PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (862837)

Clipboard (0)
None

Related Articles

1.  Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures 
Accounts of chemical research  2012;45(8):1215-1226.
Conspectus
Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned.
The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities.
This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades by organizing the position of the components using DNA nanoscaffolds in vitro, or by utilizing RNA matrices in vivo. These structures display enhanced efficiency compared to the corresponding unstructured enzyme mixtures. Such systems are designed to mimic cellular function, where substrate diffusion between enzymes is facilitated and reactions are catalyzed with high efficiency and specificity. In addition, researchers have assembled multiple choromophores into arrays using a DNA nanoscaffold that optimizes the relative distance between the dyes and their spatial organization. The resulting artificial light harvesting system exhibits efficient cascading energy transfers. Finally, DNA nanostructures have been used as assembly templates to construct nanodevices that execute rationally-designed behaviors, including cargo loading, transportation and route control.
doi:10.1021/ar200295q
PMCID: PMC3654852  PMID: 22642503
2.  Do new Ethical Issues Arise at Each Stage of Nanotechnological Development? 
Nanoethics  2011;6(1):29-37.
The literature concerning ethical issues associated with nanotechnologies has become prolific. However, it has been claimed that ethical problems are only at stake with rather sophisticated nanotechnologies such as active nanostructures, integrated nanosystems and heterogeneous molecular nanosystems, whereas more basic nanotechnologies such as passive nanostructures mainly pose technical difficulties. In this paper I argue that fundamental ethical issues are already at stake with this more basic kind of nanotechnologies and that ethics impacts every kind of nanotechnologies, already from the simplest kind of engineered nanoproducts. These ethical issues are mainly associated with the social desirability of nanotechnologies, with the difficulties to define nanotechnologies properly, with the important uncertainties surrounding nanotechnologies, with the threat of ‘nano-divide’, and with nanotechnology as ‘dual-use technology’.
doi:10.1007/s11569-011-0137-8
PMCID: PMC3343232  PMID: 22611458
Ethics; Equity; Dual-use technology; Generations of nanotechnologies; Informed consent; Nano-divide; Nanotechnologies; Precautionary principle; Risk; Social desirability; Uncertainty; Philosophy; Ethics; Philosophy of Science; Philosophy of Technology; Nanotechnology
3.  Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines 
Nature Communications  2013;4:2000.
DNA nanotechnology is a rapidly developing research area in nanoscience. It includes the development of DNA machines, tailoring of DNA nanostructures, application of DNA nanostructures for computing, and more. Different DNA machines were reported in the past and DNA-guided assembly of nanoparticles represents an active research effort in DNA nanotechnology. Several DNA-dictated nanoparticle structures were reported, including a tetrahedron, a triangle or linear nanoengineered nanoparticle structures; however, the programmed, dynamic reversible switching of nanoparticle structures and, particularly, the dictated switchable functions emerging from the nanostructures, are missing elements in DNA nanotechnology. Here we introduce DNA catenane systems (interlocked DNA rings) as molecular DNA machines for the programmed, reversible and switchable arrangement of different-sized gold nanoparticles. We further demonstrate that the machine-powered gold nanoparticle structures reveal unique emerging switchable spectroscopic features, such as plasmonic coupling or surface-enhanced fluorescence.
DNA nanotechnology, including DNA machines and devices for computing, is a rapidly expanding field of research. Here, the authors fabricate DNA catenane machines for the programmable arrangement of gold nanoparticle cargoes, and study their switchable spectroscopic features.
doi:10.1038/ncomms3000
PMCID: PMC3709512  PMID: 23759797
4.  Nano Mapper: an Internet knowledge mapping system for nanotechnology development 
Journal of Nanoparticle Research  2008;11(3):529-552.
Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976–2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005–2006 identified through the Nano Mapper system.
doi:10.1007/s11051-008-9491-z
PMCID: PMC2988202  PMID: 21170121
Nanotechnology; Research and development (R&D); Patent analysis; Grant analysis; Bibliographic analysis; Information visualization; Self-organizing maps; Citation network; Data analysis tool
5.  Investigating bioconjugation by atomic force microscopy 
Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures.
doi:10.1186/1477-3155-11-25
PMCID: PMC3723498  PMID: 23855448
Atomic force microscopy (AFM); Nanotechnology; Bioconjugation; Nanoelectronics; Nanolithography; Nanomedicine; Biosensors; Nanorobot; DNA origami; Single molecule
6.  Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures 
Sensors (Basel, Switzerland)  2014;14(8):14586-14600.
