PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (950115)

Clipboard (0)
None

Related Articles

1.  Betulinic Acid Derivatives That Target gp120 and Inhibit Multiple Genetic Subtypes of Human Immunodeficiency Virus Type 1▿  
Betulinic acid (BA) derivatives can inhibit human immunodeficiency virus type 1 (HIV-1) entry or maturation depending on side chain modifications. While BA derivatives with antimaturation activity have attracted considerable interest, the anti-HIV-1 profile and molecular mechanism of BA derivatives with anti-HIV-1 entry activity (termed BA entry inhibitors) have not been well defined. In this study, we have found that two BA entry inhibitors, IC9564 and A43D, exhibited a broad spectrum of anti-HIV-1 activity. Both compounds inhibited multiple strains of HIV-1 from clades A, B, and C at submicromolar concentrations. Clade C viruses were more sensitive to the compounds than clade A and B viruses. Interestingly, IC9564 at subinhibitory concentrations could alter the antifusion activities of other entry inhibitors. IC9564 was especially potent in increasing the sensitivity of HIV-1YU2 Env-mediated membrane fusion to the CCR5 inhibitor TAK-779. Results from this study suggest that the V3 loop of gp120 is a critical determinant for the anti-HIV-1 activity of IC9564. IC9564 escape viruses contained mutations near the tip of the V3 loop. Moreover, IC9564 could compete with the binding of V3 monoclonal antibodies 447-52D and 39F. IC9564 also competed with the binding of gp120/CD4 complexes to chemokine receptors. In summary, these results suggest that BA entry inhibitors can potently inhibit a broad spectrum of primary HIV-1 isolates by targeting the V3 loop of gp120.
doi:10.1128/AAC.00737-07
PMCID: PMC2223896  PMID: 17954689
2.  Anti-Human Immunodeficiency Virus Activity of YK-FH312 (a Betulinic Acid Derivative), a Novel Compound Blocking Viral Maturation 
Betulinic acid, a triterpenoid isolated from the methyl alcohol extract of the leaves of Syzigium claviflorum, was found to have a potent inhibitory activity against human immunodeficiency virus type 1 (HIV-1). Betulinic acid derivatives were synthesized to enhance the anti-HIV activity. Among the derivatives, 3-O-(3′,3′-dimethylsuccinyl) betulinic acid, designated YK-FH312, showed the highest activity against HIV-induced cytopathic effects in HIV-1-infected MT-4 cells. To determine the step(s) of HIV replication affected by YK-FH312, a syncytium formation inhibition assay in MOLT-4/HIV-1IIIB and MOLT-4 coculture, a multinuclear-activation-of-galactosidase-indicator (MAGI) assay in MAGI-CCR5 cells, electron microscopic observation, and a time-of-addition assay were performed. In the syncytium formation inhibition assay or in the MAGI assay for de novo infection, the compound did not show inhibitory effects against HIV replication. Conversely, no virions were detected in HIV-1-infected cell cultures treated with YK-FH312 either by electron microscopic observation or by viral yield in the supernatant. In accordance with a p24 enzyme-linked immunosorbent assay of culture supernatant in the time-of-addition assay, YK-FH312 inhibited virus expression in the supernatant when it was added 18 h postinfection. However, Western blot analysis of the cells in the time-of-addition assay revealed that the production of viral proteins in the cells was not inhibited completely by YK-FH312. These results suggest that YK-FH312 might affect the step(s) of virion assembly and/or budding of virions, and this is a novel mechanism of action of an anti-HIV compound.
doi:10.1128/AAC.45.4.1225-1230.2001
PMCID: PMC90447  PMID: 11257038
3.  Synthesis of Betulinic Acid Derivatives as Entry Inhibitors against HIV-1 and Bevirimat-Resistant HIV-1 Variants 
Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D.
doi:10.1016/j.bmcl.2012.06.080
PMCID: PMC3426442  PMID: 22818973
HIV-1; Entry inhibitor; Maturation inhibitor; Betulinic acid; Berivimat; Berivimat-resistance
4.  Anti-AIDS Agents 81.† Design, Synthesis and Structure-Activity Relationship Study of Betulinic Acid and Moronic Acid Derivatives as Potent HIV Maturation Inhibitors 
Journal of medicinal chemistry  2010;53(8):3133-3141.
In our continuing study of triterpene derivatives as potent anti-HIV agents, different C-3 conformationally restricted betulinic acid (BA, 1) derivatives were designed and synthesized in order to explore the conformational space of the C-3 pharmacophore. 3-O-Monomethylsuccinyl- betulinic acid (MSB) analogs were also designed to better understand the contribution of the C-3′ dimethyl group of bevirimat (2), the first-in-class HIV maturation inhibitor, which is currently in phase IIb clinical trials. In addition, another triterpene skeleton, moronic acid (MA, 3) was also employed to study the influence of the backbone and the C-3 modification towards the anti-HIV activity of this compound class. This study enabled us to better understand the structure-activity relationships (SAR) of triterpene-derived anti-HIV agents, and led to the design and synthesis of compound 12 (EC50: 0.0006 μM), which displayed slightly better activity than 2 as a HIV-1 maturation inhibitor.
doi:10.1021/jm901782m
PMCID: PMC2860721  PMID: 20329730
5.  3-O-(3′,3′-Dimethysuccinyl) Betulinic Acid Inhibits Maturation of the Human Immunodeficiency Virus Type 1 Gag Precursor Assembled In Vitro 
Journal of Virology  2006;80(12):5716-5722.
