Search tips
Search criteria

Results 1-25 (1479899)

Clipboard (0)

Related Articles

1.  Analysis of Gene Regulatory Networks in the Mammalian Circadian Rhythm 
PLoS Computational Biology  2008;4(10):e1000193.
Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of gene expression in different tissues still remains unknown. Here we try to address these questions by integrating all available circadian microarray data in mammals. We identified 41 common circadian genes that showed circadian oscillation in a wide range of mouse tissues with a remarkable consistency of circadian phases across tissues. Comparisons across mouse, rat, rhesus macaque, and human showed that the circadian phases of known key circadian genes were delayed for 4–5 hours in rat compared to mouse and 8–12 hours in macaque and human compared to mouse. A systematic gene regulatory network for the mouse circadian rhythm was constructed after incorporating promoter analysis and transcription factor knockout or mutant microarray data. We observed the significant association of cis-regulatory elements: EBOX, DBOX, RRE, and HSE with the different phases of circadian oscillating genes. The analysis of the network structure revealed the paths through which light, food, and heat can entrain the circadian clock and identified that NR3C1 and FKBP/HSP90 complexes are central to the control of circadian genes through diverse environmental signals. Our study improves our understanding of the structure, design principle, and evolution of gene regulatory networks involved in the mammalian circadian rhythm.
Author Summary
Circadian rhythm is universally present from unicellular organisms to complex organisms and plays an important role in physiological processes such as the sleep–wake cycle in mammals. The mammalian circadian rhythm presents an excellent system for studying gene regulatory networks as a large number of genes are undergoing circadian oscillation in their expression levels. By integrating all available microarray experiments on circadian rhythm in different tissues and species in mammals, we identified a set of common circadian genes lying in the center of the circadian clock. Significant differences in the circadian oscillation of gene expression among mouse, rat, macaque, and human have been observed that underlie their physiological and behavioral differences. We constructed a gene regulatory network for the mouse circadian rhythm using knockout or mutant microarray data that have previously received little attention. Further analysis revealed not only additional feedback loops in the network contributing to the robustness of the circadian clock but also how environmental factors such as light, food, and heat can entrain the circadian rhythm. Our study provides the first gene regulatory network of the mammalian circadian rhythm at the system level. It is also the first attempt to compare gene regulatory networks of circadian rhythm in different mammalian species.
PMCID: PMC2543109  PMID: 18846204
2.  Quantitative analysis of regulatory flexibility under changing environmental conditions 
Day length changes with the seasons in temperate latitudes, affecting the many biological rhythms that entrain to the day/night cycle: we measure these effects on the expression of Arabidopsis clock genes, using RNA and reporter gene readouts, with a new method of phase analysis.Dusk sensitivity is proposed as a simple, natural and general mathematical measure to analyse and manipulate the changing phase of a clock output relative to the change in the day/night cycle.Dusk sensitivity shows how increasing the numbers of feedback loops in the Arabidopsis clock models allows more flexible regulation, consistent with a previously-proposed, general operating principle of biological networks.The Arabidopsis clock genes show flexibility of regulation that is characteristic of a three-loop clock model, validating aspects of the model and the operating principle, but some clock output genes show greater flexibility arising from direct light regulation.
The analysis of dynamic, non-linear regulation with the aid of mechanistic models is central to Systems Biology. This study compares the predictions of mechanistic, mathematical models of the circadian clock with molecular time-series data on rhythmic gene expression in the higher plant Arabidopsis thaliana. Analysis of the models helps us to understand (explain and predict) how the clock gene circuit balances regulation by external and endogenous factors to achieve particular behaviours. Such multi-factorial regulation is ubiquitous in, and characteristic of, living systems.
The Earth's rotation causes predictable changes in the environment, notably in the availability of sunlight for photosynthesis. Many biological processes are driven by the environmental input via sensory pathways, for example, from photoreceptors. Circadian clocks provide an alternative strategy. These endogenous, 24-h rhythms can drive biological processes that anticipate the regular environmental changes, rather than merely responding. Many rhythmic processes have both light and clock control. Indeed, the clock components themselves must balance internal timing with external inputs, because circadian clocks are reset daily through light regulation of one or more clock components. This process of entrainment is complicated by the change in day length. When the times of dawn and dusk move apart in summer, and closer together in winter, does the clock track dawn, track dusk or interpolate between them?
In plants, the clock controls leaf and petal movements, the opening and closing of stomatal pores, the discharge of floral fragrances, and many metabolic activities, especially those associated with photosynthesis. Centuries of physiological studies have shown that these rhythms can behave differently. Flowering in Ipomoea nil (Pharbitis nil, Japanese morning glory) is controlled by a rhythm that tracks the time of dusk, to give a classic example. We showed that two other rhythms associated with vegetative growth track dawn in this species (Figure 5A), so the clock system allows flexible regulation.
The relatively small number of components involved in the circadian clockwork makes it an ideal candidate for mathematical modelling. Molecular genetic studies in a variety of model eukaryotes have shown that the circadian rhythm is generated by a network of 6–20 genes. These genes form feedback loops generating a rhythm in mRNA production. A single negative feedback loop in which a gene encodes a protein that, after several hours, turns off transcription is capable of generating a circadian rhythm, in principle. A single light input can entrain the clock to ‘local time', synchronised with a light–dark cycle. However, real circadian clocks have proven to be more complicated than this, with multiple light inputs and interlocked feedback loops.
We have previously argued from mathematical analysis that multi-loop networks increase the flexibility of regulation (Rand et al, 2004) and have shown that appropriately deployed flexibility can confer functional robustness (Akman et al, 2010). Here we test whether that flexibility can be demonstrated in vivo, in the model plant, A. thaliana. The Arabidopsis clock mechanism comprises a feedback loop in which two partially redundant, myb transcription factors, LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), repress the expression of their activator, TIMING OF CAB EXPRESSION 1 (TOC1). We previously modelled this single-loop circuit and showed that it was not capable of recreating important data (Locke et al, 2005a). An extended, two-loop model was developed to match observed behaviours, incorporating a hypothetical gene Y, for which the best identified candidate was the GIGANTEA gene (GI) (Locke et al, 2005b). Two further models incorporated the TOC1 homologues PSEUDO-RESPONSE REGULATOR (PRR) 9 and PRR7 (Locke et al, 2006; Zeilinger et al, 2006). In these circuits, a morning oscillator (LHY/CCA1–PRR9/7) is coupled to an evening oscillator (Y/GI–TOC1) via the original LHY/CCA1–TOC1 loop.
These clock models, like those for all other organisms, were developed using data from simple conditions of constant light, darkness or 12-h light–12-h dark cycles. We therefore tested how the clock genes in Arabidopsis responded to light–dark cycles with different photoperiods, from 3 h light to 18 h light per 24-h cycle (Edinburgh, 56° North latitude, has 17.5 h light in midsummer). The time-series assays of mRNA and in vivo reporter gene images showed a range of peak times for different genes, depending on the photoperiod (Figure 5C). A new data analysis method, mFourfit, was introduced to measure the peak times, in the Biological Rhythms Analysis Software Suite (BRASS v3.0). None of the genes showed the dusk-tracking behaviour characteristic of the Ipomoea flowering rhythm. The one-, two- and three-loop models were analysed to understand the observed patterns. A new mathematical measure, dusk sensitivity, was introduced to measure the change in timing of a model component versus a change in the time of dusk. The one- and two-loop models tracked dawn and dusk, respectively, under all conditions. Only the three-loop model (Figure 5B) had the flexibility required to match the photoperiod-dependent changes that we found in vivo, and in particular the unexpected, V-shaped pattern in the peak time of TOC1 expression. This pattern of regulation depends on the structure and light inputs to the model's evening oscillator, so the in vivo data supported this aspect of the model. LHY and CCA1 gene expression under short photoperiods showed greater dusk sensitivity, in the interval 2–6 h before dawn, than the three-loop model predicted, so these data will help to constrain future models.
The approach described here could act as a template for experimental biologists seeking to understand biological regulation using dynamic, experimental perturbations and time-series data. Simulation of mathematical models (despite known imperfections) can provide contrasting hypotheses that guide understanding. The system's detailed behaviour is complex, so a natural and general measure such as dusk sensitivity is helpful to focus on one property of the system. We used the measure to compare models, and to predict how this property could be manipulated. To enable additional analysis of this system, we provide the time-series data and experimental metadata online.
