PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (599128)

Clipboard (0)
None

Related Articles

1.  Representation of pheromones, interspecific signals, and plant odors in higher olfactory centers; mapping physiologically identified antennal-lobe projection neurons in the male heliothine moth 
The arrangement of anatomically separated systems for information about general and pheromone odorants is well documented at the initial levels of the olfactory pathway both in vertebrates and insects. In the primary olfactory center of the moth brain, for example, a few enlarged glomeruli situated dorsally, at the entrance of the antennal nerve, are devoted to information about female-produced substances whereas a set of more numerous ordinary glomeruli (OG) receives input about general odorants. Heliothine moths are particularly suitable for studying central chemosensory mechanisms not only because of their anatomically separated systems for plant odors and pheromones but also due to their use of female-produced substances in communication across the species. Thus, the male-specific system of heliothine moths includes two sub-arrangements, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecifics, and the other inhibition of attraction via signal information emitted from heterospecifics. Based on previous tracing experiments, a general chemotopic organization of the male-specific glomeruli has been demonstrated in a number of heliothine species. As compared to the well explored organization of the moth antennal lobe (AL), demonstrating a non-overlapping representation of the biologically relevant stimuli, less is known about the neural arrangement residing at the following synaptic level, i.e., the mushroom body calyces and the lateral horn. In the study presented here, we have labeled physiologically characterized antennal-lobe projection neurons in males of the two heliothine species, Heliothis virescens and Helicoverpa assulta, for the purpose of mapping their target regions in the protocerebrum. In order to compare the representation of plant odors, pheromones, and interspecific signals in the higher brain regions of each species, we have created standard brain atlases and registered three-dimensional models of distinct uniglomerular projection neuron types into the relevant atlas.
doi:10.3389/fnsys.2014.00186
PMCID: PMC4191081  PMID: 25346663
standard brain atlas; antennal-lobe projection neurons; lateral horn; antennal-lobe glomeruli; macroglomerular complex (MGC)
2.  Differential Octopaminergic Modulation of Olfactory Receptor Neuron Responses to Sex Pheromones in Heliothis virescens 
PLoS ONE  2015;10(12):e0143179.
Octopamine is an important neuromodulator of neural function in invertebrates. Octopamine increases male moth sensitivity to female sex pheromones, however, relatively little is known as to the role of octopamine in the female olfactory system, nor its possible effects on the reception of non-pheromone odorants. The purpose of this study was to determine relative effects of octopamine on the sensitivity of the peripheral olfactory system in male and female Heliothis virescens. Single sensillum recording was conducted in both sexes following injection with octopamine or Ringer solution, and during odorant stimulation with conspecific female sex pheromone or host plant volatiles. Results indicate that octopamine plays a significant modulatory role in female sex pheromone detection in female moths; and that male and female pheromone detection neurons share distinct pharmacological and physiological similarities in H. virescens despite sexual dimorphism at the antennal level.
doi:10.1371/journal.pone.0143179
PMCID: PMC4674078  PMID: 26650832
3.  Transplant Antennae and Host Brain Interact to Shape Odor Perceptual Space in Male Moths 
PLoS ONE  2016;11(1):e0147906.
Behavioral responses to odors rely first upon their accurate detection by peripheral sensory organs followed by subsequent processing within the brain’s olfactory system and higher centers. These processes allow the animal to form a unified impression of the odor environment and recognize combinations of odorants as single entities. To investigate how interactions between peripheral and central olfactory pathways shape odor perception, we transplanted antennal imaginal discs between larval males of two species of moth Heliothis virescens and Heliothis subflexa that utilize distinct pheromone blends. During metamorphic development olfactory receptor neurons originating from transplanted discs formed connections with host brain neurons within olfactory glomeruli of the adult antennal lobe. The normal antennal receptor repertoire exhibited by males of each species reflects the differences in the pheromone blends that these species employ. Behavioral assays of adult transplant males revealed high response levels to two odor blends that were dissimilar from those that attract normal males of either species. Neurophysiological analyses of peripheral receptor neurons and central olfactory neurons revealed that these behavioral responses were a result of: 1. the specificity of H. virescens donor olfactory receptor neurons for odorants unique to the donor pheromone blend and, 2. central odor recognition by the H. subflexa host brain, which typically requires peripheral receptor input across 3 distinct odor channels in order to elicit behavioral responses.