3-O-(3′,3′-Dimethysuccinyl) betulinic acid (PA-457) has been shown to potently inhibit human immunodeficiency virus (HIV) replication in culture. In contrast to inhibitors that act upon the viral proteinase, PA-457 appears to block only the final maturational cleavage of p25CA-p2 to p24CA. However, attempts to replicate this effect in vitro using recombinant Gag have failed, leading to the hypothesis that activity is dependent upon the assembly state of Gag. Using a synthesis/assembly system for chimeric HIV type 1 Gag proteins, we have replicated the activity of PA-457 in vitro. The processing of assembled chimeric Gag can be inhibited by the addition of drug with only the final cleavage of p25CA-p2 to p24CA blocked. Consistent with our hypothesis and with previous findings, inhibition appears specific to Gag assembled into an immature capsid-like structure, since synthetic Gag that remains unassembled is properly processed in the presence of the compound. To further analyze the authenticity of the assay, PA-457 was tested in parallel with its inactive parental compound, betulinic acid. Betulinic acid had no effect upon p25 processing in this system. Analysis of a PA-457-resistant mutant, A1V, in this system pointed to more rapid cleavage as a possible mechanism for resistance. However, characterization of additional mutations at the cleavage site and in p2 suggests that resistance does not strictly correlate with the rate of cleavage. With the establishment of an in vitro assay for the detection of PA-457 activity, a more detailed characterization of its mechanism of action will be possible.
doi:10.1128/JVI.02743-05
PMCID: PMC1472563  PMID: 16731910
6.  Anti-AIDS Agents 78 †. Design, Synthesis, Metabolic Stability Assessment, and Antiviral Evaluation of Novel Betulinic Acid Derivatives as Potent Anti-Human Immunodeficiency Virus (HIV) Agents 
Journal of medicinal chemistry  2009;52(10):3248-3258.
In a continuing study of potent anti-HIV agents, seventeen 28,30-disubstituted betulinic acid (BA, 1) derivatives, as well as seven novel 3,28-disubstituted BA analogs were designed, synthesized, and evaluated for in vitro antiviral activity. Among them, compound 21 showed an improved solubility and equal anti-HIV potency (EC50: 0.09 μM), when compared to HIV entry inhibitors 3b (IC9564) and 4 (A43-D). Using a cyclic secondary amine to form the C-28 amide bond increased the metabolic stability of the derivatives significantly in pooled human liver microsomes. The most potent compounds 47 and 48 displayed potent anti-HIV activity with EC50 values of 0.007 μM and 0.006 μM, respectively. These results are slightly better than that of bevirimat (2), which is currently in Phase IIb clinical trials. Compounds 47 and 48 should serve as attractive promising leads to develop next generation, metabolically stable, 3,28-disubstituted bifunctional HIV-1 inhibitors as clinical trials candidates.
doi:10.1021/jm900136j
PMCID: PMC2736638  PMID: 19388685
7.  Exploration of the antiplatelet activity profile of betulinic acid on human platelets 
Betulinic acid, a natural pentacyclic triterpene acid, presents a diverse mode of biological actions including anti-retroviral, antibacterial, antimalarial and anti-inflammatory activities. The potency of betulinic acid as an inhibitor of human platelet activation was evaluated and its antiplatelet profile against in vitro platelet aggregation, induced by several platelet agonists (Adenosine Diphosphate, Thrombin Receptor Activator Peptide-14 and Arachidonic Acid), was explored. Flow cytometric analysis was performed to examine the effect of betulinic acid on P-selectin membrane expression and PAC-1 binding to activated platelets. Betulinic acid potently inhibits platelet aggregation and also reduced PAC-1 binding and the membrane expression of P-selectin. Principal component analysis was used to screen, on the chemical property space, for potential common pharmacophores of betulinic acid with approved antithrombotic drugs. A common pharmacophore was defined between the NMR derived structure of betulinic acid and prostacyclin agonists (PGI2) and the importance of its carboxylate group in its antiplatelet activity was determined. The present results indicate that betulinic acid has potential use as an antithrombotic compound and suggest that the mechanism underlying the antiplatelet effects of betulinic acid is similar to that of the PGI2 receptor agonists, a hypothesis that reserves further investigation.
doi:10.1021/jf3006728
PMCID: PMC3676635  PMID: 22720759
betulinic acid; platelet aggregation; ADP; antithrombotics
8.  Ionic derivatives of betulinic acid as novel HIV-1 protease inhibitors 
Betulinic acid is a natural product possessing abundant and favourable biological activity, including anti-cancer, anti-malarial, anti-inflammatory and anti-HIV properties, while causing minimal toxicity to unaffected cells. The full biological potency of betulinic acid cannot be fully unlocked, however, for a number of reasons, a primary one being its limited solubility in aqueous and biologically pertinent organic media. Aiming to improve the water solubility of betulinic acid without disrupting its structurally related bioactivity, we have prepared different ionic derivatives of betulinic acid. Inhibition bioassays on HIV-1 protease-catalysed peptide hydrolysis indicate significantly improved performance resulting from converting the betulinic acid to organic salt form. Indeed, for one particular cholinium-based derivative, its water solubility is improved more than 100 times and the half maximal inhibitory concentration (IC50) value (22 μg mL−1) was one-third that of wide-type betulinic acid (60 μg mL−1). These encouraging results advise that additional studies of ionic betulinic acid derivatives as a therapeutic solution against HIV-1 infection are warranted.