The circadian clock controls 24-h rhythms in many biological processes, allowing appropriate timing of biological rhythms relative to dawn and dusk. Known clock circuits include multiple, interlocked feedback loops. Theory suggested that multiple loops contribute the flexibility for molecular rhythms to track multiple phases of the external cycle. Clear dawn- and dusk-tracking rhythms illustrate the flexibility of timing in Ipomoea nil. Molecular clock components in Arabidopsis thaliana showed complex, photoperiod-dependent regulation, which was analysed by comparison with three contrasting models. A simple, quantitative measure, Dusk Sensitivity, was introduced to compare the behaviour of clock models with varying loop complexity. Evening-expressed clock genes showed photoperiod-dependent dusk sensitivity, as predicted by the three-loop model, whereas the one- and two-loop models tracked dawn and dusk, respectively. Output genes for starch degradation achieved dusk-tracking expression through light regulation, rather than a dusk-tracking rhythm. Model analysis predicted which biochemical processes could be manipulated to extend dusk tracking. Our results reveal how an operating principle of biological regulators applies specifically to the plant circadian clock.
PMCID: PMC3010117  PMID: 21045818
Arabidopsis thaliana; biological clocks; dynamical systems; gene regulatory networks; mathematical models; photoperiodism
3.  Genome-Wide Analysis of SREBP1 Activity around the Clock Reveals Its Combined Dependency on Nutrient and Circadian Signals 
PLoS Genetics  2014;10(3):e1004155.
In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1−/− mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus helping to temporally separate the different physiological processes in which these genes are involved.
Author Summary
Circadian rhythmicity is part of our innate behavior and controls many physiological processes, such as sleeping and waking, activity, neurotransmitter production and a number of metabolic pathways. In mammals, the central circadian pacemaker in the hypothalamus is entrained on a daily basis by environmental cues (i.e. light), thus setting the period length and synchronizing the rhythms of all cells in the body. In the last decades, numerous investigations have highlighted the importance of the internal timekeeping mechanism for maintenance of organism health and longevity. Indeed, the reciprocal regulation of circadian clock and metabolism is now commonly accepted, although still poorly understood at the molecular level. Our global analysis of DNA binding along the day of Sterol Regulatory Element Binding Protein 1 (SREBP1), a key regulator of lipid biosynthesis, represents the first tool to comprehensively explore how its activity is connected to circadian-driven regulatory events. We show that the regulation of SREBP1 action by nutrients relies mainly on the control of its subcellular localization, while the circadian clock influences the promoter specific activity of SREBP1 within the nucleus. Furthermore, we identify the Hepatocyte Nuclear Factor 4 (HNF4) as a putative player in the cross-talk between molecular clock and metabolic regulation.
PMCID: PMC3945117  PMID: 24603613
4.  Circadian Clocks Are Resounding in Peripheral Tissues 
PLoS Computational Biology  2006;2(3):e16.
Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%–10% of transcribed genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of circadian gene expression on a large dataset representing three different peripheral tissues. The data have been produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of circadian mechanisms on any biological pathway related to metabolism and obesity.
The metabolism of living organisms changes over the twenty-four hour daily cycle in an oscillatory manner. This repeating pattern of “peak” and “trough” expression is known as a “circadian rhythm.” We now know that the body's internal clock is controlled by a discrete group of genes. These important regulators are found in many different organs of the body, and they control expression of many other genes in the body. Using mice as an experimental animal, Ptitsyn and colleagues looked at the overall pattern of gene expression in fat tissues and the liver using three different mathematical tests. They present data indicating that the majority of active genes fluctuate rhythmically over a twenty-four hour period. This work suggests that future studies should pay close attention to the influence of the circadian rhythm in obesity and in fat metabolism.
PMCID: PMC1391918  PMID: 16532060
5.  Genome-Wide and Phase-Specific DNA-Binding Rhythms of BMAL1 Control Circadian Output Functions in Mouse Liver 
PLoS Biology  2011;9(2):e1000595.
Temporal mapping during a circadian day of binding sites for the BMAL1 transcription factor in mouse liver reveals genome-wide daily rhythms in DNA binding and uncovers output functions that are controlled by the circadian oscillator.
The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.
Author Summary
The circadian clock is a timing system that allows organisms to keep behavioral, physiological, and cellular rhythms in resonance with daily environmental cycles. In mammals, such clocks use transcriptional regulatory loops in which the heterodimeric transcription factor BMAL1/CLOCK plays a central role. While defects in circadian clock function have been associated with diabetes, obesity, and cancer, the molecular links between the circadian clock and such output pathways are poorly characterized. Here, we mapped DNA-binding sites of BMAL1 in mouse liver during one circadian cycle. Our temporal analysis revealed widespread daily rhythms in DNA binding, with maximum levels peaking at midday. In the list of candidates, core circadian genes stood out as the most strongly bound, often showing multiple binding sites. Interestingly, BMAL1 targets were highly enriched in genes involved in carbohydrate and lipid metabolism, and also in transcription factors, in particular nuclear receptors. Our results suggest that the mammalian clock uses BMAL1 to control transcriptional output programs both directly and indirectly. Additionally, the DNA specificity of BMAL1 binding revealed the importance of tandem E-box elements, which may favor strong binding and precise timing of daily gene expression. Taken together, our work confirms BMAL1's primary function as a master regulator of the core circadian oscillator, while demonstrating that it also contributes in a more distributed fashion to a variety of output programs.
PMCID: PMC3043000  PMID: 21364973
6.  Coupling governs entrainment range of circadian clocks 
Circadian clock oscillator properties that are crucial for synchronization with the environment (entrainment) are studied in experiment and theory.The ratio between stimulus (zeitgeber) strength and oscillator amplitude, and the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity.Uncoupled lung clocks entrain to extreme zeitgeber cycles, whereas the coupled oscillator system in the suprachiasmatic nucleus (SCN) does not; however, when coupling in the SCN is inhibited, larger ranges of entrainment can be achieved.
Daily rhythms in physiology, metabolism and behavior are controlled by an endogenous circadian timing system, which has evolved to synchronize an organism to periodically recurring environmental conditions, such as light–dark or temperature cycles. In mammals, the circadian system relies on cell-autonomous oscillators residing in almost every cell of the body. Cells of the SCN in the anterior hypothalamus are able to generate precise, long-lasting self-sustained circadian oscillations, which drive most rhythmic behavioral and physiological outputs, and which are believed to originate from the fact that the SCN tissue consists of tightly coupled cells (Aton and Herzog, 2005). In contrast, peripheral oscillators, such as lung tissue, exhibit seemingly damped and usually less precise oscillations, which are thought to be brought about by the lack of intercellular coupling.
Precise synchronization of these rhythms within the organism, but also with the environment (so-called entrainment), is an essential part of circadian organization. Entrainment is one of the cornerstones of circadian biology (Roenneberg et al, 2003). In evolution, the phase of a rhythmic variable is selective rather than its endogenous period. Thus, the synchronization of endogenous rhythms to zeitgeber cycles of the environment (resulting in a specific phase of entrainment) is fundamental for the adaptive value of circadian clocks. In this study, we systematically investigated the properties of circadian oscillators that are essential for entrainment behavior and describe coupling as a primary determinant.
As an experimental starting point of this study, we found that the circadian oscillators of lung tissue have a larger range of entrainment than SCN tissue—they readily entrained to extreme experimental temperature cycle of 20 or 28 h, whereas SCN tissue did not (Figure 4). For this purpose, we cultured SCN and lung slices derived from mice that express luciferase as fusion protein together with the clock protein PERIOD2 (Yoo et al, 2004). The detection of luciferase-driven bioluminescence allowed us to follow molecular clock gene activity in real-time over the course of several days.