An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ∼5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures.
doi:10.3390/s140814586
PMCID: PMC4179074  PMID: 25116903
ethanol gas sensor; ZnO; SnO2; core-shell nanostructures; hierarchical nanostructures
7.  Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements 
Sensors (Basel, Switzerland)  2014;14(5):8605-8632.
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.
doi:10.3390/s140508605
PMCID: PMC4063009  PMID: 24841244
ZnO nanostructures; CuO nanostructures; NiO nanostructures; potentiometric nanosensors; biosensors; chemical sensors
8.  Boron Nitride Nanotubes for Spintronics 
Sensors (Basel, Switzerland)  2014;14(9):17655-17685.
With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.
doi:10.3390/s140917655
PMCID: PMC4208243  PMID: 25248070
electronic structure; spintronics; spin-valve; ferromagnetic spin ordering; transverse electric field; radial deformation; functionalization; magnetism; tunneling magneto-resistance; spin filtering
9.  Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria 
Highly ionic metal oxide nanostructures are attractive, not only for their physiochemical properties but also for antibacterial activity. Zinc oxide (ZnO) nanostructures are known to have inhibitory activity against many pathogens but very little is known about doping effects on it. The antibacterial activity of undoped ZnO and tin (Sn) doped ZnO nanostructures synthesized by a simple, versatile, and wet chemical technique have been investigated against Escherichia coli, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa bacterial strains. It has been interestingly observed that Sn doping enhanced the inhibitory activity of ZnO against S. aureus more efficiently than the other two bacterial strains. From cytotoxicity and reactive oxygen species (ROS) production studies it is found that Sn doping concentration in ZnO does not alter the cytotoxicity and ROS production very much. It has also been observed that undoped and Sn doped ZnO nanostructures are biosafe and biocompatible materials towards SH-SY5Y Cells. The observed behavior of ZnO nanostructures with Sn doping is a new way to prevent bacterial infections of S. aureus, especially on skin, when using these nanostructures in creams or lotions in addition to their sunscreen property as an ultraviolet filter. Structural investigations have confirmed the formation of a single phase wurtzite structure of ZnO. The morphology of ZnO nanostructures is found to vary from spherical to rod shaped as a function of Sn doping. The excitation absorption peak of ZnO is observed to have a blue shift, with Sn doping leading toward a significant tuning in band gap.
doi:10.2147/IJN.S45439
PMCID: PMC3792850  PMID: 24109181
nanostructures; Sn doped ZnO; S. aureus; antibacterial activity
10.  Molecular Self-Assembly into One-Dimensional Nanostructures 
Accounts of chemical research  2008;41(12):1674-1684.
CONSPECTUS
Self-assembly of small molecules into one-dimensional nanostructures offers many potential applications in electronically and biologically active materials. The recent advances discussed in this Account demonstrate how researchers can use the fundamental principles of supramolecular chemistry to craft the size, shape, and internal structure of nanoscale objects. In each system described here, we used atomic force microscopy (AFM) and transmission electron microscopy (TEM) to study the assembly morphology. Circular dichroism, nuclear magnetic resonance, infrared, and optical spectroscopy provided additional information about the self-assembly behavior in solution at the molecular level.
Dendron rod–coil molecules self-assemble into flat or helical ribbons. They can incorporate electronically conductive groups and can be mineralized with inorganic semiconductors. To understand the relative importance of each segment in forming the supramolecular structure, we synthetically modified the dendron, rod, and coil portions. The self-assembly depended on the generation number of the dendron, the number of hydrogen-bonding functions, and the length of the rod and coil segments. We formed chiral helices using a dendron–rod–coil molecule prepared from an enantiomerically enriched coil.