doi:10.1371/journal.pone.0147906
PMCID: PMC4729490  PMID: 26816291
4.  Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens 
In many insects, mate finding relies on female-released sex pheromones, which have to be deciphered by the male olfactory system within an odorous background of plant volatiles present in the environment of a calling female. With respect to pheromone-mediated mate localization, plant odorants may be neutral, favorable, or disturbing. Here we examined the impact of plant odorants on detection and coding of the major sex pheromone component, (Z)-11-hexadecenal (Z11-16:Ald) in the noctuid moth Heliothis virescens. By in vivo imaging the activity in the male antennal lobe (AL), we monitored the interference at the level of olfactory sensory neurons (OSN) to illuminate mixture interactions. The results show that stimulating the male antenna with Z11-16:Ald and distinct plant-related odorants simultaneously suppressed pheromone-evoked activity in the region of the macroglomerular complex (MGC), where Z11-16:Ald-specific OSNs terminate. Based on our previous findings that antennal detection of Z11-16:Ald involves an interplay of the pheromone binding protein (PBP) HvirPBP2 and the pheromone receptor (PR) HR13, we asked if the plant odorants may interfere with any of the elements involved in pheromone detection. Using a competitive fluorescence binding assay, we found that the plant odorants neither bind to HvirPBP2 nor affect the binding of Z11-16:Ald to the protein. However, imaging experiments analyzing a cell line that expressed the receptor HR13 revealed that plant odorants significantly inhibited the Z11-16:Ald-evoked calcium responses. Together the results indicate that plant odorants can interfere with the signaling process of the major sex pheromone component at the receptor level. Consequently, it can be assumed that plant odorants in the environment may reduce the firing activity of pheromone-specific OSNs in H. virescens and thus affect mate localization.
doi:10.3389/fncel.2012.00042
PMCID: PMC3465774  PMID: 23060749
pheromone detection; antennal lobe; pheromone receptor; pheromone binding protein; olfaction
5.  A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori 
PLoS Genetics  2011;7(6):e1002115.
In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence.
Author Summary
Like many animal species, moths use chemical signals called sex pheromones to communicate with conspecific individuals of the opposite sex in the context of reproduction. Typically, male moths depend on sex pheromones emitted by conspecific females to identify and locate their mates. Therefore, the behavioral preference of male moths to conspecific pheromones is a critical factor for successful reproduction. Sex pheromone receptor proteins expressed in specialized antennal olfactory receptor neurons reportedly play a central role in sex pheromone discrimination. However, the causal relationship between sex pheromone receptor specificity and behavioral preference remains to be proven. We have addressed this question in a genetically tractable moth species, the silkmoth (Bombyx mori), because this species possesses the simplest possible pheromone system in which a single pheromone substance, bombykol, elicits full sexual behavior. Using transgenic silkmoths expressing a sex pheromone receptor from another moth species, we revealed that solely the chemical specificity of the odorant receptors in bombykol receptor neurons determines the behavioral preference in male silkmoths. Our results show that the initiation of a complex programmed sexual behavior can depend on the properties of a single pheromone receptor gene expressed in a population of olfactory receptor neurons.
doi:10.1371/journal.pgen.1002115
PMCID: PMC3128102  PMID: 21738481
6.  Unexpected plant odor responses in a moth pheromone system 
Male moths rely on olfactory cues to find females for reproduction. Males also use volatile plant compounds (VPCs) to find food sources and might use host-plant odor cues to identify the habitat of calling females. Both the sex pheromone released by conspecific females and VPCs trigger well-described oriented flight behavior toward the odor source. Whereas detection and central processing of pheromones and VPCs have been thought for a long time to be highly separated from each other, recent studies have shown that interactions of both types of odors occur already early at the periphery of the olfactory pathway. Here we show that detection and early processing of VPCs and pheromone can overlap between the two sub-systems. Using complementary approaches, i.e., single-sensillum recording of olfactory receptor neurons, in vivo calcium imaging in the antennal lobe, intracellular recordings of neurons in the macroglomerular complex (MGC) and flight tracking in a wind tunnel, we show that some plant odorants alone, such as heptanal, activate the pheromone-specific pathway in male Agrotis ipsilon at peripheral and central levels. To our knowledge, this is the first report of a plant odorant with no chemical similarity to the molecular structure of the pheromone, acting as a partial agonist of a moth sex pheromone.
doi:10.3389/fphys.2015.00148
PMCID: PMC4429231  PMID: 26029117
insect olfaction; sex pheromone; volatile plant compounds; interaction; olfactory receptor neuron; antennal lobe; central neuron
7.  Moth Sex Pheromone Receptors and Deceitful Parapheromones 
PLoS ONE  2012;7(7):e41653.
The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this “lock-and-key” tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs). Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs) were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs) housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z)-hexadecadienal (Z11Z13-16Ald), and its formate analog, (9Z,11Z)-tetradecen-1-yl formate (Z9Z11-14OFor). We cloned an odorant receptor co-receptor (Orco) and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1) was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z)-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13) showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z)-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors.
doi:10.1371/journal.pone.0041653
PMCID: PMC3401280  PMID: 22911835
8.  Processing of Pheromone Information in Related Species of Heliothine Moths 
Insects  2014;5(4):742-761.
