Search tips
Search criteria

Results 1-25 (1229356)

Clipboard (0)

Related Articles

1.  MAPK, MKP1 and c-Fos Discriminate Candida albicans Yeast from Hyphae in Epithelial Cells 
Cell host & microbe  2010;8(3):225-235.
Host mechanisms enabling discrimination between the commensal and pathogenic states of opportunistic pathogens are critical in mucosal defense and homeostasis. Here, we demonstrate that oral epithelial cells orchestrate an innate response to the human fungal pathogen Candida albicans via NF-κB and a bi-phasic MAPK response. Activation of NF-κB and the first MAPK phase, constituting c-Jun activation, is independent of morphology and due to the recognition of fungal cell wall structures. Activation of the second MAPK phase, constituting MKP1 and c-Fos activation, is dependent upon hypha-formation and fungal burdens, and correlates with proinflammatory responses. This MAPK-based discriminatory pathway may provide a mechanism for epithelial tissues to remain quiescent in the presence of low fungal burdens whilst responding specifically and strongly to damage-inducing hyphae when burdens increase. MAPK/MKP1/c-Fos activation may thus comprise a `danger response' pathway in vivo and may be critical in identifying when this normally commensal fungus has become pathogenic.
PMCID: PMC2991069  PMID: 20833374
2.  Candida albicans Yeast and Hyphae are Discriminated by MAPK Signaling in Vaginal Epithelial Cells 
PLoS ONE  2011;6(11):e26580.
We previously reported that a bi-phasic innate immune MAPK response, constituting activation of the mitogen-activated protein kinase (MAPK) phosphatase MKP1 and c-Fos transcription factor, discriminates between the yeast and hyphal forms of Candida albicans in oral epithelial cells (ECs). Since the vast majority of mucosal Candida infections are vaginal, we sought to determine whether a similar bi-phasic MAPK-based immune response was activated by C. albicans in vaginal ECs. Here, we demonstrate that vaginal ECs orchestrate an innate response to C. albicans via NF-κB and MAPK signaling pathways. However, unlike in oral ECs, the first MAPK response, defined by c-Jun transcription factor activation, is delayed until 2 h in vaginal ECs but is still independent of hypha formation. The ‘second’ or ‘late’ MAPK response, constituting MKP1 and c-Fos transcription factor activation, is identical to oral ECs and is dependent upon both hypha formation and fungal burdens. NF-κB activation is immediate but independent of morphology. Furthermore, the proinflammatory response in vaginal ECs is different to oral ECs, with an absence of G-CSF and CCL20 and low level IL-6 production. Therefore, differences exist in how C. albicans activates signaling mechanisms in oral and vaginal ECs; however, the activation of MAPK-based pathways that discriminate between yeast and hyphal forms is retained between these mucosal sites. We conclude that this MAPK-based signaling pathway is a common mechanism enabling different human epithelial tissues to orchestrate innate immune responses specifically against C. albicans hyphae.
PMCID: PMC3210759  PMID: 22087232
3.  Activation of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae 
Oral epithelial cells detect the human pathogenic fungus Candida albicans via NF-κB and a bi-phasic mitogen-activated protein kinase (MAPK) signaling response. However, discrimination between C. albicans yeast and hyphal forms is mediated only by the MAPK pathway, which constitutes activation of the MAPK phosphatase MKP1 and the c-Fos transcription factor and is targeted against the hyphal form. Given that C. albicans is not the only Candida species capable of filamentation or causing mucosal infections, we sought to determine whether this MAPK/MKP1/c-Fos mediated response mechanism was activated by other pathogenic Candida species, including C. dubliniensis, C. tropicalis, C. parapsilosis, C. glabrata and C. krusei. Although all Candida species activated the NF-κB signaling pathway, only C. albicans and C. dubliniensis were capable of inducing MKP1 and c-Fos activation, which directly correlated with hypha formation. However, only C. albicans strongly induced cytokine production (G-CSF, GM-CSF, IL-6 and IL-1α) and cell damage. Candida dubliniensis, C. tropicalis and C. parapsilosis were also capable of inducing IL-1α and this correlated with mild cell damage and was dependent upon fungal burdens. Our data demonstrate that activation of the MAPK/MKP1/c-Fos pathway in oral epithelial cells is specific to C. dubliniensis and C. albicans hyphae.