doi:10.3109/14756366.2011.611134
PMCID: PMC3438379  PMID: 21985312
Betulinic acid; anti-HIV; ionic liquid; HIV-1 protease; derivative
9.  Role of Human Immunodeficiency Virus (HIV) Type 1 Envelope in the Anti-HIV Activity of the Betulinic Acid Derivative IC9564 
The betulinic acid derivative IC9564 is a potent anti-human immunodeficiency virus (anti-HIV) compound that can inhibit both HIV primary isolates and laboratory-adapted strains. However, this compound did not affect the replication of simian immunodeficiency virus and respiratory syncytial virus. Results from a syncytium formation assay indicated that IC9564 blocked HIV type 1 (HIV-1) envelope-mediated membrane fusion. Analysis of a chimeric virus derived from exchanging envelope regions between IC9564-sensitive and IC9564-resistant viruses indicated that regions within gp120 and the N-terminal 25 amino acids (fusion domain) of gp41 are key determinants for the drug sensitivity. By developing a drug-resistant mutant from the NL4-3 virus, two mutations were found within the gp120 region and one was found within the gp41 region. The mutations are G237R and R252K in gp120 and R533A in the fusion domain of gp41. The mutations were reintroduced into the NL4-3 envelope and analyzed for their role in IC9564 resistance. Both of the gp120 mutations contributed to the drug sensitivity. On the contrary, the gp41 mutation (R533A) did not appear to affect the IC9564 sensitivity. These results suggest that HIV-1 gp120 plays a key role in the anti-HIV-1 activity of IC9564.
doi:10.1128/AAC.45.1.60-66.2001
PMCID: PMC90240  PMID: 11120945
10.  Bifunctional Anti-Human Immunodeficiency Virus Type 1 Small Molecules with Two Novel Mechanisms of Action 
A class of betulinic acid derivatives was synthesized to target two critical steps in the human immunodeficiency virus type 1 (HIV-1) replication cycle, entry and maturation. Each mechanism of HIV-1 inhibition is distinct from clinically available anti-HIV therapeutics. The viral determinants of the antientry and antimaturation activities are the bridging sheet of HIV-1 gp120 and the P24/p2 cleavage site, respectively.
doi:10.1128/AAC.48.2.663-665.2004
PMCID: PMC321552  PMID: 14742233
11.  New Small-Molecule Inhibitor Class Targeting Human Immunodeficiency Virus Type 1 Virion Maturation▿  
Antimicrobial Agents and Chemotherapy  2009;53(12):5080-5087.
A new small-molecule inhibitor class that targets virion maturation was identified from a human immunodeficiency virus type 1 (HIV-1) antiviral screen. PF-46396, a representative molecule, exhibits antiviral activity against HIV-1 laboratory strains and clinical isolates in T-cell lines and peripheral blood mononuclear cells (PBMCs). PF-46396 specifically inhibits the processing of capsid (CA)/spacer peptide 1 (SP1) (p25), resulting in the accumulation of CA/SP1 (p25) precursor proteins and blocked maturation of the viral core particle. Viral variants resistant to PF-46396 contain a single amino acid substitution in HIV-1 CA sequences (CAI201V), distal to the CA/SP1 cleavage site in the primary structure, which we demonstrate is sufficient to confer significant resistance to PF-46396 and 3-O-(3′,3′-dimethylsuccinyl) betulinic acid (DSB), a previously described maturation inhibitor. Conversely, a single amino substitution in SP1 (SP1A1V), which was previously associated with DSB in vitro resistance, was sufficient to confer resistance to DSB and PF-46396. Further, the CAI201V substitution restored CA/SP1 processing in HIV-1-infected cells treated with PF-46396 or DSB. Our results demonstrate that PF-46396 acts through a mechanism that is similar to DSB to inhibit the maturation of HIV-1 virions. To our knowledge, PF-46396 represents the first small-molecule HIV-1 maturation inhibitor that is distinct in chemical class from betulinic acid-derived maturation inhibitors (e.g., DSB), demonstrating that molecules of diverse chemical classes can inhibit this mechanism.
doi:10.1128/AAC.00759-09
PMCID: PMC2786326  PMID: 19805571
12.  Anti-AIDS Agents 69.1 Moronic Acid and Other Triterpene Derivatives as Novel Potent Anti-HIV Agents 
Journal of medicinal chemistry  2006;49(18):5462-5469.
In a continuing structure-activity relationship study of potent anti-HIV agents, seven new triterpene derivatives were designed, synthesized, and evaluated for in vitro antiviral activity. Among them, moronic acid derivatives 19, 20 and 21 showed significant activity in HIV-1 infected H9 lymphocytes. Compounds 19 and 20 were also evaluated against HIV-1 NL4−3 and drug resistant strains in the MT-4 cell line. Compounds 19 and 20 showed better antiviral profiles than the betulinic acid analog 8 (PA-457), which has successfully completed a Phase IIa clinical trial. Compound 20 showed potent anti-HIV activity with EC50 values of 0.0085 μM against NL4−3, 0.021 μM against PI-R (a multiple protease inhibitor resistant strain), and 0.13 μM against FHR-2 (an HIV strain resistant to 8), respectively. The promising compound 20 has become a new lead for modification, and further development of 20-related compounds as clinical trial candidates is warranted.
doi:10.1021/jm0601912
PMCID: PMC2512972  PMID: 16942019
13.  Highly potent oxathiin carboxanilide derivatives with efficacy against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus isolates. 