In heliothine moths, the male-specific olfactory system is activated by a few odor molecules, each of which is associated with an easily identifiable glomerulus in the primary olfactory center of the brain. This arrangement is linked to two well-defined behavioral responses, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecific females and the other inhibition of attraction via signal information emitted from heterospecifics. The chance of comparing the characteristic properties of pheromone receptor proteins, male-specific sensory neurons and macroglomerular complex (MGC)-units in closely-related species is especially intriguing. Here, we review studies on the male-specific olfactory system of heliothine moths with particular emphasis on five closely related species, i.e., Heliothis virescens, Heliothis subflexa, Helicoverpa zea, Helicoverpa assulta and Helicoverpa armigera.
doi:10.3390/insects5040742
PMCID: PMC4592608  PMID: 26462937
pheromone; interspecific signal; macroglomerular complex; odorant receptor; olfactory sensory neuron; compartmentalization of sensory neurons; lateral horn
9.  Sex-Linked Pheromone Receptor Genes of the European Corn Borer, Ostrinia nubilalis, Are in Tandem Arrays 
PLoS ONE  2011;6(4):e18843.
Background
Tuning of the olfactory system of male moths to conspecific female sex pheromones is crucial for correct species recognition; however, little is known about the genetic changes that drive speciation in this system. Moths of the genus Ostrinia are good models to elucidate this question, since significant differences in pheromone blends are observed within and among species. Odorant receptors (ORs) play a critical role in recognition of female sex pheromones; eight types of OR genes expressed in male antennae were previously reported in Ostrinia moths.
Methodology/Principal Findings
We screened an O. nubilalis bacterial artificial chromosome (BAC) library by PCR, and constructed three contigs from isolated clones containing the reported OR genes. Fluorescence in situ hybridization (FISH) analysis using these clones as probes demonstrated that the largest contig, which contained eight OR genes, was located on the Z chromosome; two others harboring two and one OR genes were found on two autosomes. Sequence determination of BAC clones revealed the Z-linked OR genes were closely related and tandemly arrayed; moreover, four of them shared 181-bp direct repeats spanning exon 7 and intron 7.
Conclusions/Significance
This is the first report of tandemly arrayed sex pheromone receptor genes in Lepidoptera. The localization of an OR gene cluster on the Z chromosome agrees with previous findings for a Z-linked locus responsible for O. nubilalis male behavioral response to sex pheromone. The 181-bp direct repeats might enhance gene duplications by unequal crossovers. An autosomal locus responsible for male response to sex pheromone in Heliothis virescens and H. subflexa was recently reported to contain at least four OR genes. Taken together, these findings support the hypothesis that generation of additional copies of OR genes can increase the potential for male moths to acquire altered specificity for pheromone components, and accordingly, facilitate differentiation of sex pheromones.
doi:10.1371/journal.pone.0018843
PMCID: PMC3081303  PMID: 21526121
10.  Differential Interactions of Sex Pheromone and Plant Odour in the Olfactory Pathway of a Male Moth 
PLoS ONE  2012;7(3):e33159.
Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants), mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a) recordings from individual sensilla to study responses of olfactory receptor neurons, b) in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c) intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization.
doi:10.1371/journal.pone.0033159
PMCID: PMC3299628  PMID: 22427979
11.  Glomerular interactions in olfactory processing channels of the antennal lobes 
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.
doi:10.1007/s00359-013-0842-6
PMCID: PMC4066976  PMID: 23893248
Electrophysiology; Glomerulus; Neural coding; Olfaction; Pheromone
12.  Integration of the Antennal Lobe Glomeruli and Three Projection Neurons in the Standard Brain Atlas of the Moth Heliothis Virescens 
Digital three dimensional standard brain atlases (SBAs) are valuable tools for integrating neuroimaging data of different preparations. In insects, SBAs of five species are available, including the atlas of the female Heliothis virescens moth brain. Like for the other species, the antennal lobes (ALs) of the moth brain atlas were integrated as one material identity without internal structures. Different from the others, the H. virescens SBA exclusively included the glomerular layer of the AL. This was an advantage in the present study for performing a direct registration of the glomerular layer of individual preparations into the standard brain. We here present the H. virescens female SBA with a new model of the AL glomeruli integrated into the atlas, i.e. with each of the 66 glomeruli identified and labelled with a specific number. The new model differs from the previous H. virescens AL model both in respect to the number of glomeruli and the numbering system; the latter according to the system used for the AL atlases of two other heliothine species. For identifying female specific glomeruli comparison with the male AL was necessary. This required a new male AL atlas, included in this paper. As demonstrated by the integration of three AL projection neurons of different preparations, the new SBA with the integrated glomruli is a helpful tool for determining the glomeruli innervated as well as the relative position of the axonal projections in the protocerebrum.