In theoretical analyses, we show that both the ratio of amplitude and zeitgeber strength and, importantly, inter-oscillator coupling are major determinants for entrainment. The reason for coupling being critical is twofold: (i) Coupling makes an oscillatory system more rigid, i.e., it relaxes faster in response to a perturbation, and (ii) coupling increases the amplitude of the oscillatory system. Both of these consequences of coupling lead to a smaller entrainment range, because zeitgeber stimuli affect the oscillatory system less if the relaxation is fast and the amplitude is high (Figure 1). From these theoretical considerations, we conclude that the lung clock probably constitutes a weak oscillatory system, likely because a lack in coupling leads to a slow amplitude relaxation. (Circadian amplitude is not particularly low in lung (Figure 4).) In contrast, the SCN constitutes a rigid oscillator, whereby coupling and its described consequences probably are the primary causes for this rigidity. We then tested these theoretical predictions by experimentally perturbing coupling in the SCN (with MDL and TTX; O'Neill et al, 2008; Yamaguchi et al, 2003) and find that, indeed, reducing the coupling weakens the circadian oscillatory system in the SCN, which results in an enlargement of the entrainment range (Figure 6).
Why is the SCN designed to be a stronger circadian oscillator than peripheral organs? We speculate that the position of the SCN—as the tissue that conveys environmental timing information (i.e., light) to the rest of the body—makes it necessary to create a circadian clock that is robust against noisy environmental stimuli. The SCN oscillator needs to be robust enough to be protected from environmental noise, but flexible enough to fulfill its function as an entrainable clock even in extreme photoperiods (i.e., seasons). By the same token, peripheral clocks are more protected from the environmental zeitgebers due to intrinsic homeostatic mechanisms. Thus, they do not necessarily need to develop a strong oscillatory system (e.g., by strengthening the coupling), rather they need to stay flexible enough to respond to direct or indirect signals from the SCN, such as hormonal, neural, temperature or metabolic signals. Such a design ensures that only robust and persistent environmental signals trigger an SCN resetting response, while SCN signals can relatively easily be conveyed to the rest of the body. Thus, the robustness in the SCN clock likely serves as a filter for environmental noise.
In summary, using a combination of simulation studies, analytical calculations and experiments, we uncovered critical features for entrainment, such as zeitgeber-to-amplitude ratio and amplitude relaxation rate. Coupling is a primary factor that governs these features explaining important differences in the design of SCN and peripheral oscillators that ensure a robust, but also flexible circadian system.
Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light–dark cycles (‘entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN—the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system.
PMCID: PMC3010105  PMID: 21119632
circadian clock; coupling; entrainment; mathematical modeling; oscillator
7.  Extension of a genetic network model by iterative experimentation and mathematical analysis 
Molecular Systems Biology  2005;1:2005.0013.
We extend the current model of the plant circadian clock, in order to accommodate new and published data. Throughout our model development we use a global parameter search to ensure that any limitations we find are due to the network architecture and not to our selection of the parameter values, which have not been determined experimentally. Our final model includes two, interlocked loops of gene regulation and is reminiscent of the circuit structures previously identified by experiments on insect and fungal clocks. It is the first Arabidopsis clock model to show such good correspondence to experimental data.Our interlocked feedback loop model predicts the regulation of two unknown components. Experiments motivated by these predictions identify the GIGANTEA gene as a strong candidate for one component, with an unexpected pattern of light regulation.*
This study involves an iterative approach of mathematical modelling and experiment to develop an accurate mathematical model of the circadian clock in the higher plant Arabidopsis thaliana. Our approach is central to systems biology and should lead to a greater, quantitative understanding of the circadian clock, as well as being more widely relevant to research into genetic networks.
The day–night cycle caused by the Earth's rotation affects most organisms, and has resulted in the evolution of the circadian clock. The circadian clock controls 24-h rhythms in processes from metabolism to behaviour; in higher eukaryotes, the circadian clock controls the rhythmic expression of 5–10% of genes. In plants, the clock controls leaf and petal movements, the opening and closing of stomatal pores, the discharge of floral fragrances and many metabolic activities, especially those associated with photosynthesis.
The relatively small number of components involved in the central circadian network makes it an ideal candidate for mathematical modelling of complex biological regulation. Genetic studies in a variety of model organisms have shown that the circadian rhythm is generated by a central network of between 6 and 12 genes. These genes form feedback loops generating a rhythm in mRNA production. One negative feedback loop in which a gene encodes a protein that, after several hours, turns off transcription is, in principle, capable of creating a circadian rhythm. However, real circadian clocks have proven to be more complicated than this, with interlocked feedback loops. Networks of this complexity are more easily understood through mathematical modelling.
The clock mechanism in the model plant, A. thaliana, was first proposed to comprise a feedback loop in which two partially redundant genes, LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), repress the expression of their activator, TIMING OF CAB EXPRESSION 1 (TOC1). We previously modelled this preliminary network and showed that it was not capable of recreating several important pieces of experimental data (Locke et al, 2005). Here, we extend the LHY/CCA1–TOC1 network in new mathematical models. To check the effects of each addition to the network, the outputs of the extended models are compared to published data and to new experiments.
As is the case for most biological networks, the parameter values in our model, such as the translation rate of TOC1 protein, are unknown. We employ here an optimisation method, which works well with noisy and varied data and allows a global search of parameter space. This should ensure that the limitations we find in our networks are due to the network structure, and not to our parameter choices.
Our final interlocked feedback loop model requires two hypothetical components, genes X and Y (Figure 4), but is the first Arabidopsis clock model to exhibit such a good correspondence with experimental data. The model simulates a residual short-period oscillation in the cca1;lhy mutant, as characterised by our experiments. No single-loop model is able to do this. Our model also matches experimental data under constant light (LL) conditions and correctly senses photoperiod. The model predicts an interlocked feedback loop structure similar to that seen in the circadian clock mechanisms of other organisms.
The interlocked feedback loop model predicts a distinctive pattern of Y mRNA accumulation in the wild type (WT) and in the cca1;lhy double mutant, with Y mRNA levels increasing transiently at dawn. We designed an experiment to identify Y based on this prediction. GIGANTEA (GI) mRNA levels fit very well to our predicted profile for Y (Figure 6), identifying GI as a strong candidate for Y.
The approach described here could act as a template for experimental biologists seeking to extend models of small genetic networks. Our results illustrate the usefulness of mathematical modelling in guiding experiments, even if the models are based on limited data. Our method provides a way of identifying suitable candidate networks and quantifying how these networks better describe a wide variety of experimental measurements. The characteristics of new putative genes are thereby obtained, facilitating the experimental search for new components. To facilitate future experimental design, we provide user-friendly software that is specifically designed for numerical simulation of circadian experiments using models for several species (Brown, 2004b).
*Footnote: Synopsis highlights were added on 5 July 2005.
Circadian clocks involve feedback loops that generate rhythmic expression of key genes. Molecular genetic studies in the higher plant Arabidopsis thaliana have revealed a complex clock network. The first part of the network to be identified, a transcriptional feedback loop comprising TIMING OF CAB EXPRESSION 1 (TOC1), LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), fails to account for significant experimental data. We develop an extended model that is based upon a wider range of data and accurately predicts additional experimental results. The model comprises interlocking feedback loops comparable to those identified experimentally in other circadian systems. We propose that each loop receives input signals from light, and that each loop includes a hypothetical component that had not been explicitly identified. Analysis of the model predicted the properties of these components, including an acute light induction at dawn that is rapidly repressed by LHY and CCA1. We found this unexpected regulation in RNA levels of the evening-expressed gene GIGANTEA (GI), supporting our proposed network and making GI a strong candidate for this component.
PMCID: PMC1681447  PMID: 16729048
biological rhythms; gene network; mathematical modelling; parameter estimation
8.  Ras-Mediated Deregulation of the Circadian Clock in Cancer 
PLoS Genetics  2014;10(5):e1004338.
Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.
Author Summary
Living systems possess an endogenous time-generating system – the circadian clock - accountable for a 24 hours oscillation in the expression of about 10% of all genes. In mammals, disruption of oscillations is associated to several diseases including cancer. In this manuscript, we address the following question: what are the elicitors of a disrupted clock in cancer? We applied a systems biology approach to correlate experimental, bioinformatics and modelling data and could thereby identify key genes which discriminate strong and weak oscillators among cancer cell lines. Most of the discriminative genes play important roles in cell cycle regulation, DNA repair, immune system and metabolism and are involved in oncogenic pathways such as the RAS/MAPK. To investigate the potential impact of the Ras oncogene in the circadian clock we generated experimental models harbouring conditionally active Ras oncogenes. We put forward a direct correlation between the perturbation of Ras oncogene and an effect in the expression of clock genes, found by means of mathematical simulations and validated experimentally. Our study shows that perturbations of a single oncogene are sufficient to deregulate the mammalian circadian clock and opens new ways in which the circadian clock can influence disease and possibly play a role in therapy.