The structure-activity relationships of a series of compounds related to the nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) oxathiin carboxanilide have been described (R. W. Buckheit, Jr., T. L. Kinjerski, V. Fliakas-Boltz, J. D. Russell, T. L. Stup, L. A. Pallansch, W. G. Brouwer, D. C. Dao, W. A. Harrison, R. J. Schultz, J. P. Bader, and S. S. Yang, Antimicrob. Agents Chemother. 39:2718-2727, 1996). From these studies, the furanyl-containing analog UC10 was identified as the most potent inhibitor of human immunodeficiency virus type 1 (HIV-1) replication and a promising candidate for further development. Three new UC analogs (UC040, UC82, and UC781) have been determined to inhibit laboratory-derived and low-passage-number, primary virus isolates at low nanomolar concentrations in both established and fresh human cells. Each of the compounds synergistically interacted with the nucleoside analogs zidovudine, dideoxyinosine, dideoxycytosine, and lamivudine to inhibit HIV-1 replication. As a group, the UC compounds were found to be less active against viruses with the L100I, K103N, and Y181C amino acid changes in the RT and, upon in vitro selection, yielded resistant virus with the Y181C mutation in the RT. The most potent of the three new compounds, UC781, contains a furanyl side chain, similar to UC10, but differs in having an extended ether side chain instead of an oxime chain. The broad therapeutic index of UC781 (>62,000) resulted in effective inhibition of NNRTI-resistant virus isolates at high nanomolar concentrations. Furthermore, UC781 and the NNRTI costatolide were able to synergistically inhibit HIV-1 replication when used in combination, suggesting that UC781 may interact with the RT differently than the other UC analogs. The favorable anti-HIV properties of the UC compounds suggest they should be considered for further clinical development.
PMCID: PMC163804  PMID: 9087499
14.  Glycoside analogues of β-galactosylceramide, a novel class of small molecule antiviral agents that inhibit HIV-1 entry 
Antiviral research  2008;80(1):54-61.
The interaction between HIV gp120 and galactose-containing cell surface glycolipids such as GalCer or Gb3 are known to facilitate HIV binding to both CD4+ as well as CD4− cells. In an effort to develop small molecule HIV-1 entry inhibitors with improved solubility and efficacy, we have synthesized a series of C glycoside analogs of GalCer and tested their anti HIV-1 activity. The analogs were tested for gp120 binding using a HIV-1 (IIIB) V3-loop specific peptide. Two of the six analogs that interfered with gp120 binding also inhibited HIV Env-mediated cell-to-cell fusion and viral entry in the absence of any significant cytotoxicity. Analogues with two side chains did not show inhibition of fusion and/or infection under identical conditions. The inhibition of virus infection seen by these compounds was not coreceptor dependent, as they inhibited CXCR4, CCR5 as well as dual tropic viruses. These compounds showed inhibition of HIV entry at early steps in viral infection since the compounds were inactive if added post viral entry. Temperature-arrested state experiments showed that the compounds act at the level of virus attachment to the cells likely at a pre CD4 engagement step. These compounds also showed inhibition of VSV glycoprotein-pseudotyped virus. The results presented here show that the glycoside derivatives of GalCer with simple side chains may serve as a novel class of small molecule HIV-1 entry inhibitors that would be active against a number of HIV isolates as well as other enveloped viruses.
doi:10.1016/j.antiviral.2008.04.004
PMCID: PMC2614335  PMID: 18538869
HIV-1; Galactosyl Ceramide; Glycosides; Anti HIV; Fusion; Envelope glycoprotein
15.  Kidney and liver organ transplantation in persons with human immunodeficiency virus 
Executive Summary
Objective
The objective of this analysis is to determine the effectiveness of solid organ transplantation in persons with end stage organ failure (ESOF) and human immunodeficiency virus (HIV+)
Clinical Need: Condition and Target Population
Patients with end stage organ failure who have been unresponsive to other forms of treatment eventually require solid organ transplantation. Similar to persons who are HIV negative (HIV−), persons living with HIV infection (HIV+) are at risk for ESOF from viral (e.g. hepatitis B and C) and non-viral aetiologies (e.g. coronary artery disease, diabetes, hepatocellular carcinoma). Additionally, HIV+ persons also incur risks of ESOF from HIV-associated nephropathy (HIVAN), accelerated liver damage from hepatitis C virus (HCV+), with which an estimated 30% of HIV positive (HIV+) persons are co-infected, and coronary artery disease secondary to antiretroviral therapy. Concerns that the need for post transplant immunosuppression and/or the interaction of immunosuppressive drugs with antiretroviral agents may accelerate the progression of HIV disease, as well as the risk of opportunistic infections post transplantation, have led to uncertainty regarding the overall benefit of transplantation among HIV+ patients. Moreover, the scarcity of donor organs and their use in a population where the clinical benefit of transplantation is uncertain has limited the availability of organ transplantation to persons living with ESOF and HIV.
With the development of highly active anti retroviral therapy (HAART), which has been available in Canada since 1997, there has been improved survival and health-related quality of life for persons living with HIV. HAART can suppress HIV replication, enhance immune function, and slow disease progression. HAART managed persons can now be expected to live longer than those in the pre-HAART era and as a result many will now experience ESOF well before they experience life-threatening conditions related to HIV infection. Given their improved prognosis and the burden of illness they may experience from ESOF, the benefit of solid organ transplantation for HIV+ patients needs to be reassessed.
Evidence-Based Analysis Methods
Research Questions
What are the effectiveness and cost effectiveness of solid organ transplantation in HIV+ persons with ESOF?
Literature Search
A literature search was performed on September 22, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 1996 to September 22, 2009.
Inclusion Criteria
Systematic review with or without a Meta analysis, RCT, Non-RCT with controls
HIV+ population undergoing solid organ transplantation
HIV+ population managed with HAART therapy
Controls include persons undergoing solid organ transplantation who are i) HIV− ii) HCV+ mono-infected, and iii) HIV+ persons with ESOF not transplanted.
Studies that completed and reported results of a Kaplan-Meier Survival Curve analysis.