doi:10.3389/neuro.06.005.2010
PMCID: PMC2826183  PMID: 20179785
insect; olfaction; three dimensional reconstruction; mushroom body calyces; lateral protocerebrum
13.  Plasticity in Central Olfactory Processing and Pheromone Blend Discrimination Following Inter-species Antennal Imaginal Disc Transplantation 
The antennal imaginal disc was transplanted between pre-metamorphic male larvae of two different Lepidopteran moth species. Following adult eclosion, electrophysiological recordings were made from 33 central olfactory neurons in the antennal lobes of both Helicoverpa zea donor to Heliothis virescens recipient (Z-V) and reciprocal (V-Z) transplants. Under the influence of sensory neuron input derived from the transplanted antennal imaginal disc, most antennal lobe projection neurons (29/33) were classified as belonging to physiological categories encountered previously in donor species males. Furthermore, when stained, many of these neurons had dendritic arbors restricted to donor-induced glomerular locations predicted by their physiology. However, some neurons with unexpected physiological profiles were also identified (4/33), but only in V-Z transplants. These profiles help to explain why some V-Z bilateral transplants were able to respond to both pheromone blends in flight tunnel bioassays, an unforeseen result counter to the assumption that a donor antenna develops a normal donor antennal olfactory receptor neuron compliment. Stainings of several neurons in V-Z transplant males also revealed unusual morphological features including multiglomerular dendritic arbors and “incorrect” glomerular locations. These results indicate a developmental plasticity in the final dendritic arborization pattern of central olfactory neurons including an ability to colonize and integrate inputs across topographically novel donor glomeruli, different from those found in the normal recipient antennal lobe.
doi:10.1002/cne.20725
PMCID: PMC2638497  PMID: 16127689
olfaction; antennal lobe; glomerulus; Heliothis virescens; Helicoverpa zea; behavior; pheromone; imaginal disc
14.  Specific olfactory neurons and glomeruli are associated to differences in behavioral responses to pheromone components between two Helicoverpa species 
Sex pheromone communication of moths helps to understand the mechanisms underlying reproductive isolation and speciation. Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) as pheromone components in reversed ratios, 97:3 and 5:95, respectively. H. armigera also produces trace amount of (Z)-9-tetradecenal (Z9-14:Ald) in the sex pheromone gland, but H. assulta does not. Wind tunnel studies revealed that the addition of small amounts (0.3%) of Z9-14:Ald to the main pheromone blend of H. armigera increased the males' attraction, but at higher doses (1%, 10%) the same compound acted as an inhibitor. In H. assulta, Z9-14:Ald reduced male attraction when presented as 1% to the pheromone blend, but was ineffective at lower concentrations (0.3%). Three types (A–C) of sensilla trichodea in antennae were identified by single sensillum recording, responding to Z11-16:Ald, Z9-14:Ald, and both Z9-16:Ald and Z9-14:Ald, respectively. Calcium imaging in the antennal lobes (ALs) revealed that the input information of the three chemicals was transmitted to three units of the macroglomerular complex (MGC) in ALs in both species: a large glomerulus for the major pheromone components, a small one for the minor pheromone components, and a third one for the behavioral antagonists. The type A and C neurons tuned to Z11-16:Ald and Z9-16:Ald had a reversed target in the MGC between the two species. In H. armigera, low doses (1, 10 μg) of Z9-14:Ald dominantly activated the glomerulus which processes the minor pheromone component, while a higher dose (100 μg) also evoked an equal activity in the antagonistic glomerulus. In H. assulta, instead, Z9-14:Ald always strongly activated the antagonistic glomerulus. These results suggest that Z9-14:Ald plays different roles in the sexual communication of two Helicoverpa species through activation of functionally different olfactory pathways.
doi:10.3389/fnbeh.2015.00206
PMCID: PMC4523827  PMID: 26300751
behavior; sex pheromone; olfactory sensory neurons; calcium imaging; antennal lobe
15.  Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Helicoverpa species using the same pheromone components 
Scientific Reports  2016;6:18742.