PMCID: PMC4038477  PMID: 24875049
9.  The Circadian Clock Coordinates Ribosome Biogenesis 
PLoS Biology  2013;11(1):e1001455.
The authors identify a new role of the circadian clock in coordinating mRNA translation during ribosome biogenesis, a key process for cell metabolism.
Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.
Author Summary
Most living organisms on earth present biological rhythms that play a fundamental role in the coordination of their physiology and behavior. The discovery of the molecular circadian clock gives important insight into the mechanisms involved in the generation of these rhythms. Indeed, this molecular clock orchestrates the rhythmic transcription of clock-controlled genes involved in different aspects of metabolism, for example lipid, carbohydrate, and xenobiotic metabolisms in the liver. However, we show here that the circadian clock could also exert its function through the coordination of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs by controlling the expression and activation of translation initiation factors, as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. These rhythmically translated mRNAs are mainly involved in ribosome biogenesis, an energy consuming process, which has to be gated to a period when the cell resources are less limited. Moreover, the role of the circadian oscillator in this process is highlighted by its direct regulation of the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus our findings suggest that the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.
PMCID: PMC3536797  PMID: 23300384
10.  Dynamic Circadian Protein–Protein Interaction Networks Predict Temporal Organization of Cellular Functions 
PLoS Genetics  2013;9(3):e1003398.
Essentially all biological processes depend on protein–protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (∼24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner.
Author Summary
Circadian clocks are endogenous oscillators that drive daily rhythms in physiology, metabolism, and behavior. In mammals, circadian rhythms are generated within nearly every cell; and, although dysfunction of circadian clocks is associated with various diseases (including diabetes and cancer), the molecular mechanisms linking the clock machinery with output pathways are little understood. Since essentially all biological processes depend on protein–protein interactions, we investigated here on a systems-wide level how time-of-day-specific protein–protein interactions contribute to the temporal organization of cellular physiology. We constructed a circadian interactome using experimentally generated protein–protein interaction data and made this network dynamic by the incorporation of time-of-day-dependent expression data. Interestingly, systematic genetic network perturbation (RNAi and overexpression) suggests a crucial role for circadian components involved in dynamic interactions. Systems analysis of a global network revealed that interacting proteins are in the liver significantly more expressed at similar daytimes likely to restrict regulatory interactions to specific circadian phases within cells. Overall, circadian protein–protein interactions are predicted to dynamically connect important cellular processes (signal transduction, cell cycle, etc.) using—very often—protein modules with components co-expressed in time, shedding new light on the daily organization of cellular physiology.
PMCID: PMC3610820  PMID: 23555304
11.  Integration of Light and Temperature in the Regulation of Circadian Gene Expression in Drosophila 
PLoS Genetics  2007;3(4):e54.
Circadian clocks are aligned to the environment via synchronizing signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we found that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcript levels appear to be modified broadly by changes in temperature, there is a specific set of temperature-entrained circadian mRNA profiles that continue to oscillate in constant conditions. There are marked differences in the biological functions represented by temperature-driven or circadian regulation. The set of temperature-entrained circadian transcripts overlaps significantly with a previously defined set of transcripts oscillating in response to a photocycle. In follow-up studies, all thermocycle-entrained circadian transcript rhythms also responded to light/dark entrainment, whereas some photocycle-entrained rhythms did not respond to temperature entrainment. Transcripts encoding the clock components Period, Timeless, Clock, Vrille, PAR-domain protein 1, and Cryptochrome were all confirmed to be rhythmic after entrainment to a daily thermocycle, although the presence of a thermocycle resulted in an unexpected phase difference between period and timeless expression rhythms at the transcript but not the protein level. Generally, transcripts that exhibit circadian rhythms both in response to thermocycles and photocycles maintained the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases of these transcripts indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. This interpretation is further supported by comparative analysis of the circadian phases observed for temperature-entrained and light-entrained circadian locomotor behavior. Taken together, these findings suggest that information from both light and temperature is integrated by the transcriptional clock mechanism in the adult fly head.
Author Summary
A key adaptation to life on Earth is provided by internal daily time-keeping mechanisms that allow anticipation of the alternations between night and day. To act as reliable time-keeping mechanisms, circadian clocks have to be able to synchronize to environmental time cues, maintain ∼24-h rhythms under constant conditions, run at approximately the same pace over a range of environmental temperatures, and efficiently communicate time-of-day information to other biological systems. Clock-controlled oscillations in gene expression play an essential role in producing overt circadian rhythms. For most organisms, light/dark cycles appear to constitute the most powerful entrainment cue, but daily temperature cycles have also been demonstrated to efficiently synchronize circadian rhythms. This study uses the fruit fly Drosophila melanogaster as a model to compare the clock-dependent and clock-independent daily gene expression rhythms produced in response to light/dark cycles versus temperature cycles. A broad temperature-driven expression program was found in the heads of both wild-type and arrhythmic mutant flies, but wild-type flies also exhibited a more specific temperature-entrained circadian expression response that resembled the circadian response following light entrainment. The phase relationship between the temperature- and light-entrained circadian rhythms suggests that in nature light and temperature act cooperatively to synchronize the circadian clock.
PMCID: PMC1847695  PMID: 17411344
12.  In-Vivo Quantitative Proteomics Reveals a Key Contribution of Post-Transcriptional Mechanisms to the Circadian Regulation of Liver Metabolism 
PLoS Genetics  2014;10(1):e1004047.
Circadian clocks are endogenous oscillators that drive the rhythmic expression of a broad array of genes, orchestrating metabolism and physiology. Recent evidence indicates that post-transcriptional and post-translational mechanisms play essential roles in modulating temporal gene expression for proper circadian function, particularly for the molecular mechanism of the clock. Due to technical limitations in large-scale, quantitative protein measurements, it remains unresolved to what extent the circadian clock regulates metabolism by driving rhythms of protein abundance. Therefore, we aimed to identify global circadian oscillations of the proteome in the mouse liver by applying in vivo SILAC mouse technology in combination with state of the art mass spectrometry. Among the 3000 proteins accurately quantified across two consecutive cycles, 6% showed circadian oscillations with a defined phase of expression. Interestingly, daily rhythms of one fifth of the liver proteins were not accompanied by changes at the transcript level. The oscillations of almost half of the cycling proteome were delayed by more than six hours with respect to the corresponding, rhythmic mRNA. Strikingly we observed that the length of the time lag between mRNA and protein cycles varies across the day. Our analysis revealed a high temporal coordination in the abundance of proteins involved in the same metabolic process, such as xenobiotic detoxification. Apart from liver specific metabolic pathways, we identified many other essential cellular processes in which protein levels are under circadian control, for instance vesicle trafficking and protein folding. Our large-scale proteomic analysis reveals thus that circadian post-transcriptional and post-translational mechanisms play a key role in the temporal orchestration of liver metabolism and physiology.
Author Summary
The circadian clock is an evolutionary system that allows organisms to anticipate and thus adapt to daily changes in the environment. In mammals, the circadian clock is found in virtually every tissue regulating rhythms of metabolism and physiology. While a lot of studies have focused in how circadian clocks regulate gene expression little is known about daily control of protein abundance. Here we applied state of the art mass spectrometry in combination with quantitative proteomics to investigate global circadian oscillations of the proteome in the mouse liver. We found that approximately 6% of the liver proteins are cycling daily and interestingly the majority of these oscillations diverge from the behavior of their transcripts. Our data indicates that post-transcriptional mechanisms play an essential role in shaping the phase of rhythmic proteins downstream of transcription regulation to ultimately drive rhythms of metabolism. Moreover, the contribution of post-transcriptional regulation seems to differ among distinct metabolic pathways. Overall we not only found circadian oscillations in the abundance of proteins involved in liver specific metabolic pathways but also in essential cellular processes.
PMCID: PMC3879213  PMID: 24391516
13.  Emergence of Noise-Induced Oscillations in the Central Circadian Pacemaker 
PLoS Biology  2010;8(10):e1000513.
Computational modeling and experimentation explain how intercellular coupling and intracellular noise can generate oscillations in a mammalian neuronal network even in the absence of cell-autonomous oscillators.