Because helical nanostructures are important targets for use in biomaterials, nonlinear optics, and stereoselective catalysis, researchers would like to precisely control their shape and size. Tripeptide-containing peptide lipid molecules assemble into straight or twisted nanofibers in organic solvents. As seen by AFM, the sterics of bulky end groups can tune the helical pitch of these peptide lipid nanofibers in organic solvents. Furthermore, we demonstrated the potential for pitch control using trans-to-cis photoisomerization of a terminal azobenzene group. Other molecules called peptide amphiphiles (PAs) are known to assemble in water into cylindrical nanostructures that appear as nanofiber bundles. Surprisingly, TEM of a PA substituted by a nitrobenzyl group revealed assembly into quadruple helical fibers with a braided morphology. Upon photocleavage of this the nitrobenzyl group, the helices transform into single cylindrical nanofibers.
Finally, inspired by the tobacco mosaic virus, we used a dumbbell-shaped, oligo(phenylene ethynylene) template to control the length of a PA nanofiber self-assembly (<10 nm). AFM showed complete disappearance of long nanofibers in the presence of this rigid-rod template. Results from quick-freeze/deep-etch TEM and dynamic light scattering demonstrated the templating behavior in aqueous solution. This strategy could provide a general method to control size the length of non-spherical supramolecular nanostructures.
doi:10.1021/ar8000926
PMCID: PMC2645948  PMID: 18754628
11.  Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage 
Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.
doi:10.3390/ijms11072636
PMCID: PMC2920557  PMID: 20717527
conducting polymers; nanowires; nanotubes; polyaniline; polypyrrole; template synthesis
12.  A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors 
Sensors (Basel, Switzerland)  2009;9(8):6504-6529.
One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area.
doi:10.3390/s90806504
PMCID: PMC3312456  PMID: 22454597
metal oxide semiconductor; one-dimensional nanostructures; sensor; photodetector; transistor
13.  Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic 
In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We conclude with a few examples of clinically successful formulations of currently available lipid-based nanoparticles.
PMCID: PMC2885142  PMID: 20402623
lipid-based nanoparticles; drug delivery; solid lipid nanoparticles; liposomes; nanostructured lipid carriers; bolaamphiphiles; cancer therapy
14.  Solid-phase Submonomer Synthesis of Peptoid Polymers and their Self-Assembly into Highly-Ordered Nanosheets 
Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials.
Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids ( up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated.
Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs.
doi:10.3791/3373
PMCID: PMC3308608  PMID: 22083233
15.  Near-field effects and energy transfer in hybrid metal-oxide nanostructures 
Summary
One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu3+, since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are supported by simulations of the electromagnetic field enhancement in the vicinity of well-defined nanoantennas. The results show that the presence of the nanoparticle layer can modify the field enhancement significantly. In addition, we find that the fluorescent intensities observed in the experiments are affected by agglomeration of the nanoparticles. In order to further elucidate the possible influence of agglomeration and quenching effects in the vicinity of the nanoantennas, we have used a commercial organic pigment containing Eu, which exhibits an extremely narrow particle size distribution and no significant agglomeration. We demonstrate that quenching of the Eu fluorescence can be suppressed by covering the nanoantennas with a 10 nm thick SiOx layer.
doi:10.3762/bjnano.4.34
PMCID: PMC3678447  PMID: 23766954
confocal microscopy; energy transfer; field enhancement; light harvesting; luminescence; nano-antennas; nanosphere lithography; nanostructures; plasmonics; simulation; TiO2 nanoparticles
16.  Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures 
Nanoscale Research Letters  2014;9(1):325.