Male moths efficiently recognize conspecific sex pheromones thanks to their highly accurate and specific olfactory system. The Heliothis/Helicoverpa species are regarded as good models for studying the perception of sex pheromones. In this study, we performed a series of experiments to investigate the peripheral mechanisms of pheromone coding in two-closely related species, Helicoverpa armigera and H. assulta. The morphology and distribution patterns of sensilla trichoidea are similar between the two species when observed at the scanning electron microscope, but their performances are different. In H. armigera, three functional types of sensilla trichoidea (A, B and C) were found to respond to different pheromone components, while in H. assulta only two types of such sensilla (A and C) could be detected. The response profiles of all types of sensilla trichoidea in the two species well matched the specificities of the pheromone receptors (PRs) expressed in the same sensilla, as measured in voltage-clamp experiments. The expressions of PRs in neighboring olfactory sensory neurons (OSNs) within the same trichoid sensillum were further confirmed by in situ hybridization. Our results show how the same pheromone components can code for different messages at the periphery of two Helicoverpa species.
doi:10.1038/srep18742
PMCID: PMC4705464  PMID: 26744070
16.  Expression of a GABAB - Receptor in Olfactory Sensory Neurons of Sensilla trichodea on the Male Antenna of the Moth Heliothis virescens 
In the olfactory pathway of Drosophila, a GABAB receptor mediated presynaptic gain control mechanism at the first synapse between olfactory sensory neurons (OSNs) and projection neurons has been suggested to play a critical role in setting the sensitivity and detection range of the sensory system. To approach the question if such a mechanism may be realized in the pheromone recognition system of male moths in this study attempts were made to explore if moth's pheromone-responsive cells express a GABAB- receptor. Employing a combination of genome analysis, RT-PCR experiments and screening of an antennal cDNA library we have identified a cDNA which encodes the GABAB-R1 receptor of Heliothis virescens. Moreover, based on the HvirGABAB-R1 sequence we could predict a GABAB-R1 protein from genome sequences of the silkmoth Bombyx mori. To assess whether HvirGABAB-R1 is expressed in OSNs of male antenna we performed whole-mount in situ hybridization (WM-ISH) experiments. Several HvirGABAB-R1 positive cells were visualized under long sensilla trichodea, known to contain pheromone-responsive OSNs. In parallel it was shown that cells under long trichoid hairs were labelled with pheromone receptor specific probes. In addition, the HvirGABAB-R1 specific probe also labelled several cells under shorter olfactory sensilla, but never stained cells under mechanosensory/gustatory sensilla chaetica. Together, the results indicate that a GABAB receptor is expressed in pheromone-responsive OSNs of H. virescens and suggest a presynaptic gain control mechanism in the axon terminals of these cells.
doi:10.7150/ijbs.6674
PMCID: PMC3729013  PMID: 23904795
moth; olfaction; GABA; pheromone; in situ hybridization.
17.  Regulatory Role of PBAN in Sex Pheromone Biosynthesis of Heliothine Moths 
Both males and females of heliothine moths utilize sex-pheromones during the mating process. Females produce and release a sex pheromone for the long–range attraction of males for mating. Production of sex pheromone in females is controlled by the peptide hormone (pheromone biosynthesis activating neuropeptide, PBAN). This review will highlight what is known about the role PBAN plays in controlling pheromone production in female moths. Male moths produce compounds associated with a hairpencil structure associated with the aedaegus that are used as short-range aphrodisiacs during the mating process. We will discuss the role that PBAN plays in regulating male production of hairpencil pheromones.
doi:10.3389/fendo.2011.00046
PMCID: PMC3356091  PMID: 22654810
pheromone; PBAN; Heliothis; Helicoverpa; moth
18.  Requirement for Drosophila SNMP1 for Rapid Activation and Termination of Pheromone-Induced Activity 
PLoS Genetics  2014;10(9):e1004600.
Pheromones are used for conspecific communication by many animals. In Drosophila, the volatile male-specific pheromone 11-cis vaccenyl acetate (cVA) supplies an important signal for gender recognition. Sensing of cVA by the olfactory system depends on multiple components, including an olfactory receptor (OR67d), the co-receptor ORCO, and an odorant binding protein (LUSH). In addition, a CD36 related protein, sensory neuron membrane protein 1 (SNMP1) is also involved in cVA detection. Loss of SNMP1 has been reported to eliminate cVA responsiveness, and to greatly increase spontaneous activity of OR67d-expressing olfactory receptor neurons (ORNs). Here, we found the snmp11 mutation did not abolish cVA responsiveness or cause high spontaneous activity. The cVA responses in snmp1 mutants displayed a delayed onset, and took longer to reach peak activity than wild-type. Most strikingly, loss of SNMP1 caused a dramatic delay in signal termination. The profound impairment in signal inactivation accounted for the previously reported “spontaneous activity,” which represented continuous activation following transient exposure to environmental cVA. We introduced the silk moth receptor (BmOR1) in OR67d ORNs of snmp11 flies and found that the ORNs showed slow activation and deactivation kinetics in response to the BmOR1 ligand (bombykol). We expressed the bombykol receptor complex in Xenopus oocytes in the presence or absence of the silk moth SNMP1 (BmSNMP) and found that addition of BmSNMP accelerated receptor activation and deactivation. Our results thus clarify SNMP1 as an important player required for the rapid kinetics of the pheromone response in insects.