Bmal1 is an essential transcriptional activator within the mammalian circadian clock. We report here that the suprachiasmatic nucleus (SCN) of Bmal1-null mutant mice, unexpectedly, generates stochastic oscillations with periods that overlap the circadian range. Dissociated SCN neurons expressed fluctuating levels of PER2 detected by bioluminescence imaging but could not generate circadian oscillations intrinsically. Inhibition of intercellular communication or cyclic-AMP signaling in SCN slices, which provide a positive feed-forward signal to drive the intracellular negative feedback loop, abolished the stochastic oscillations. Propagation of this feed-forward signal between SCN neurons then promotes quasi-circadian oscillations that arise as an emergent property of the SCN network. Experimental analysis and mathematical modeling argue that both intercellular coupling and molecular noise are required for the stochastic rhythms, providing a novel biological example of noise-induced oscillations. The emergence of stochastic circadian oscillations from the SCN network in the absence of cell-autonomous circadian oscillatory function highlights a previously unrecognized level of circadian organization.
Author Summary
The suprachiasmatic nucleus (SCN) is the master circadian pacemaker in mammals that controls and coordinates physiological processes in a daily manner. The SCN is composed of a network of cells, with each cell acting as an autonomous oscillator. In isolated individual cells, timekeeping is not precise because of the inherent randomness in the biochemical reactions within each cell, involving its core clock components. However, in the SCN network, precise rhythms can emerge because of intercellular coupling. In this article, we study a loss-of-function mutation of BMAL1, a core clock component, which eliminates timekeeping in isolated cells. Surprisingly, in both experiments and mathematical simulations, we find that noisy rhythms emerge from the SCN network even in the presence of this BMAL1 mutation. This random yet coordinated timekeeping has not been observed in previous modeling and experimental work and indicates that a network of cells can utilize noise to help compensate for loss of a physiological function. In normal function, the SCN network mitigates any variability observed in individual cellular rhythms and produces a precise and rhythmic network timekeeping signal. When the individual cells are no longer rhythmic, the coupling pathways within the SCN network can propagate stochastic rhythms that are a reflection of both feed-forward coupling mechanisms and intracellular noise. Thus, in a manner analogous to central pattern generators in neural circuits, rhythmicity can arise as an emergent property of the network in the absence of component pacemaker or oscillator cells.
PMCID: PMC2953532  PMID: 20967239
14.  Coordination of the maize transcriptome by a conserved circadian clock 
BMC Plant Biology  2010;10:126.
The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system.
Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways.
Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species.
PMCID: PMC3095283  PMID: 20576144
15.  Coupling of a Core Post-Translational Pacemaker to a Slave Transcription/Translation Feedback Loop in a Circadian System 
PLoS Biology  2010;8(6):e1000394.
Analysis of the cyanobacterial circadian biological clock reveals a complex interdependence between a transcription/translation feedback loop and a biochemical oscillator.
Cyanobacteria are the only model circadian clock system in which a circadian oscillator can be reconstituted in vitro. The underlying circadian mechanism appears to comprise two subcomponents: a post-translational oscillator (PTO) and a transcriptional/translational feedback loop (TTFL). The PTO and TTFL have been hypothesized to operate as dual oscillator systems in cyanobacteria. However, we find that they have a definite hierarchical interdependency—the PTO is the core pacemaker while the TTFL is a slave oscillator that quickly damps when the PTO stops. By analysis of overexpression experiments and mutant clock proteins, we find that the circadian system is dependent upon the PTO and that suppression of the PTO leads to damped TTFL-based oscillations whose temperature compensation is not stable under different metabolic conditions. Mathematical modeling indicates that the experimental data are compatible with a core PTO driving the TTFL; the combined PTO/TTFL system is resilient to noise. Moreover, the modeling indicates a mechanism by which the TTFL can feed into the PTO such that new synthesis of clock proteins can phase-shift or entrain the core PTO pacemaker. This prediction was experimentally tested and confirmed by entraining the in vivo circadian system with cycles of new clock protein synthesis that modulate the phosphorylation status of the clock proteins in the PTO. In cyanobacteria, the PTO is the self-sustained core pacemaker that can operate independently of the TTFL, but the TTFL damps when the phosphorylation status of the PTO is clamped. However, the TTFL can provide entraining input into the PTO. This study is the first to our knowledge to experimentally and theoretically investigate the dynamics of a circadian clock in which a PTO is coupled to a TTFL. These results have important implications for eukaryotic clock systems in that they can explain how a TTFL could appear to be a core circadian clockwork when in fact the true pacemaker is an embedded biochemical oscillator.
Author Summary
Many organisms from bacteria to humans have evolved circadian mechanisms for regulating biological processes on a daily time scale. In cyanobacteria, a minimal system for such cyclical regulation can be reconstituted in vitro from three proteins, called KaiA, KaiB, and KaiC. This three-protein oscillator is believed to regulate the cyclical activities in vivo through a post-translational mechanism that involves rhythmic phosphorylation of KaiC. Although this post-translational oscillator (PTO) is sufficient for generating rhythms in vitro, the cyanobacterial circadian system in vivo also includes a transcriptional/translational feedback loop (TTFL). The precise roles of the PTO and the TTFL and their interdependence in forming the complete clock system in vivo are unclear. By manipulating wild-type and mutant clock protein expression in vivo, we here show that the cyanobacterial circadian system is dependent upon the biochemical oscillator provided by the PTO and that suppression of the PTO leads to a residual damped (slave) oscillation that results from the TTFL. Mathematical modeling shows that the experimental data are compatible with a mechanism in which the PTO acts as a pacemaker to drive the activity of the TTFL. Moreover, our analyses suggest a mechanism by which the TTFL can feed back into the PTO such that new synthesis of the Kai proteins entrains the core PTO pacemaker. Therefore, the PTO and TTFL appear to have a definite hierarchical interdependency: the PTO is a self-sustained core pacemaker that can oscillate independently of the TTFL, but the TTFL is a slave oscillator that damps when the phosphorylation status of KaiC in the PTO is clamped. The core circadian pacemaker in eukaryotes is thought to be a TTFL, but our results with cyanobacteria have important implications for eukaryotic clock systems in that they can explain how a TTFL could appear to be the core clock when in fact the true pacemaker is an embedded biochemical oscillator.
PMCID: PMC2885980  PMID: 20563306
16.  Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model 
Integrating molecular time-series data resulted in a more robust model of the plant clock, which predicts that a wave of inhibitory PRR proteins controls the morning genes LHY and CCA1.PRR5 is experimentally validated as a late-acting component of this wave.The family of sequentially expressed PRR proteins allows flexible entrainment of the clock, whereas a single protein could not, suggesting that the duplication of clock genes might confer this generic, functional advantage.The observed post-translational regulation of the evening protein TOC1 by interaction with ZTL and GI remains consistent with an indirect activation of TOC1 mRNA expression by GI, which was previously postulated from modelling.
Circadian rhythms are present in most eukaryotic organisms including plants. The core genes of the circadian clock are very important for plant physiology as they drive the rhythmic expression of around 30% of Arabidopsis genes (Edwards et al, 2006; Michael et al, 2008). The clock is normally entrained by daily environmental changes in light and temperature. Oscillations also persist under constant environmental conditions in a laboratory. The clock gene circuit in Arabidopsis is based on multiple interlocked feedback loops, which are typical of circadian genetic networks in other organisms (Dunlap and Loros, 2004; Bell-Pedersen et al, 2005). Mechanistic, mathematical models are increasingly useful in analysing and understanding how the observed molecular components give rise to the rhythmic behaviour of this dynamic, non-linear system.
Our previous model of Arabidopsis circadian clock (Locke et al, 2006) presented the core, three-loop structure of the clock, which comprised morning and evening oscillators and coupling between them (Figure 1). The morning loop included the dawn-expressed LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) genes, which negatively regulate their expression through activation of the inhibitor proteins, PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7. These were described by a single, combined model component, PRR9/7. The evening loop included the dusk-expressed gene TIMING OF CAB EXPRESSION 1 (TOC1), which negatively regulates itself through inhibition of a hypothetical activator, gene Y. The evening-expressed gene GIGANTEA (GI) contributes to Y function. The morning and evening loops were connected through inhibition of the evening genes by LHY/CCA1 and activation of LHY/CCA1 expression by a hypothetical evening gene X. Here, we extend the previous model of circadian gene expression (Locke et al, 2006) based on recently published data (Figure 1). The new model retains the good match of our previous model to the large volume of molecular time-series data, and improves the behaviour of the model clock system under a range of light conditions and in a wider range of mutants.