PMCID: PMC3257392  PMID: 21706283
Candida albicans; Candida dubliniensis; Hypha formation; MAPK; MKP1; c-Fos; NF-κB; Oral epithelium; Innate immunity
4.  Candida albicans Cell Wall Glycosylation May Be Indirectly Required for Activation of Epithelial Cell Proinflammatory Responses ▿  
Infection and Immunity  2011;79(12):4902-4911.
Oral epithelial cells discriminate between the yeast and hyphal forms of Candida albicans via the mitogen-activated protein kinase (MAPK) signaling pathway. This occurs through phosphorylation of the MAPK phosphatase MKP1 and activation of the c-Fos transcription factor by the hyphal form. Given that fungal cell wall polysaccharides are critical in host recognition and immune activation in myeloid cells, we sought to determine whether β-glucan and N- or O-glycosylation was important in activating the MAPK/MKP1/c-Fos hypha-mediated response mechanism and proinflammatory cytokines in oral epithelial cells. Using a series of β-glucan and N- and O-mannan mutants, we found that N-mannosylation (via Δoch1 and Δpmr1 mutants) and O-mannosylation (via Δpmt1 and Δmnt1 Δmnt2 mutants), but not phosphomannan (via a Δmnn4 mutant) or β-1,2 mannosylation (via Δbmt1 to Δbmt6 mutants), were required for MKP1/c-Fos activation, proinflammatory cytokine production, and cell damage induction. However, the N- and O-mannan mutants showed reduced adhesion or lack of initial hypha formation at 2 h, resulting in little MKP1/c-Fos activation, or restricted hypha formation/pseudohyphal formation at 24 h, resulting in minimal proinflammatory cytokine production and cell damage. Further, the α-1,6-mannose backbone of the N-linked outer chain (corresponding to a Δmnn9 mutant) may be required for epithelial adhesion, while the α-1,2-mannose component of phospholipomannan (corresponding to a Δmit1 mutant) may contribute to epithelial cell damage. β-Glucan appeared to play no role in adhesion, epithelial activation, or cell damage. In summary, N- and O-mannosylation defects affect the ability of C. albicans to induce proinflammatory cytokines and damage in oral epithelial cells, but this may be due to indirect effects on fungal pathogenicity rather than mannose residues being direct activators of the MAPK/MKP1/c-Fos hypha-mediated immune response.
PMCID: PMC3232641  PMID: 21930756
5.  Evaluation of the Role of Candida albicans Agglutinin-Like Sequence (Als) Proteins in Human Oral Epithelial Cell Interactions 
PLoS ONE  2012;7(3):e33362.
The fungus C. albicans uses adhesins to interact with human epithelial surfaces in the processes of colonization and pathogenesis. The C. albicans ALS (agglutinin-like sequence) gene family encodes eight large cell-surface glycoproteins (Als1-Als7 and Als9) that have adhesive function. This study utilized C. albicans Δals mutant strains to investigate the role of the Als family in oral epithelial cell adhesion and damage, cytokine induction and activation of a MAPK-based (MKP1/c-Fos) signaling pathway that discriminates between yeast and hyphae. Of the eight Δals mutants tested, only the Δals3 strain showed significant reductions in oral epithelial cell adhesion and damage, and cytokine production. High fungal:epithelial cell multiplicities of infection were able to rescue the cell damage and cytokine production phenotypes, demonstrating the importance of fungal burden in mucosal infections. Despite its adhesion, damage and cytokine induction phenotypes, the Δals3 strain induced MKP1 phosphorylation and c-Fos production to a similar extent as control cells. Our data demonstrate that Als3 is involved directly in epithelial adhesion but indirectly in cell damage and cytokine induction, and is not the factor targeted by oral epithelial cells to discriminate between the yeast and hyphal form of C. albicans.
PMCID: PMC3299778  PMID: 22428031
6.  Bruton's Tyrosine Kinase (BTK) and Vav1 Contribute to Dectin1-Dependent Phagocytosis of Candida albicans in Macrophages 
PLoS Pathogens  2013;9(6):e1003446.
Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.