Author Summary
Pheromones are chemicals produced and released by animals for social communication with other members of their species. For example, male fruit flies produce a volatile pheromone that is sensed by both males and females, and which functions in gender recognition. This volatile male pheromone, called 11-cis vaccenyl acetate, is detected by olfactory neurons housed in hair-like appendages on the insect antenna. To effectively sense the pheromone, especially during navigation, the olfactory neurons must respond rapidly, and then quickly inactivate after the stimulation ceases. We found that a CD36-related protein referred to as sensory neuron membrane protein 1 (SNMP1) was required by olfactory neurons for the rapid on and off responses to 11-cis vaccenyl acetate. Loss of SNMP1 reduced the initial sensitivity to the pheromone, and then caused a strikingly slower termination of the response after removal of the pheromone. Our findings demonstrate that SNMP1 is a critical player that allows olfactory neurons to achieve sensitive and rapid on and off responses to a pheromone that is critical for social interactions in insects.
doi:10.1371/journal.pgen.1004600
PMCID: PMC4177743  PMID: 25255106
19.  Innate Recognition of Pheromone and Food Odors in Moths: A Common Mechanism in the Antennal Lobe? 
The survival of an animal often depends on an innate response to a particular sensory stimulus. For an adult male moth, two categories of odors are innately attractive: pheromone released by conspecific females, and the floral scents of certain, often co-evolved, plants. These odors consist of multiple volatiles in characteristic mixtures. Here, we review evidence that both categories of odors are processed as sensory objects, and we suggest a mechanism in the primary olfactory center, the antennal lobe (AL), that encodes the configuration of these mixtures and may underlie recognition of innately attractive odors. In the pheromone system, mixtures of two or three volatiles elicit upwind flight. Peripheral changes are associated with behavioral changes in speciation, and suggest the existence of a pattern recognition mechanism for pheromone mixtures in the AL. Moths are similarly innately attracted to certain floral scents. Though floral scents consist of multiple volatiles that activate a broad array of receptor neurons, only a smaller subset, numerically comparable to pheromone mixtures, is necessary and sufficient to elicit behavior. Both pheromone and floral scent mixtures that produce attraction to the odor source elicit synchronous action potentials in particular populations of output (projection) neurons (PNs) in the AL. We propose a model in which the synchronous output of a population of PNs encodes the configuration of an innately attractive mixture, and thus comprises an innate mechanism for releasing odor-tracking behavior. The particular example of olfaction in moths may inform the general question of how sensory objects trigger innate responses.
doi:10.3389/fnbeh.2010.00159
PMCID: PMC2955495  PMID: 20953251
floral scent; moths; neuroethology; olfaction; pheromone; sensory coding; sensory object; synchrony
20.  Transcriptome analysis of the sex pheromone gland of the noctuid moth Heliothis virescens 
BMC Genomics  2010;11:29.
Background
The chemical components of sex pheromones have been determined for more than a thousand moth species, but so far only a handful of genes encoding enzymes responsible for the biosynthesis of these compounds have been identified. For understanding the evolution of moth sexual communication, it is essential to know which genes are involved in the production of specific pheromone components and what controls the variation in their relative frequencies in the pheromone blend. We used a transcriptomic approach to characterize the pheromone gland of the Noctuid moth Heliothis virescens, an important agricultural pest, in order to obtain substantial general sequence information and to identify a range of candidate genes involved in the pheromone biosynthetic pathway.
Results
To facilitate identifying sets of genes involved in a broad range of processes and to capture rare transcripts, we developed our majority of ESTs from a normalized cDNA library of Heliothis virescens pheromone glands (PG). Combining these with a non-normalized library yielded a total of 17,233 ESTs, which assembled into 2,082 contigs and 6,228 singletons. Using BLAST searches of the NR and Swissprot databases we were able to identify a large number of putative unique gene elements (unigenes), which we compared to those derived from previous transcriptomic surveys of the larval stage of Heliothis virescens. The distribution of unigenes among GO Biological Process functional groups shows an overall similarity between PG and larval transcriptomes, but with distinct enrichment of specific pathways in the PG. In addition, we identified a large number of candidate genes in the pheromone biosynthetic pathways.
Conclusion
These data constitute one of the first large-scale EST-projects for Noctuidae, a much-needed resource for exploring these pest species. Our analysis shows a surprisingly complex transcriptome and we identified a large number of potential pheromone biosynthetic pathway and immune-related genes that can be applied to population and systematic studies of Heliothis virescens and other Noctuidae.
doi:10.1186/1471-2164-11-29
PMCID: PMC2820457  PMID: 20074338
21.  Recent Advances in Insect Olfaction, Specifically Regarding the Morphology and Sensory Physiology of Antennal Sensilla of the Female Sphinx Moth Manduca sexta 
Microscopy research and technique  2001;55(5):307-329.