The morning loop was extended by adding a hypothetical clock component, the night inhibitor (NI), which acts together with PRR9 and PRR7 to keep the expression of LHY and CCA1 at low levels over a broad interval spanning dusk. This regulation is important to set the phase of LHY/CCA1 expression at dawn. Data from the literature suggested that the PRR5 gene was a candidate for NI, leading us to predict that the sequentially expressed PRR9, PRR7 and PRR5 proteins together formed a wave of inhibitors of LHY and CCA1. This hypothesis was tested under discriminating light conditions, in which the light interval is replaced with the dawn and dusk pulses of light to form a ‘skeleton photoperiod'. Combining this protocol with mutation of the PRR7 and/or PRR5 genes, our new experimental results validated the model predictions and confirmed that PRR5 contributes to the function that we modelled as NI. During revision of this paper, that result received further experimental support (Nakamichi et al, 2010).
Model simulations revealed the functional importance of the inhibitor wave in entraining the clock to the light/dark cycle. Separating PRR9 from the other inhibitors in the model showed how the strong light activation observed for this gene contributes to more rapid entrainment. The observed, post-translation regulation of all three inhibitor proteins by light (Farre and Kay, 2007; Ito et al, 2007; Kiba et al, 2007) was also included in the model. Light-regulated degradation provides a molecular mechanism to explain the later phase of LHY and CCA1 expression under long photoperiods compared with short photoperiods, in line with experimental observations.
The connection between evening and morning loops was revised by including the inhibition of the morning gene PRR9 by the evening component TOC1, based on the data on TOC1-overexpressing plants (Makino et al, 2002; Ito et al, 2005). This inhibition causes a delay of PRR9 expression relative to LHY/CCA1, which allows LHY/CCA1 to reach a higher expression level at dawn. Our simulations showed that a partial mutant that lacks this inhibition of PRR9 by TOC1 is sufficient to cause the higher level of PRR9 and the short circadian period observed in toc1 mutant plants.
The evening loop was extended by introducing the observed, post-translational regulation of the TOC1 protein by the F-box protein ZEITLUPE (ZTL) and stabilization of ZTL by its interaction with GI in the presence of light (Kim et al, 2007). GI's function in the clock model has thus been revised according to the data: GI promotes an inhibition of TOC1 protein function through positive regulation of ZTL. This results, together with negative regulation of Y by TOC1, in indirect activation of TOC1 mRNA expression by GI, which agrees with our earlier experimental data (Locke et al, 2006). Simulations showed that the post-translational regulation of TOC1 by ZTL and GI results in the observed long period of the ztl mutant and fast dampening of rhythms in the lhy/cca1/gi triple mutant.
This is the first mathematical model that incorporates the observed post-translational regulation into the genetic network of the Arabidopsis clock. In addition to specific, mechanistic insights, the model shows a generic advantage from the duplication of clock genes and their expression at different phases. Such clock gene duplications are observed in eukaryotes with larger genomes, such as the mouse. Analogous, functional duplication can be achieved by differential regulation of a single clock gene in distinct cells, as in Drosophila.
Circadian clocks generate 24-h rhythms that are entrained by the day/night cycle. Clock circuits include several light inputs and interlocked feedback loops, with complex dynamics. Multiple biological components can contribute to each part of the circuit in higher organisms. Mechanistic models with morning, evening and central feedback loops have provided a heuristic framework for the clock in plants, but were based on transcriptional control. Here, we model observed, post-transcriptional and post-translational regulation and constrain many parameter values based on experimental data. The model's feedback circuit is revised and now includes PSEUDO-RESPONSE REGULATOR 7 (PRR7) and ZEITLUPE. The revised model matches data in varying environments and mutants, and gains robustness to parameter variation. Our results suggest that the activation of important morning-expressed genes follows their release from a night inhibitor (NI). Experiments inspired by the new model support the predicted NI function and show that the PRR5 gene contributes to the NI. The multiple PRR genes of Arabidopsis uncouple events in the late night from light-driven responses in the day, increasing the flexibility of rhythmic regulation.
PMCID: PMC2964123  PMID: 20865009
Arabidopsis thaliana; biological clocks; circadian rhythms; mathematical model; systems biology
17.  Disrupted circadian rhythmicity of the intestinal glucose transporter SGLT1 in Zucker Diabetic Fatty rats 
Digestive diseases and sciences  2013;58(6):1537-1545.
Intestinal nutrient absorptive capacity shows a circadian rhythm synchronized with eating patterns. Studies have shown that disrupting these normally coordinated rhythms, e.g. with shift work, may contribute to metabolic disease. While circadian expression of many nutrient transporters has been studied in health, their rhythms in obesity and metabolic disorders is not known. We studied the circadian expression and function of intestinal glucose transporter SGLT1, a major glucose transporter, in a rodent model of obesity and diabetes.
We compared obese Zucker Diabetic Fatty (ZDF) rats to lean ZDF littermates. Temporal feeding patterns were assessed, then rats were harvested at Zeitgeber (ZT, ZT0=7am) 3, 9, or 15 to measure insulin resistance, SGLT1 (Sodium glucose co-transporter type 1) mRNA expression and intestinal glucose absorption capacity. Known regulators of SGLT1 expression (intestinal sweet taste receptor T1R2/3; clock genes) were also measured to elucidate underlying mechanisms.
Both ZDF groups exhibited altered circadian food intake. Obese ZDF rats lost circadian rhythmicity of SGLT1 mRNA expression and functional activity. Lean ZDF rats had glucose levels less than half of the obese rats but were still hyperglycemic. Rhythmicity of mRNA expression was maintained but that of functional glucose uptake was blunted. Circadian rhythms of intestinal clock genes were maintained in both groups while there was no discernible rhythm of intestinal glucose transporter gene GLUT2 expression or of the T1R2 component of the sweet taste receptor in either group. In summary, lean and obese ZDF rats exhibited similar disruptions in circadian feeding pattern. Glucose intolerance was evident in lean rats, but only obese ZDF rats further developed diabetes and exhibited disrupted circadian rhythmicity of both SGLT1 mRNA expression and functional activity.
Our findings suggest that disrupted circadian feeding rhythms contribute to glucose intolerance, but additional factors (genetics, changes in nutrient sensing/ transport) are needed to lead to full diabetes.
PMCID: PMC3691300  PMID: 23633155
circadian; intestinal glucose sensing; metabolic disease; SGLT1
18.  Synchronization-Induced Rhythmicity of Circadian Oscillators in the Suprachiasmatic Nucleus 
PLoS Computational Biology  2007;3(4):e68.
The suprachiasmatic nuclei (SCN) host a robust, self-sustained circadian pacemaker that coordinates physiological rhythms with the daily changes in the environment. Neuronal clocks within the SCN form a heterogeneous network that must synchronize to maintain timekeeping activity. Coherent circadian output of the SCN tissue is established by intercellular signaling factors, such as vasointestinal polypeptide. It was recently shown that besides coordinating cells, the synchronization factors play a crucial role in the sustenance of intrinsic cellular rhythmicity. Disruption of intercellular signaling abolishes sustained rhythmicity in a majority of neurons and desynchronizes the remaining rhythmic neurons. Based on these observations, the authors propose a model for the synchronization of circadian oscillators that combines intracellular and intercellular dynamics at the single-cell level. The model is a heterogeneous network of circadian neuronal oscillators where individual oscillators are damped rather than self-sustained. The authors simulated different experimental conditions and found that: (1) in normal, constant conditions, coupled circadian oscillators quickly synchronize and produce a coherent output; (2) in large populations, such oscillators either synchronize or gradually lose rhythmicity, but do not run out of phase, demonstrating that rhythmicity and synchrony are codependent; (3) the number of oscillators and connectivity are important for these synchronization properties; (4) slow oscillators have a higher impact on the period in mixed populations; and (5) coupled circadian oscillators can be efficiently entrained by light–dark cycles. Based on these results, it is predicted that: (1) a majority of SCN neurons needs periodic synchronization signal to be rhythmic; (2) a small number of neurons or a low connectivity results in desynchrony; and (3) amplitudes and phases of neurons are negatively correlated. The authors conclude that to understand the orchestration of timekeeping in the SCN, intracellular circadian clocks cannot be isolated from their intercellular communication components.