Studies with a minimum (mean or medium) follow up of 1-year.
English language citations
Exclusion Criteria
Case reports and case series were excluded form this review.
Outcomes of Interest
i) Risk of Death after transplantation
ii) Death censored graft survival (DCGS)
iii) HIV disease progression defined as the post transplant incidence of:
- opportunistic infections or neoplasms,
- CD4+ T-cell count < 200mm3, and
- any detectable level of plasma HIV viral load.
iv) Acute graft rejection,
v) Return to dialysis,
vi) Recurrence of HCV infection
Summary of Findings
No direct evidence comparing an HIV+ cohort undergoing transplantation with the same not undergoing transplantation (wait list) was found in the literature search.
The results of this review are reported for the following comparison cohorts undergoing transplantation:
i) Kidney Transplantation: HIV+ cohort compared with HIV− cohort
ii) Liver Transplantation: HIV+ cohort compared with HIV− negative cohort
iii) Liver Transplantation: HIV+ HCV+ (co-infected) cohort compared with HCV+ (mono-infected) cohort
Kidney Transplantation: HIV+ vs. HIV−
Based on a pooled HIV+ cohort sample size of 285 patients across four studies, the risk of death after kidney transplantation in an HIV+ cohort does not differ to that of an HIV− cohort [hazard ratio (HR): 0.90; 95% CI: 0.36, 2.23]. The quality of evidence supporting this outcome is very low.
Death censored graft survival was reported in one study with an HIV+ cohort sample size of 100, and was statistically significantly different (p=.03) to that in the HIV− cohort (n=36,492). However, the quality of evidence supporting this outcome was determined to be very low. There was also uncertainty in the rate of return to dialysis after kidney transplantation in both the HIV+ and HIV− groups and the effect, if any, this may have on patient survival. Because of the very low quality evidence rating, the effect of kidney transplantation on HIV-disease progression is uncertain.
The rate of acute graft rejection was determined using the data from one study. There was a nonsignificant difference between the HIV+ and HIV− cohorts (OR 0.13; 95% CI: 0.01, 2.64), although again, because of very low quality evidence there is uncertainty in this estimate of effect.
Liver Transplantation: HIV+ vs. HIV−
Based on a combined HIV+ cohort sample size of 198 patient across five studies, the risk of death after liver transplantation in an HIV+ cohort (with at least 50% of the cohort co-infected with HCV+) is statistically significantly 64% greater compared with an HIV− cohort (HR: 1.64; 95% CI: 1.32, 2.02). The quality of evidence supporting this outcome is very low.
Death censored graft survival was reported for an HIV+ cohort in one study (n=11) however the DCGS rate of the contemporaneous control HIV− cohort was not reported. Because of sparse data the quality of evidence supporting this outcome is very low indicating death censored graft survival is uncertain.
Both the CD4+ T-cell count and HIV viral load appear controlled post transplant with an incidence of opportunistic infection of 20.5%. However, the quality of this evidence for these outcomes is very low indicating uncertainty in these effects. Similarly, because of very low quality evidence there is uncertainty in the rate of acute graft rejection among both the HIV+ and HIV− groups
Liver Transplantation: HIV+/HCV+ vs. HCV+
Based on a combined HIV+/HCV+ cohort sample size of 156 from seven studies, the risk of death after liver transplantation is significantly greater (2.8 fold) in a co-infected cohort compared with an HCV+ mono-infected cohort (HR: 2.81; 95% CI: 1.47, 5.37). The quality of evidence supporting this outcome is very low. Death censored graft survival evidence was not available.
Regarding disease progression, based on a combined sample size of 71 persons in the co-infected cohort, the CD4+ T-cell count and HIV viral load appear controlled post transplant; however, again the quality of evidence supporting this outcome is very low. The rate of opportunistic infection in the co-infected cohort was 7.2%. The quality of evidence supporting this estimate is very low, indicating uncertainty in these estimates of effect.
Based on a combined HIV+/HCV+ cohort (n=57) the rate of acute graft rejection does not differ to that of an HCV+ mono-infected cohort (OR: 0.88; 95% CI: 0.44, 1.76). Also based on a combined HIV+/HCV+ cohort (n=83), the rate of HCV+ recurrence does not differ to that of an HCV+ mono-infected cohort (OR: 0.66; 95% CI: 0.27, 1.59). In both cases, the quality of the supporting evidence was very low.
Overall, because of very low quality evidence there is uncertainty in the effect of kidney or liver transplantation in HIV+ persons with end stage organ failure compared with those not infected with HIV. Examining the economics of this issue, the cost of kidney and liver transplants in an HIV+ patient population are, on average, 56K and 147K per case, based on both Canadian and American experiences.
PMCID: PMC3377507  PMID: 23074407
16.  Antileishmanial Activity of Semisynthetic Lupane Triterpenoids Betulin and Betulinic Acid Derivatives: Synergistic Effects with Miltefosine 
PLoS ONE  2014;9(3):e89939.
Leishmaniasis is a neglected tropical disease (NTDs), endemic in 88 countries, affecting more than 12 million people. The treatment consists in pentavalent antimony compounds, amphotericin B, pentamidine and miltefosine, among others. However, these current drugs are limited due to their toxicity, development of biological resistance, length of treatment and high cost. Thus, it is important to continue the search for new effective and less toxic treatments.