Author Summary
The opportunistic yeast Candida albicans is a commensal organism of the human digestive tract, but also the most common cause of human fungal infections. Phagocytosis, the process by which innate immune cells engulf pathogens, is vital to prevent C. albicans infections. The major phagocytic receptor involved in anti-fungal immunity is Dectin-1. We identify two new interacting proteins of Dectin-1 in macrophages: Bruton's Tyrosine Kinase (BTK) and Vav1. In the course of phagocytosis, different phosphoinositides (PIs) are formed in the phagosomal membrane to allow the recruitment of proteins equipped with specialized lipid-interaction domains. We show that BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 at the phagocytic cup, but not with diacylglycerol (DAG), which marks more mature phagosomal membranes. Inhibition of BTK affects the production of DAG and the recruitment of DAG-interacting proteins. BTK and Vav1 are essential for C. albicans immune responses, as BTK- or Vav1-deficient macrophages show reduced uptake of C. albicans and BTK- or Vav1-deficient deficient mice are more susceptible to systemic C. albicans infection. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.
PMCID: PMC3694848  PMID: 23825946
7.  Protection Against Epithelial Damage During Candida albicans Infection Is Mediated by PI3K/Akt and Mammalian Target of Rapamycin Signaling 
The Journal of Infectious Diseases  2013;209(11):1816-1826.
Background. The ability of epithelial cells (ECs) to discriminate between commensal and pathogenic microbes is essential for healthy living. Key to these interactions are mucosal epithelial responses to pathogen-induced damage.
Methods. Using reconstituted oral epithelium, we assessed epithelial gene transcriptional responses to Candida albicans infection by microarray. Signal pathway activation was monitored by Western blotting and transcription factor enzyme-linked immunosorbent assay, and the role of these pathways in C. albicans–induced damage protection was determined using chemical inhibitors.
Results. Transcript profiling demonstrated early upregulation of epithelial genes involved in immune responses. Many of these genes constituted components of signaling pathways, but only NF-κB, MAPK, and PI3K/Akt pathways were functionally activated. We demonstrate that PI3K/Akt signaling is independent of NF-κB and MAPK signaling and plays a key role in epithelial immune activation and damage protection via mammalian target of rapamycin (mTOR) activation.
Conclusions. PI3K/Akt/mTOR signaling may play a critical role in protecting epithelial cells from damage during mucosal fungal infections independent of NF-κB or MAPK signaling.
PMCID: PMC4017362  PMID: 24357630
Akt; Candida albicans; epithelial; inflammation; fungal; PI3 kinase; damage; MAPK; c-Fos; microarray; mTOR
8.  Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of C. albicans Virulence Pathways 
PLoS Pathogens  2015;11(8):e1005133.
Candida albicans is both a major fungal pathogen and a member of the commensal human microflora. The morphological switch from yeast to hyphal growth is associated with disease and many environmental factors are known to influence the yeast-to-hyphae switch. The Ras1-Cyr1-PKA pathway is a major regulator of C. albicans morphogenesis as well as biofilm formation and white-opaque switching. Previous studies have shown that hyphal growth is strongly repressed by mitochondrial inhibitors. Here, we show that mitochondrial inhibitors strongly decreased Ras1 GTP-binding and activity in C. albicans and similar effects were observed in other Candida species. Consistent with there being a connection between respiratory activity and GTP-Ras1 binding, mutants lacking complex I or complex IV grew as yeast in hypha-inducing conditions, had lower levels of GTP-Ras1, and Ras1 GTP-binding was unaffected by respiratory inhibitors. Mitochondria-perturbing agents decreased intracellular ATP concentrations and metabolomics analyses of cells grown with different respiratory inhibitors found consistent perturbation of pyruvate metabolism and the TCA cycle, changes in redox state, increased catabolism of lipids, and decreased sterol content which suggested increased AMP kinase activity. Biochemical and genetic experiments provide strong evidence for a model in which the activation of Ras1 is controlled by ATP levels in an AMP kinase independent manner. The Ras1 GTPase activating protein, Ira2, but not the Ras1 guanine nucleotide exchange factor, Cdc25, was required for the reduction of Ras1-GTP in response to inhibitor-mediated reduction of ATP levels. Furthermore, Cyr1, a well-characterized Ras1 effector, participated in the control of Ras1-GTP binding in response to decreased mitochondrial activity suggesting a revised model for Ras1 and Cyr1 signaling in which Cyr1 and Ras1 influence each other and, together with Ira2, seem to form a master-regulatory complex necessary to integrate different environmental and intracellular signals, including metabolic status, to decide the fate of cellular morphology.