Author Summary
Circadian rhythms, characterized by a period close to 24 h, are observed in nearly all living organisms, from cyanobacteria to plants, insects, and mammals. In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, where it receives light signals from the retina. In turn, the SCN controls circadian rhythms in peripheral tissues and behavioral activity. The SCN is composed of about 20,000 neurons characterized by a small size and a high density. Within each individual neuron, clock genes and proteins compose interlocked regulatory feedback loops that generate circadian oscillations on the molecular level. SCN neurons dispersed in cell cultures display cell-autonomous oscillations, with periods ranging from 20 h to 28 h. The ventrolateral part of the SCN receives light input from the retina, serving as a relay for the dorsomedial part. Coupling and synchronization among SCN neurons are ensured by neurotransmitters. A desire to understand how such a network of heterogeneous circadian oscillators achieves a synchronous and coherent output rhythm has motivated extensive experimental and theoretical work. In this paper, we present a molecular model combining intracellular and extracellular dynamics for the SCN circadian system, and propose a novel synchronization mechanism. Our results predict a dual role for the coupling factors within the SCN, both in maintaining the rhythmicity and in promoting the synchronization between the circadian oscillators.
PMCID: PMC1851983  PMID: 17432930
19.  Early Chronotype and Tissue-Specific Alterations of Circadian Clock Function in Spontaneously Hypertensive Rats 
PLoS ONE  2012;7(10):e46951.
Malfunction of the circadian timing system may result in cardiovascular and metabolic diseases, and conversely, these diseases can impair the circadian system. The aim of this study was to reveal whether the functional state of the circadian system of spontaneously hypertensive rats (SHR) differs from that of control Wistar rat. This study is the first to analyze the function of the circadian system of SHR in its complexity, i.e., of the central clock in the suprachiasmatic nuclei (SCN) as well as of the peripheral clocks. The functional properties of the SCN clock were estimated by behavioral output rhythm in locomotor activity and daily profiles of clock gene expression in the SCN determined by in situ hybridization. The function of the peripheral clocks was assessed by daily profiles of clock gene expression in the liver and colon by RT-PCR and in vitro using real time recording of Bmal1-dLuc reporter. The potential impact of the SHR phenotype on circadian control of the metabolic pathways was estimated by daily profiles of metabolism-relevant gene expression in the liver and colon. The results revealed that SHR exhibited an early chronotype, because the central SCN clock was phase advanced relative to light/dark cycle and the SCN driven output rhythm ran faster compared to Wistar rats. Moreover, the output rhythm was dampened. The SHR peripheral clock reacted to the dampened SCN output with tissue-specific consequences. In the colon of SHR the clock function was severely altered, whereas the differences are only marginal in the liver. These changes may likely result in a mutual desynchrony of circadian oscillators within the circadian system of SHR, thereby potentially contributing to metabolic pathology of the strain. The SHR may thus serve as a valuable model of human circadian disorders originating in poor synchrony of the circadian system with external light/dark regime.
PMCID: PMC3462770  PMID: 23056539
20.  Analysis of a Gene Regulatory Cascade Mediating Circadian Rhythm in Zebrafish 
PLoS Computational Biology  2013;9(2):e1002940.
In the study of circadian rhythms, it has been a puzzle how a limited number of circadian clock genes can control diverse aspects of physiology. Here we investigate circadian gene expression genome-wide using larval zebrafish as a model system. We made use of a spatial gene expression atlas to investigate the expression of circadian genes in various tissues and cell types. Comparison of genome-wide circadian gene expression data between zebrafish and mouse revealed a nearly anti-phase relationship and allowed us to detect novel evolutionarily conserved circadian genes in vertebrates. We identified three groups of zebrafish genes with distinct responses to light entrainment: fast light-induced genes, slow light-induced genes, and dark-induced genes. Our computational analysis of the circadian gene regulatory network revealed several transcription factors (TFs) involved in diverse aspects of circadian physiology through transcriptional cascade. Of these, microphthalmia-associated transcription factor a (mitfa), a dark-induced TF, mediates a circadian rhythm of melanin synthesis, which may be involved in zebrafish's adaptation to daily light cycling. Our study describes a systematic method to discover previously unidentified TFs involved in circadian physiology in complex organisms.
Author Summary
For most animals whose lives are dependent on the sun, circadian clocks govern their daily behaviors and physiology. In different animals, novel functions under the circadian clock's control can evolve as adaptations to their specific environment. A zebrafish demonstrates a remarkably high level of interplay between external light and its internal circadian clock due to its transparent nature. In a genome-wide study, we identified a large number of circadian oscillating genes as well as genes whose expression is highly sensitive to the light or dark in zebrafish. Our computational analysis of gene regulatory networks revealed a number of transcription factors (TFs) that mediate novel circadian functions. We investigated one example in depth, a key TF that relays the control of the circadian clock to the enzymes synthesizing melanin in a dark-induced pathway thus causing the daily change of pigmentation in zebrafish. This dark-induced circadian melanogenesis can lead to an anticipatory change in zebrafish skin color allowing zebrafish to adapt to its environment. This mechanism allows zebrafish to better evade predators and effectively adjust its daily light-sensitivity in the pigment cells. Our study provides an excellent example of how the circadian clock is adapted in a specific organism to control its behavior, thus enabling evolutionary adaptation to the organism's ecological niche.
PMCID: PMC3585402  PMID: 23468616
21.  Regulation of alternative splicing by the circadian clock and food related cues 
Genome Biology  2012;13(6):R54.
The circadian clock orchestrates daily rhythms in metabolism, physiology and behaviour that allow organisms to anticipate regular changes in their environment, increasing their adaptation. Such circadian phenotypes are underpinned by daily rhythms in gene expression. Little is known, however, about the contribution of post-transcriptional processes, particularly alternative splicing.
Using Affymetrix mouse exon-arrays, we identified exons with circadian alternative splicing in the liver. Validated circadian exons were regulated in a tissue-dependent manner and were present in genes with circadian transcript abundance. Furthermore, an analysis of circadian mutant Vipr2-/- mice revealed the existence of distinct physiological pathways controlling circadian alternative splicing and RNA binding protein expression, with contrasting dependence on Vipr2-mediated physiological signals. This view was corroborated by the analysis of the effect of fasting on circadian alternative splicing. Feeding is an important circadian stimulus, and we found that fasting both modulates hepatic circadian alternative splicing in an exon-dependent manner and changes the temporal relationship with transcript-level expression.
The circadian clock regulates alternative splicing in a manner that is both tissue-dependent and concurrent with circadian transcript abundance. This adds a novel temporal dimension to the regulation of mammalian alternative splicing. Moreover, our results demonstrate that circadian alternative splicing is regulated by the interaction between distinct physiological cues, and illustrates the capability of single genes to integrate circadian signals at different levels of regulation.
PMCID: PMC3446320  PMID: 22721557
22.  Digital Signal Processing Reveals Circadian Baseline Oscillation in Majority of Mammalian Genes 
PLoS Computational Biology  2007;3(6):e120.
In mammals, circadian periodicity has been described for gene expression in the hypothalamus and multiple peripheral tissues. It is accepted that 10%–15% of all genes oscillate in a daily rhythm, regulated by an intrinsic molecular clock. Statistical analyses of periodicity are limited by the small size of datasets and high levels of stochastic noise. Here, we propose a new approach applying digital signal processing algorithms separately to each group of genes oscillating in the same phase. Combined with the statistical tests for periodicity, this method identifies circadian baseline oscillation in almost 100% of all expressed genes. Consequently, circadian oscillation in gene expression should be evaluated in any study related to biological pathways. Changes in gene expression caused by mutations or regulation of environmental factors (such as photic stimuli or feeding) should be considered in the context of changes in the amplitude and phase of genetic oscillations.