The anti-Leishmania activity of sixteen semisynthetic lupane triterpenoids derivatives of betulin (BT01 to BT09) and betulinic acid (AB10 to AB16) were evaluated. Drug interactions between the active compounds and one current antileishmanial drug, miltefosine, were assessed using the fixed ratio isobologram method. In addition, effects on the cell cycle, apoptosis/necrosis events, morphology and DNA integrity were studied. The derivatives BT06 (3β-Hydroxy-(20R)-lupan-29-oxo-28-yl-1H-imidazole-1-carboxylate) and AB13 (28-(1H-imidazole-1-yl)-3,28-dioxo-lup-1,20(29)-dien-2-yl-1H-imidazole-1-carboxylate) were found to be the most active, with IC50 values of 50.8 µM and 25.8 µM, respectively. Interactions between these two compounds and miltefosine were classified as synergistic, with the most effective association being between AB13 and miltefosine, where decreases of IC50 values to 6 µM were observed, similar to the miltefosine activity alone. AB13 induced significant morphological changes, while both derivatives produced anti-proliferative activity through cell cycle arrest at the G0/G1 phase. Neither of these derivatives induced significant apoptosis/necrosis, as indicated by phosphatidylserine externalization and DNA fragmentation assays. In addition, neither of the derivatives induced death in macrophage cell lines. Thus, they do not present any potential risk of toxicity for the host cells.
This study has identified the betulin derivative BT06 and the betulinic acid derivative AB13 as promising molecules in the development of new alternative therapies for leishmaniasis, including those involving combined-therapy with miltefosine.
doi:10.1371/journal.pone.0089939
PMCID: PMC3958361  PMID: 24643019
17.  Characterization of a Novel Type of HIV-1 Particle Assembly Inhibitor Using a Quantitative Luciferase-Vpr Packaging-Based Assay 
PLoS ONE  2011;6(11):e27234.
The HIV-1 auxiliary protein Vpr and Vpr-fusion proteins can be copackaged with Gag precursor (Pr55Gag) into virions or membrane-enveloped virus-like particles (VLP). Taking advantage of this property, we developed a simple and sensitive method to evaluate potential inhibitors of HIV-1 assembly in a living cell system. Two proteins were coexpressed in recombinant baculovirus-infected Sf9 cells, Pr55Gag, which formed the VLP backbone, and luciferase fused to the N-terminus of Vpr (LucVpr). VLP-encapsidated LucVpr retained the enzymatic activity of free luciferase. The levels of luciferase activity present in the pelletable fraction recovered from the culture medium correlated with the amounts of extracellular VLP released by Sf9 cells assayed by conventional immunological methods. Our luciferase-based assay was then applied to the characterization of betulinic acid (BA) derivatives that differed from the leader compound PA-457 (or DSB) by their substituant on carbon-28. The beta-alanine-conjugated and lysine-conjugated DSB could not be evaluated for their antiviral potentials due to their high cytotoxicity, whereas two other compounds with a lesser cytotoxicity, glycine-conjugated and ε-NH-Boc-lysine-conjugated DSB, exerted a dose-dependent negative effect on VLP assembly and budding. A fifth compound with a low cytotoxicity, EP-39 (ethylene diamine-conjugated DSB), showed a novel type of antiviral effect. EP-39 provoked an aberrant assembly of VLP, resulting in nonenveloped, morula-like particles of 100-nm in diameter. Each morula was composed of nanoparticle subunits of 20-nm in diameter, which possibly mimicked transient intermediates of the HIV-1 Gag assembly process. Chemical cross-linking in situ suggested that EP-39 favored the formation or/and persistence of Pr55Gag trimers over other oligomeric species. EP-39 showed a novel type of negative effect on HIV-1 assembly, targeting the Pr55Gag oligomerisation. The biological effect of EP-39 underlined the critical role of the nature of the side chain at position 28 of BA derivatives in their anti-HIV-1 activity.
doi:10.1371/journal.pone.0027234
PMCID: PMC3207847  PMID: 22073298
18.  TAK-652 Inhibits CCR5-Mediated Human Immunodeficiency Virus Type 1 Infection In Vitro and Has Favorable Pharmacokinetics in Humans 
Antimicrobial Agents and Chemotherapy  2005;49(11):4584-4591.
The first small-molecule CCR5 antagonist, TAK-779, could not be developed as an anti-human immunodeficiency virus type (anti-HIV-1) agent because of its poor oral bioavailability. TAK-652 is an orally bioavailable TAK-779 derivative with potent anti-HIV-1 activity. TAK-652 inhibited the binding of RANTES (regulated on activation, normal T-cell expressed and secreted), macrophage inflammatory protein 1α (MIP-1α), and MIP-1β to CCR5-expressing cells at nanomolar concentrations. TAK-652 could also suppress the binding of monocyte chemotactic protein 1 (MCP-1) to CCR2b-expressing cells. However, its inhibitory effect on ligand binding to other chemokine receptors was limited. TAK-652 was active against CCR5-using (R5) HIV-1 but totally inactive against CXCR4-using (X4) HIV-1. The compound was active against R5 HIV-1 clinical isolates containing reverse transcriptase and protease inhibitor-resistant mutations, with a mean 50% effective concentration (EC50) and EC90 of 0.061 and 0.25 nM, respectively. In addition, recombinant R5 viruses carrying different subtype (A to G) envelope proteins were equally susceptible to TAK-652. A single oral administration of TAK-652 up to 100 mg was safe and well tolerated in humans. The compound displayed favorable pharmacokinetics, and its plasma concentration was 7.2 ng/ml (9.1 nM) even 24 h after the administration of 25 mg. Thus, TAK-652 is a promising candidate as a novel entry inhibitor of HIV-1.
doi:10.1128/AAC.49.11.4584-4591.2005
PMCID: PMC1280155  PMID: 16251299
19.  Human Immunodeficiency Virus Type 1 Resistance to the Small Molecule Maturation Inhibitor 3-O-(3′,3′-Dimethylsuccinyl)-Betulinic Acid Is Conferred by a Variety of Single Amino Acid Substitutions at the CA-SP1 Cleavage Site in Gag▿ †  
Journal of Virology  2006;80(24):12095-12101.