Perovskite oxide manganites with a general formula of R1-x AxMnO3 (where R is a trivalent rare-earth element such as La, Pr, Sm, and A is a divalent alkaline-earth element such as Ca, Sr, and Ba) have received much attention due to their unusual electron-transport and magnetic properties, which are indispensable for applications in microelectronic, magnetic, and spintronic devices. Recent advances in the science and technology have resulted in the feature sizes of microelectronic devices based on perovskite manganite oxides down-scaling into nanoscale dimensions. At the nanoscale, low-dimensional perovskite manganite oxide nanostructures display novel physical properties that are different from their bulk and film counterparts. Recently, there is strong experimental evidence to indicate that the low-dimensional perovskite manganite oxide nanostructures are electronically inhomogeneous, consisting of different spatial regions with different electronic orders, a phenomenon that is named as electronic phase separation (EPS). As the geometry sizes of the low-dimensional manganite nanostructures are reduced to the characteristic EPS length scale (typically several tens of nanometers in manganites), the EPS is expected to be strongly modulated, leading to quite dramatic changes in functionality and more emergent phenomena. Therefore, reduced dimensionality opens a door to the new functionalities in perovskite manganite oxides and offers a way to gain new insight into the nature of EPS. During the past few years, much progress has been made in understanding the physical nature of the EPS in low-dimensional perovskite manganite nanostructures both from experimentalists and theorists, which have a profound impact on the oxide nanoelectronics. This nanoreview covers the research progresses of the EPS in low-dimensional perovskite manganite nanostructures such as nanoparticles, nanowires/nanotubes, and nanostructured films and/or patterns. The possible physical origins of the EPS are also discussed from the signatures of electronic inhomogeneities as well as some theoretical scenarios, to shed light on understanding this phenomenon. Finally, the perspectives to the future researches in this area are also outlined.
doi:10.1186/1556-276X-9-325
PMCID: PMC4080779  PMID: 25024686
Perovskite manganites; Low-dimensional nanostructures; Electronic phase separation
17.  Gold Nanostructures as a Platform for Combinational Therapy in Future Cancer Therapeutics 
Cancers  2011;3(1):1081-1110.
The field of nanotechnology is currently undergoing explosive development on many fronts. The technology is expected to generate innovations and play a critical role in cancer therapeutics. Among other nanoparticle (NP) systems, there has been tremendous progress made in the use of spherical gold NPs (GNPs), gold nanorods (GNRs), gold nanoshells (GNSs) and gold nanocages (GNCs) in cancer therapeutics. In treating cancer, radiation therapy and chemotherapy remain the most widely used treatment options and recent developments in cancer research show that the incorporation of gold nanostructures into these protocols has enhanced tumor cell killing. These nanostructures further provide strategies for better loading, targeting, and controlling the release of drugs to minimize the side effects of highly toxic anticancer drugs used in chemotherapy and photodynamic therapy. In addition, the heat generation capability of gold nanostructures upon exposure to UV or near infrared light is being used to damage tumor cells locally in photothermal therapy. Hence, gold nanostructures provide a versatile platform to integrate many therapeutic options leading to effective combinational therapy in the fight against cancer. In this review article, the recent progress in the development of gold-based NPs towards improved therapeutics will be discussed. A multifunctional platform based on gold nanostructures with targeting ligands, therapeutic molecules, and imaging contrast agents, holds an array of promising directions for cancer research.
doi:10.3390/cancers3011081
PMCID: PMC3756404  PMID: 24212654
gold nanostructures; drug delivery; radiation therapy; photothermal therapy; photodynamic therapy; combinational therapy
18.  Advances and Prospect of Nanotechnology in Stem Cells 
Nanoscale Research Letters  2009;4(7):593-605.
In recent years, stem cell nanotechnology has emerged as a new exciting field. Theoretical and experimental studies of interaction between nanomaterials or nanostructures and stem cells have made great advances. The importance of nanomaterials, nanostructures, and nanotechnology to the fundamental developments in stem cells-based therapies for injuries and degenerative diseases has been recognized. In particular, the effects of structure and properties of nanomaterials on the proliferation and differentiation of stem cells have become a new interdisciplinary frontier in regeneration medicine and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches and challenges, with the aim of improving application of nanotechnology in the stem cells research and development.
doi:10.1007/s11671-009-9292-z
PMCID: PMC2894000  PMID: 20596412
Nanomaterials; Nanostructure; Nanotechnology; Stem cells; Regeneration medicine
19.  Nanomedicine: Application Areas and Development Prospects 
Nanotechnology, along with related concepts such as nanomaterials, nanostructures and nanoparticles, has become a priority area for scientific research and technological development. Nanotechnology, i.e., the creation and utilization of materials and devices at nanometer scale, already has multiple applications in electronics and other fields. However, the greatest expectations are for its application in biotechnology and health, with the direct impact these could have on the quality of health in future societies. The emerging discipline of nanomedicine brings nanotechnology and medicine together in order to develop novel therapies and improve existing treatments. In nanomedicine, atoms and molecules are manipulated to produce nanostructures of the same size as biomolecules for interaction with human cells. This procedure offers a range of new solutions for diagnoses and “smart” treatments by stimulating the body’s own repair mechanisms. It will enhance the early diagnosis and treatment of diseases such as cancer, diabetes, Alzheimer’s, Parkinson’s and cardiovascular diseases. Preventive medicine may then become a reality.
doi:10.3390/ijms12053303
PMCID: PMC3116192  PMID: 21686186
nanomedicine; nanostructures; early diagnosis; drug delivery
20.  Advances and Prospect of Nanotechnology in Stem Cells 
Nanoscale Research Letters  2009;4(7):593-605.