The antennal flagellum of female Manduca sexta bears eight sensillum types: two trichoid, two basiconic, one auriculate, two coeloconic, and one styliform complex sensilla. The first type of trichoid sensillum averages 34 μm in length and is innervated by two sensory cells. The second type averages 26 μm in length and is innervated by either one or three sensory cells. The first type of basiconic sensillum averages 22 μm in length, while the second type averages 15 μm in length. Both types are innervated by three bipolar sensory cells. The auriculate sensillum averages 4 μm in length and is innervated by two bipolar sensory cells. The coeloconic type-A and type-B both average 2 μm in length. The former type is innervated by five bipolar sensory cells, while the latter type, by three bipolar sensory cells. The styliform complex sensillum occurs singly on each annulus and averages 38-40 μm in length. It is formed by several contiguous sensilla. Each unit is innervated by three bipolar sensory cells. A total of 2,216 sensilla were found on a single annulus (annulus 21) of the flagellum. Electrophysiological responses from type-A trichoid sensilla to a large panel of volatile odorants revealed three different subsets of olfactory receptor cells (ORCs). Two subsets responded strongly to only a narrow range of odorants, while the third responded strongly to a broad range of odorants. Anterograde labeling of ORCs from type-A trichoid sensilla revealed that their axons projected mainly to two large female glomeruli of the antennal lobe.
doi:10.1002/jemt.1180
PMCID: PMC2386875  PMID: 11754510
antennal lobe; chemosensory; electron microscopy; electrophysiology; receptor cell
22.  Sex Pheromone Receptor Specificity in the European Corn Borer Moth, Ostrinia nubilalis 
PLoS ONE  2010;5(1):e8685.
Background
The European corn borer (ECB), Ostrinia nubilalis (Hubner), exists as two separate sex pheromone races. ECB(Z) females produce a 97∶3 blend of Z11- and E11-tetradecenyl acetate whereas ECB(E) females produce an opposite 1∶99 ratio of the Z and E isomers. Males of each race respond specifically to their conspecific female's blend. A closely related species, the Asian corn borer (ACB), O. furnacalis, uses a 3∶2 blend of Z12- and E12-tetradecenyl acetate, and is believed to have evolved from an ECB-like ancestor. To further knowledge of the molecular mechanisms of pheromone detection and its evolution among closely related species we identified and characterized sex pheromone receptors from ECB(Z).
Methodology
Homology-dependent (degenerate PCR primers designed to conserved amino acid motifs) and homology-independent (pyrophosphate sequencing of antennal cDNA) approaches were used to identify candidate sex pheromone transcripts. Expression in male and female antennae was assayed by quantitative real-time PCR. Two-electrode voltage clamp electrophysiology was used to functionally characterize candidate receptors expressed in Xenopus oocytes.
Conclusion
We characterized five sex pheromone receptors, OnOrs1 and 3–6. Their transcripts were 14–100 times more abundant in male compared to female antennae. OnOr6 was highly selective for Z11-tetradecenyl acetate (EC50 = 0.86±0.27 µM) and was at least three orders of magnitude less responsive to E11-tetradecenyl acetate. Surprisingly, OnOr1, 3 and 5 responded to all four pheromones tested (Z11- and E11-tetradecenyl acetate, and Z12- and E12-tetradecenyl acetate) and to Z9-tetradecenyl acetate, a behavioral antagonist. OnOr1 was selective for E12-tetradecenyl acetate based on an efficacy that was at least 5-fold greater compared to the other four components. This combination of specifically- and broadly-responsive pheromone receptors corresponds to published results of sensory neuron activity in vivo. Receptors broadly-responsive to a class of pheromone components may provide a mechanism for variation in the male moth response that enables population level shifts in pheromone blend use.
doi:10.1371/journal.pone.0008685
PMCID: PMC2801615  PMID: 20084285
23.  Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori 
Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone recognition in males is the high degree of specificity and sensitivity at all levels, from the primary sensory processes to behavior. The silkmoth Bombyx mori is an excellent model insect in which to decipher the underlying mechanisms of sex pheromone recognition due to its simple sex pheromone communication system, where a single pheromone component, bombykol, elicits the full sexual behavior of male moths. Various technical advancements that cover all levels of analysis from molecular to behavioral also allow the systematic analysis of pheromone recognition mechanisms. Sex pheromone signals are detected by pheromone receptors expressed in olfactory receptor neurons in the pheromone-sensitive sensilla trichodea on male antennae. The signals are transmitted to the first olfactory processing center, the antennal lobe (AL), and then are processed further in the higher centers (mushroom body and lateral protocerebrum) to elicit orientation behavior toward females. In recent years, significant progress has been made elucidating the molecular mechanisms underlying the detection of sex pheromones. In addition, extensive studies of the AL and higher centers have provided insights into the neural basis of pheromone processing in the silkmoth brain. This review describes these latest advances, and discusses what these advances have revealed about the mechanisms underlying the specific and sensitive recognition of sex pheromones in the silkmoth.