The compound 3-O-(3′,3′-dimethylsuccinyl)-betulinic acid (DSB) potently and specifically inhibits human immunodeficiency virus type 1 (HIV-1) replication by delaying the cleavage of the CA-SP1 junction in Gag, leading to impaired maturation of the viral core. In this study, we investigated HIV-1 resistance to DSB by analyzing HIV-1 mutants encoding a variety of individual amino acid substitutions in the CA-SP1 cleavage site. Three of the substitutions were lethal to HIV-1 replication owing to a deleterious effect on particle assembly. The remaining mutants exhibited a range of replication efficiencies; however, each mutant was capable of replicating in the presence of concentrations of DSB that effectively inhibited wild-type HIV-1. Mutations conferring resistance to DSB also led to impaired binding of the compound to immature HIV-1 virions and loss of DSB-mediated inhibition of cleavage of Gag. Surprisingly, two of the DSB-resistant mutants retained an intermediate ability to bind the compound, suggesting that binding of DSB to immature HIV-1 particles may not be sufficient for antiviral activity. Overall, our results indicate that Gag amino acids L363 and A364 are critical for inhibition of HIV-1 replication by DSB and suggest that these residues form key contacts with the drug in the context of the assembling HIV-1 particle. These results have implications for the design of and screening for novel inhibitors of HIV-1 maturation.
doi:10.1128/JVI.01626-06
PMCID: PMC1676313  PMID: 17035324
20.  CD4-Specific Designed Ankyrin Repeat Proteins Are Novel Potent HIV Entry Inhibitors with Unique Characteristics 
PLoS Pathogens  2008;4(7):e1000109.
Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin) technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C) HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins—high physical stability, specificity and low production costs—with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.
Author Summary
There is an increasing need to develop inhibitors of HIV entry into target cells for both application in therapy and prevention. The development of specific HIV inhibitors as microbicides, agents that by topical application prevent infection, is considered particularly important in limiting the spread of HIV in the absence of effective vaccines. To derive highly potent and specific inhibitors of HIV entry for potential use as microbicide, we employed the recently developed Designed Ankyrin Repeat Protein technology. Using this technique, Designed Ankyrin Repeat Proteins can be evolved that bind their target molecules as specifically and efficiently as antibodies. In the present study, we generated a panel of Designed Ankyrin Repeat Proteins that bind specifically to the cellular CD4 receptor, the main entry receptor of HIV. The obtained proteins are very potent and highly specific inhibitors of HIV entry and provide a broad reactivity against genetically different virus strains. Due to the high physical stability of Designed Ankyrin Repeat Proteins and their low cost production, these novel HIV entry inhibitors represent promising candidates for microbicide development.
doi:10.1371/journal.ppat.1000109
PMCID: PMC2453315  PMID: 18654624
21.  Role of the Ectodomain of the gp41 Transmembrane Envelope Protein of Human Immunodeficiency Virus Type 1 in Late Steps of the Membrane Fusion Process 
Journal of Virology  2004;78(2):811-820.
The membrane fusion process mediated by the gp41 transmembrane envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) was addressed by a flow cytometry assay detecting exchanges of fluorescent membrane probes (DiI and DiO) between cells expressing the HIV-1 envelope proteins (Env) and target cells. Double-fluorescent cells were detected when target cells expressed the type of chemokine receptor, CXCR4 or CCR5, matching the type of gp120 surface envelope protein, X4 or R5, respectively. Background levels of double-fluorescent cells were observed when the gp120-receptor interaction was blocked by AMD3100, a CXCR4 antagonist. The L568A mutation in the N-terminal heptad repeat (HR1) of gp41 resulted in parallel inhibition of the formation of syncytia and double-fluorescent cells, indicating that gp41 had a direct role in the exchange of fluorescent probes. In contrast, three mutations in the loop region of the gp41 ectodomain, located on either side of the Cys-(X)5-Cys motif (W596 M and W610A) or at the distal end of HR1 (D589L), had limited or no apparent effect on membrane lipid mixing between Env+ and target cells, while they blocked formation of syncytia and markedly reduced the exchanges of cytoplasmic fluorescent probes. The loop region could therefore have a direct or indirect role in events occurring after the merging of membranes, such as the formation or dilation of fusion pores. Two types of inhibitors of HIV-1 entry, the gp41-derived peptide T20 and the betulinic acid derivative RPR103611, had limited effects on membrane exchanges at concentrations blocking or markedly reducing syncytium formation. This finding confirmed that T20 can inhibit the late steps of membrane fusion (post-lipid mixing) and brought forth an indirect argument for the role of the gp41 loop region in these steps, as mutations conferring resistance to RPR103611V were mapped in this region (I595S or L602H).
doi:10.1128/JVI.78.2.811-820.2004
PMCID: PMC368777  PMID: 14694113
22.  Anti-AIDS Agents 73: Structure-Activity Relationship Study and Asymmetric Synthesis of 3-O-Monomethylsuccinyl Betulinic Acid Derivatives 
3-O-3′(or 2′)-methylsuccinyl-betulinic acid (MSB) derivatives were separated by using recycle HPLC. The structures of four isomers were assigned by NMR and asymmetric synthesis. 3-O-3′S-Methylsuccinyl-betulinic acid (3′S-MSB, 4) exhibited potent anti-HIV activity with an EC50 value of 0.0087 μM and a TI value of 6.3×103, which is comparable to the data for bevirimat (DSB, PA-457), a current clinical trials drug that was also derived from betulinic acid. The anti-HIV potency of 4 was slightly better than that of AZT.
doi:10.1016/j.bmcl.2007.09.081
PMCID: PMC2140232  PMID: 17935987
23.  UCLA1, a Synthetic Derivative of a gp120 RNA Aptamer, Inhibits Entry of Human Immunodeficiency Virus Type 1 Subtype C 
Journal of Virology  2012;86(9):4989-4999.