In recent years, stem cell nanotechnology has emerged as a new exciting field. Theoretical and experimental studies of interaction between nanomaterials or nanostructures and stem cells have made great advances. The importance of nanomaterials, nanostructures, and nanotechnology to the fundamental developments in stem cells-based therapies for injuries and degenerative diseases has been recognized. In particular, the effects of structure and properties of nanomaterials on the proliferation and differentiation of stem cells have become a new interdisciplinary frontier in regeneration medicine and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches and challenges, with the aim of improving application of nanotechnology in the stem cells research and development.
doi:10.1007/s11671-009-9292-z
PMCID: PMC2894000  PMID: 20596412
Nanomaterials; Nanostructure; Nanotechnology; Stem cells; Regeneration medicine
21.  DNA Enabled Self-Assembly of Plasmonic Nanoclusters 
Nano letters  2011;11(11):4859-4864.
DNA nanotechnology provides a versatile foundation for the chemical assembly of nanostructures. Plasmonic nanoparticle assemblies are of particular interest because they can be tailored to exhibit a broad range of electromagnetic phenomena. In this Letter, we report the assembly of DNA-functionalized nanoparticles into pentamer clusters, which consist of a smaller gold sphere surrounded by a ring of four larger spheres. Magnetic and Fano-like resonances are observed in individual clusters. The DNA plays a dual role: it selectively assembles the clusters in solution and functions as an insulating spacer between the conductive nanoparticles. These particle assemblies can be generalized to a new class of DNA-enabled plasmonic heterostructures that comprise various active and passive materials and other forms of DNA scaffolding.
doi:10.1021/nl203194m
PMCID: PMC3478945  PMID: 22007607
Plasmonics; DNA; colloidal self-assembly; nanoshell; magnetic dipole; Fano resonance
22.  Förster-Induced Energy Transfer in Functionalized Graphene 
Carbon nanostructures are ideal substrates for functionalization with molecules since they consist of a single atomic layer giving rise to an extraordinary sensitivity to changes in their surrounding. The functionalization opens a new research field of hybrid nanostructures with tailored properties. Here, we present a microscopic view on the substrate–molecule interaction in the exemplary hybrid material consisting of graphene functionalized with perylene molecules. First experiments on similar systems have been recently realized illustrating an extremely efficient transfer of excitation energy from adsorbed molecules to the carbon substrate, a process with a large application potential for high-efficiency photovoltaic devices and biomedical imaging and sensing. So far, there has been no microscopically founded explanation for the observed energy transfer. Based on first-principle calculations, we have explicitly investigated the different transfer mechanisms revealing the crucial importance of Förster coupling. Due to the efficient Coulomb interaction in graphene, we obtain strong Förster rates in the range of 1/fs. We investigate its dependence on the substrate–molecule distance R and describe the impact of the momentum transfer q for an efficient energy transfer. Furthermore, we find that the Dexter transfer mechanism is negligibly small due to the vanishing overlap between the involved strongly localized orbital functions. The gained insights are applicable to a variety of carbon-based hybrid nanostructures.