doi:10.3389/fphys.2014.00125
PMCID: PMC3978319  PMID: 24744736
insect; silkmoth; olfaction; sex pheromone; pheromone-source searching behavior
24.  Peripheral Coding of Sex Pheromone Blends with Reverse Ratios in Two Helicoverpa Species 
PLoS ONE  2013;8(7):e70078.
The relative proportions of components in a pheromone blend play a major role in sexual recognition in moths. Two sympatric species, Helicoverpa armigera and Helicoverpa assulta, use (Z)-11-hexadecenal (Z11–16: Ald) and (Z)-9-hexadecenal (Z9–16: Ald) as essential sex pheromone components but in very different ratios, 97∶3 and 7∶93 respectively. Using wind tunnel tests, single sensillum recording and in vivo calcium imaging, we comparatively studied behavioral responses and physiological activities at the level of antennal sensilla and antennal lobe (AL) in males of the two species to blends of the two pheromone components in different ratios (100∶0, 97∶3, 50∶50, 7∶93, 0∶100). Z11–16: Ald and Z9–16: Ald were recognized by two populations of olfactory sensory neurons (OSNs) in different trichoid sensilla on antennae of both species. The ratios of OSNs responding to Z11–16:Ald and Z9–16:Ald OSNs were 100∶28.9 and 21.9∶100 in H. armigera and H. assulta, respectively. The Z11–16:Ald OSNs in H. armigera exhibited higher sensitivity and efficacy than those in H. assulta, while the Z9–16:Ald OSNs in H. armigera had the same sensitivity but lower efficacy than those in H. assulta. At the dosage of 10 µg, Z11–16: Ald and Z9–16: Ald evoked calcium activity in 8.5% and 3.0% of the AL surface in H. armigera, while 5.4% and 8.6% of AL in H. assulta, respectively. The calcium activities in the AL reflected the peripheral input signals of the binary pheromone mixtures and correlated with the behavioral output. These results demonstrate that the binary pheromone blends were precisely coded by the firing frequency of individual OSNs tuned to Z11–16: Ald or Z9–16: Ald, as well as their population sizes. Such information was then accurately reported to ALs of H. armigera and H. assulta, eventually producing different behaviors.
doi:10.1371/journal.pone.0070078
PMCID: PMC3720945  PMID: 23894593
25.  Digital, Three-dimensional Average Shaped Atlas of the Heliothis Virescens Brain with Integrated Gustatory and Olfactory Neurons 
We use the moth Heliothis virescens as model organism for studying the neural network involved in chemosensory coding and learning. The constituent neurons are characterised by intracellular recordings combined with staining, resulting in a single neuron identified in each brain preparation. In order to spatially relate the neurons of different preparations a common brain framework was required. We here present an average shaped atlas of the moth brain. It is based on 11 female brain preparations, each stained with a fluorescent synaptic marker and scanned in confocal laser-scanning microscope. Brain neuropils of each preparation were manually reconstructed in the computer software Amira, followed by generating the atlas using the Iterative Shape Average Procedure. To demonstrate the application of the atlas we have registered two olfactory and two gustatory interneurons, as well as the axonal projections of gustatory receptor neurons into the atlas, visualising their spatial relationships. The olfactory interneurons, showing the typical morphology of inner-tract antennal lobe projection neurons, projected in the calyces of the mushroom body and laterally in the protocerebral lobe. The two gustatory interneurons, responding to sucrose and quinine respectively, projected in different areas of the brain. The wide projections of the quinine responding neuron included a lateral area adjacent to the projections of the olfactory interneurons. The sucrose responding neuron was confined to the suboesophageal ganglion with dendritic arborisations overlapping the axonal projections of the gustatory receptor neurons on the proboscis. By serving as a tool for the integration of neurons, the atlas offers visual access to the spatial relationship between the neurons in three dimensions, and thus facilitates the study of neuronal networks in the Heliothis virescens brain. The moth standard brain is accessible at http://www.ntnu.no/biolog/english/neuroscience/brain
doi:10.3389/neuro.06.014.2009
PMCID: PMC2784302  PMID: 19949481
insect; taste; olfaction; neuron; three-dimensional reconstruction

Results 1-25 (599128)