Author Summary
Prior studies have reported that ~15% of expressed genes show a circadian expression pattern in association with a specific function. A series of experimental and computational studies of gene expression in various murine tissues has led us to a different conclusion. By applying a new analysis strategy and a number of alternative algorithms, we identify baseline oscillation in almost 100% of all genes. While the phase and amplitude of oscillation vary between different tissues, circadian oscillation remains a fundamental property of every gene. Reanalysis of previously published data also reveals a greater number of oscillating genes than was previously reported. This suggests that circadian oscillation is a universal property of all mammalian genes, although phase and amplitude of oscillation are tissue-specific and remain associated with a gene's function. We hypothesize that the cell's metabolic respiratory cycle drives the oscillatory pattern of gene expression. These findings imply that biological pathways should be considered as dynamic systems of genes oscillating in coordination with each other.
PMCID: PMC1892608  PMID: 17571920
23.  24-Hour Rhythms of DNA Methylation and Their Relation with Rhythms of RNA Expression in the Human Dorsolateral Prefrontal Cortex 
PLoS Genetics  2014;10(11):e1004792.
Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that dynamic site-specific circadian rhythms of DNA methylation may play a role in modulating the fungal molecular clock, such rhythms and their relationship to RNA expression have not, to our knowledge, been elucidated in mammalian tissues, including human brain tissues. We hypothesized that 24-hour rhythms of DNA methylation exist in the human brain, and play a role in driving 24-hour rhythms of RNA expression. We analyzed DNA methylation levels in post-mortem human dorsolateral prefrontal cortex samples from 738 subjects. We assessed for 24-hour rhythmicity of 420,132 DNA methylation sites throughout the genome by considering methylation levels as a function of clock time of death and parameterizing these data using cosine functions. We determined global statistical significance by permutation. We then related rhythms of DNA methylation with rhythms of RNA expression determined by RNA sequencing. We found evidence of significant 24-hour rhythmicity of DNA methylation. Regions near transcription start sites were enriched for high-amplitude rhythmic DNA methylation sites, which were in turn time locked to 24-hour rhythms of RNA expression of nearby genes, with the nadir of methylation preceding peak transcript expression by 1–3 hours. Weak ante-mortem rest-activity rhythms were associated with lower amplitude DNA methylation rhythms as were older age and the presence of Alzheimer's disease. These findings support the hypothesis that 24-hour rhythms of DNA methylation, particularly near transcription start sites, may play a role in driving 24-hour rhythms of gene expression in the human dorsolateral prefrontal cortex, and may be affected by age and Alzheimer's disease.
Author Summary
Circadian rhythms are intrinsic 24-hour biological rhythms that influence many aspects of human biology, including normal and abnormal human brain functions such as cognition and seizures. Circadian rhythms are maintained by a near 24-hour feedback loop mediated by a series of “clock” genes that are similar across species, including humans. However, the specific mechanisms underlying the circadian regulation of gene transcription are unknown. DNA methylation is an epigenetic mechanism that can influence gene expression without changes in DNA sequence. The 24-hour rhythms of DNA methylation are one mechanism contributing to 24-hour rhythms of clock gene expression in fungi. However, this has not been demonstrated in mammals including humans. In this study, we examined levels of DNA methylation at>400,000 sites across the genome in the brains of 738 human subjects and showed significant 24-hour rhythms of DNA methylation. Moreover, we showed that for specific locations of DNA methylation site, these rhythms of methylation were linked to rhythms of gene expression. This is important because it suggests that circadian rhythms of DNA methylation may be an important mechanism underlying circadian rhythms of gene expression in the human brain, and hence circadian rhythms of normal and abnormal brain function.
PMCID: PMC4222754  PMID: 25375876
24.  Genome-Wide Analysis of Light- and Temperature-Entrained Circadian Transcripts in Caenorhabditis elegans 
PLoS Biology  2010;8(10):e1000503.
Transcriptional profiling experiments identify light- and temperature-entrained circadian transcripts in C. elegans.
Most organisms have an endogenous circadian clock that is synchronized to environmental signals such as light and temperature. Although circadian rhythms have been described in the nematode Caenorhabditis elegans at the behavioral level, these rhythms appear to be relatively non-robust. Moreover, in contrast to other animal models, no circadian transcriptional rhythms have been identified. Thus, whether this organism contains a bona fide circadian clock remains an open question. Here we use genome-wide expression profiling experiments to identify light- and temperature-entrained oscillating transcripts in C. elegans. These transcripts exhibit rhythmic expression with temperature-compensated 24-h periods. In addition, their expression is sustained under constant conditions, suggesting that they are under circadian regulation. Light and temperature cycles strongly drive gene expression and appear to entrain largely nonoverlapping gene sets. We show that mutations in a cyclic nucleotide-gated channel required for sensory transduction abolish both light- and temperature-entrained gene expression, implying that environmental cues act cell nonautonomously to entrain circadian rhythms. Together, these findings demonstrate circadian-regulated transcriptional rhythms in C. elegans and suggest that further analyses in this organism will provide new information about the evolution and function of this biological clock.
Author Summary
Daily (circadian) rhythms in behavior and physiology allow organisms to adapt to periodic cues such as light and temperature associated with the rotation of the earth. Subsets of molecular components of the internal clock that drive these rhythms, as well as effector genes for behavioral outputs, also exhibit rhythmic expression in many organisms. While circadian rhythms in behavior have previously been described in the nematode Caenorhabditis elegans, no transcriptional rhythms or clock genes have been identified, leaving open the question of the nature of the clock in this organism. Here, we identify light- and temperature-entrained cycling genes in C. elegans via genome-wide transcriptional profiling. Transcripts showing circadian regulation (including expression with a 24-h period maintained upon removal of the entraining stimulus) and temperature compensation were identified. Light and temperature appear to entrain independent sets of genes. We also identify large sets of light- or temperature-driven genes. Mutations in a channel gene previously implicated in sensory transduction in a small set of sensory neurons abolish entrainment of gene expression by environmental signals. This work demonstrates the presence of circadian transcriptional rhythms in C. elegans, and provides the foundation for future investigations into the underlying mechanisms.
PMCID: PMC2953524  PMID: 20967231
25.  The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle 
Skeletal Muscle  2015;5:17.
Skeletal muscle is a major contributor to whole-body metabolism as it serves as a depot for both glucose and amino acids, and is a highly metabolically active tissue. Within skeletal muscle exists an intrinsic molecular clock mechanism that regulates the timing of physiological processes. A key function of the clock is to regulate the timing of metabolic processes to anticipate time of day changes in environmental conditions. The purpose of this study was to identify metabolic genes that are expressed in a circadian manner and determine if these genes are regulated downstream of the intrinsic molecular clock by assaying gene expression in an inducible skeletal muscle-specific Bmal1 knockout mouse model (iMS-Bmal1−/−).
We used circadian statistics to analyze a publicly available, high-resolution time-course skeletal muscle expression dataset. Gene ontology analysis was utilized to identify enriched biological processes in the skeletal muscle circadian transcriptome. We generated a tamoxifen-inducible skeletal muscle-specific Bmal1 knockout mouse model and performed a time-course microarray experiment to identify gene expression changes downstream of the molecular clock. Wheel activity monitoring was used to assess circadian behavioral rhythms in iMS-Bmal1−/− and control iMS-Bmal1+/+ mice.
The skeletal muscle circadian transcriptome was highly enriched for metabolic processes. Acrophase analysis of circadian metabolic genes revealed a temporal separation of genes involved in substrate utilization and storage over a 24-h period. A number of circadian metabolic genes were differentially expressed in the skeletal muscle of the iMS-Bmal1−/− mice. The iMS-Bmal1−/− mice displayed circadian behavioral rhythms indistinguishable from iMS-Bmal1+/+ mice. We also observed a gene signature indicative of a fast to slow fiber-type shift and a more oxidative skeletal muscle in the iMS-Bmal1−/− model.
These data provide evidence that the intrinsic molecular clock in skeletal muscle temporally regulates genes involved in the utilization and storage of substrates independent of circadian activity. Disruption of this mechanism caused by phase shifts (that is, social jetlag) or night eating may ultimately diminish skeletal muscle’s ability to efficiently maintain metabolic homeostasis over a 24-h period.
Electronic supplementary material
The online version of this article (doi:10.1186/s13395-015-0039-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4440511  PMID: 26000164
Circadian; Molecular clock; Skeletal muscle; Metabolism; Temporal separation; Anabolic; Catabolic; Bmal1; Rev-erbα

Results 1-25 (1479899)