
doi:10.1371/journal.ppat.1003354
PMCID: PMC3649996  PMID: 23671418
24.  Cross-Neutralization of 1918 and 2009 Influenza Viruses: Role of Glycans in Viral Evolution and Vaccine Design 
Science translational medicine  2010;2(24):24ra21.
New strains of H1N1 influenza virus have emerged episodically over the last century to cause human pandemics, notably in 1918 and recently in 2009. Pandemic viruses typically evolve into seasonal forms that develop resistance to antibody neutralization, and cross-protection between strains separated by more than 3 years is uncommon. Here, we define the structural basis for cross-neutralization between two temporally distant pandemic influenza viruses—from 1918 and 2009. Vaccination of mice with the 1918 strain protected against subsequent lethal infection by 2009 virus. Both were resistant to antibodies directed against a seasonal influenza, A/New Caledonia/20/1999 (1999 NC), which was insensitive to antisera to the pandemic strains. Pandemic strain–neutralizing antibodies were directed against a subregion of the hemagglutinin (HA) receptor binding domain that is highly conserved between the 1918 and the 2009 viruses. In seasonal strains, this region undergoes amino acid diversification but is shielded from antibody neutralization by two highly conserved glycosylation sites absent in the pandemic strains. Pandemic HA trimers modified by glycosylation at these positions were resistant to neutralizing antibodies to wild-type HA. Yet, antisera generated against the glycosylated HA mutant neutralized it, suggesting that the focus of the immune response can be selectively changed with this modification. Collectively, these findings define critical determinants of H1N1 viral evolution and have implications for vaccine design. Immunization directed to conserved receptor binding domain subregions of pandemic viruses could potentially protect against similar future pandemic viruses, and vaccination with glycosylated 2009 pandemic virus may limit its further spread and transformation into a seasonal influenza.
doi:10.1126/scitranslmed.3000799
PMCID: PMC3182573  PMID: 20375007
25.  Structural basis of pre-existing immunity to the 2009 H1N1 pandemic influenza virus 
Science (New York, N.Y.)  2010;328(5976):357-360.
The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to human H1N1 viruses circulating early in the 20th century. The co-crystal structure of the 1918 HA with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for the age-related immunity to the current influenza pandemic.
doi:10.1126/science.1186430
PMCID: PMC2897825  PMID: 20339031

Results 1-25 (901298)