doi:10.1021/jp5019636
PMCID: PMC4008518  PMID: 24808936
23.  Nanostructures: a platform for brain repair and augmentation 
Nanoscale structures have been at the core of research efforts dealing with integration of nanotechnology into novel electronic devices for the last decade. Because the size of nanomaterials is of the same order of magnitude as biomolecules, these materials are valuable tools for nanoscale manipulation in a broad range of neurobiological systems. For instance, the unique electrical and optical properties of nanowires, nanotubes, and nanocables with vertical orientation, assembled in nanoscale arrays, have been used in many device applications such as sensors that hold the potential to augment brain functions. However, the challenge in creating nanowires/nanotubes or nanocables array-based sensors lies in making individual electrical connections fitting both the features of the brain and of the nanostructures. This review discusses two of the most important applications of nanostructures in neuroscience. First, the current approaches to create nanowires and nanocable structures are reviewed to critically evaluate their potential for developing unique nanostructure based sensors to improve recording and device performance to reduce noise and the detrimental effect of the interface on the tissue. Second, the implementation of nanomaterials in neurobiological and medical applications will be considered from the brain augmentation perspective. Novel applications for diagnosis and treatment of brain diseases such as multiple sclerosis, meningitis, stroke, epilepsy, Alzheimer's disease, schizophrenia, and autism will be considered. Because the blood brain barrier (BBB) has a defensive mechanism in preventing nanomaterials arrival to the brain, various strategies to help them to pass through the BBB will be discussed. Finally, the implementation of nanomaterials in neurobiological applications is addressed from the brain repair/augmentation perspective. These nanostructures at the interface between nanotechnology and neuroscience will play a pivotal role not only in addressing the multitude of brain disorders but also to repair or augment brain functions.
doi:10.3389/fnsys.2014.00091
PMCID: PMC4064704  PMID: 24999319
nanotechnology; brain repair and augmentation; brain activity mapping; blood brain barrier; carbon nanotube; multi-electrode array; nano-imprint lithography; inter-laminar microcircuit
24.  Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing 
This study involves two aspects of our investigations of plasmonics-active systems: (i) theoretical and simulation studies and (ii) experimental fabrication of plasmonics-active nanostructures. Two types of nanostructures are selected as the model systems for their unique plasmonics properties: (1) nanoparticles and (2) nanowires on substrate. Special focus is devoted to regions where the electromagnetic field is strongly concentrated by the metallic nanostructures or between nanostructures. The theoretical investigations deal with dimers of nanoparticles and nanoshells using a semi-analytical method based on a multipole expansion (ME) and the finite-element method (FEM) in order to determine the electromagnetic enhancement, especially at the interface areas of two adjacent nanoparticles. The experimental study involves the design of plasmonics-active nanowire arrays on substrates that can provide efficient electromagnetic enhancement in regions around and between the nanostructures. Fabrication of these nanowire structures over large chip-scale areas (from a few millimeters to a few centimeters) as well as FDTD simulations to estimate the EM fields between the nanowires are described. The application of these nanowire chips using surface-enhanced Raman scattering (SERS) for detection of chemicals and labeled DNA molecules is described to illustrate the potential of the plasmonics chips for sensing.
doi:10.1021/jp911355q
PMCID: PMC4022305  PMID: 24839505
Plasmonics; surface-enhanced Raman scattering; SERS; gene diagnostics; nanoprobes; metallic nanostructures; molecular sentinel
25.  Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug Delivery System 
Solid lipid nanoparticles are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery, clinical medicine and research, as well as in other varied sciences. Due to their unique size-dependent properties, lipid nanoparticles offer the possibility to develop new therapeutics. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could be used for secondary and tertiary levels of drug targeting. Hence, solid lipid nanoparticles hold great promise for reaching the goal of controlled and site specific drug delivery and hence have attracted wide attention of researchers. This review presents a broad treatment of solid lipid nanoparticles discussing their advantages, limitations and their possible remedies. The different types of nanocarriers which were based on solid lipid like solid lipid nanoparticles, nanostructured lipid carriers, lipid drug conjugates are discussed with their structural differences. Different production methods which are suitable for large scale production and applications of solid lipid nanoparticles are described. Appropriate analytical techniques for characterization of solid lipid nanoparticles like photon correlation spectroscopy, scanning electron microscopy, differential scanning calorimetry are highlighted. Aspects of solid lipid nanoparticles route of administration and their biodistribution are also incorporated. If appropriately investigated, solid lipid nanoparticles may open new vistas in therapy of complex diseases.
doi:10.4103/0250-474X.57282
PMCID: PMC2865805  PMID: 20502539
Solid lipid nanoparticles (SLN); colloidal drug carriers; homogenization; TEM; PCS; biodistribution; targeting

Results 1-25 (862837)