Entry of human immunodeficiency virus type 1 (HIV-1) into cells is mediated by the virion surface envelope (Env) glycoproteins, making it a desirable target for antiretroviral entry inhibitors. We previously isolated a family of gp120 binding RNA aptamers and showed that they neutralized the infectivity of HIV-1. In this study, we assessed the activity of a shortened synthetic derivative of the B40 aptamer, called UCLA1, against a large panel of HIV-1 subtype C viruses. UCLA1 tightly bound to a consensus HIV-1 subtype C gp120 and neutralized isolates of the same subtype with 50% inhibitory concentrations (IC50s) in the nanomolar range. The aptamer had little toxicity in tests with cell lines and primary cells. Furthermore, it exhibited high therapeutic indices, suggesting that it may be effective at very low doses. Mapping of UCLA1 binding sites on gp120 revealed eight amino acid residues that modulated neutralization resistance. This included residues within the coreceptor binding site, at the base of the V3 loop, and in the bridging sheet within the conserved V1/V2 stem-loop of gp120. The aptamer was also shown to have synergistic effects with T20, a gp41 fusion inhibitor, and IgG1b12 (b12), an anti-CD4 binding site monoclonal antibody. These results suggest that UCLA1 may be suitable for development as a potent HIV-1 entry inhibitor.
doi:10.1128/JVI.06893-11
PMCID: PMC3347371  PMID: 22379083
24.  Anti-AIDS Agents 90. Novel C-28 Modified Bevirimat Analogs as Potent HIV Maturation Inhibitors 
Journal of medicinal chemistry  2012;55(18):8128-8136.
In a continuing study of bevirimat (2), the anti-HIV-maturation clinical trials agent, 28 new betulinic acid (BA, 1) derivatives were designed and synthesized. Among these compounds, 17, with a C-28 MEM ester moiety, and 22, with a C-28 ethyl hexanoate, increased the anti-HIV replication activity compared with 2 by two-fold, while compounds 40–41 and 48–49, with C-28 piperazine or piperidine amide substitutions, increased the activity by three- to fifteen-fold. The best new compound 41 exhibited an anti-HIV IC50 value of 0.0059 μM, compared with 0.087 μM for 2. All of the active compounds showed only anti-maturation effects, as confirmed by TZM-bl assay, in blocking the HIV replication. The results suggest that proper C-28 substitutions can further enhance the anti-maturation activity of 2, without any anti-entry effects. Thus, 41 may serve as a promising new lead for development of anti-AIDS clinical trial candidates.
doi:10.1021/jm301040s
PMCID: PMC3478670  PMID: 22978745
25.  Inhibition of Both HIV-1 Reverse Transcription and Gene Expression by a Cyclic Peptide that Binds the Tat-Transactivating Response Element (TAR) RNA 
PLoS Pathogens  2011;7(5):e1002038.
The RNA response element TAR plays a critical role in HIV replication by providing a binding site for the recruitment of the viral transactivator protein Tat. Using a structure-guided approach, we have developed a series of conformationally-constrained cyclic peptides that act as structural mimics of the Tat RNA binding region and block Tat-TAR interactions at nanomolar concentrations in vitro. Here we show that these compounds block Tat-dependent transcription in cell-free systems and in cell-based reporter assays. The compounds are also cell permeable, have low toxicity, and inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic L50 exhibited an IC50 ∼250 nM. Surprisingly, inhibition of LTR-driven HIV-1 transcription could not account for the full antiviral activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic inhibition curve with the first phase occurring after HIV-1 entry into the host cell and during the initiation of HIV-1 reverse transcription. The second phase coincides with inhibition of HIV-1 transcription. Reconstituted reverse transcription assays confirm that HIV-1 (−) strand strong stop DNA synthesis is blocked by L50-TAR RNA interactions in-vitro. These findings are consistent with genetic evidence that TAR plays critical roles both during reverse transcription and during HIV gene expression. Our results suggest that antiviral drugs targeting TAR RNA might be highly effective due to a dual inhibitory mechanism.
Author Summary
The HIV-1 transactivator protein (Tat), together with the elongation factor P-TEFb binds to an HIV-1 RNA secondary structure in the 5′-UTRs of nascent viral mRNAs (TAR) and promotes transcription elongation. This process has been an attractive target for drug development but previous inhibitors that bind either Tat or TAR have been plagued by poor inhibition of virus replication, limited cell penetration, and off-target effects. In this article, we describe a series of rationally designed cyclic peptides that block Tat-TAR interactions. L50, the most potent of these compounds, inhibits a wide range of HIV-1 strains from around the world. Remarkably, L50 inhibits two distinct steps in the HIV-1 lifecycle. As expected, L50 inhibits Tat-dependent HIV-1 transcription, but the majority of its anti-HIV activity is due to a block in reverse transcription, i.e. synthesis of the proviral DNA from the RNA genome. L50 inhibition of reverse transcription reveals an important role for TAR RNA during reverse transcription as well as providing one of first examples of a drug with a dual mechanism of action.
doi:10.1371/journal.ppat.1002038
PMCID: PMC3098202  PMID: 21625572

Results 1-25 (950115)