Author Summary
Candida albicans is a successful fungal commensal and pathogen of humans. It is a polymorphic organism and the ability to switch from yeast to hyphal growth is associated with the commensal-to-pathogen switch. Previous research identified the Ras1-cAMP-protein kinase A pathway as a key regulator of hyphal growth. Here, we report that mitochondrial activity plays a key role in Ras1 activation, as respiratory inhibition decreased Ras1 activity and Ras1-dependent filamentation. We found that intracellular ATP modulates Ras1 activity through a pathway involving the GTPase activating protein Ira2 and the adenylate cyclase Cyr1. Based on our data the canonical Ras1 signaling model in C. albicans needs to be restructured in such a way that Cyr1 is no longer placed downstream of Ras1 but rather in a major signaling node with Ras1 and Ira2. Our studies suggest that the energy status of the cell is the most important signal involved in the decision of C. albicans to undergo the yeast-to-hyphae switch or express genes associated with the hyphal morphology as low intracellular ATP or associated cues override several hypha-inducing signals. Future studies will show if this knowledge can be used to develop therapies that would favor benign host-Candida interactions by promoting low Ras1 activity.
PMCID: PMC4552728  PMID: 26317337
9.  The Pathogen Candida albicans Hijacks Pyroptosis for Escape from Macrophages 
mBio  2014;5(2):e00003-14.
The fungal pathogen Candida albicans causes macrophage death and escapes, but the molecular mechanisms remained unknown. Here we used live-cell imaging to monitor the interaction of C. albicans with macrophages and show that C. albicans kills macrophages in two temporally and mechanistically distinct phases. Early upon phagocytosis, C. albicans triggers pyroptosis, a proinflammatory macrophage death. Pyroptosis is controlled by the developmental yeast-to-hypha transition of Candida. When pyroptosis is inactivated, wild-type C. albicans hyphae cause significantly less macrophage killing for up to 8 h postphagocytosis. After the first 8 h, a second macrophage-killing phase is initiated. This second phase depends on robust hyphal formation but is mechanistically distinct from pyroptosis. The transcriptional regulator Mediator is necessary for morphogenesis of C. albicans in macrophages and the establishment of the wild-type surface architecture of hyphae that together mediate activation of macrophage cell death. Our data suggest that the defects of the Mediator mutants in causing macrophage death are caused, at least in part, by reduced activation of pyroptosis. A Mediator mutant that forms hyphae of apparently wild-type morphology but is defective in triggering early macrophage death shows a breakdown of cell surface architecture and reduced exposed 1,3 β-glucan in hyphae. Our report shows how Candida uses host and pathogen pathways for macrophage killing. The current model of mechanical piercing of macrophages by C. albicans hyphae should be revised to include activation of pyroptosis by hyphae as an important mechanism mediating macrophage cell death upon C. albicans infection.
Upon phagocytosis by macrophages, Candida albicans can transition to the hyphal form, which causes macrophage death and enables fungal escape. The current model is that the highly polarized growth of hyphae results in macrophage piercing. This model is challenged by recent reports of C. albicans mutants that form hyphae of wild-type morphology but are defective in killing macrophages. We show that C. albicans causes macrophage cell death by at least two mechanisms. Phase 1 killing (first 6 to 8 h) depends on the activation of the pyroptotic programmed host cell death by fungal hyphae. Phase 2 (up to 24 h) is rapid and depends on robust hyphal formation but is independent of pyroptosis. Our data provide a new model for how the interplay between fungal morphogenesis and activation of a host cell death pathway mediates macrophage killing by C. albicans hyphae.
PMCID: PMC3977349  PMID: 24667705
10.  A GATA Transcription Factor Recruits Hda1 in Response to Reduced Tor1 Signaling to Establish a Hyphal Chromatin State in Candida albicans 
PLoS Pathogens  2012;8(4):e1002663.
Candida albicans is an important opportunistic fungal pathogen of immunocompromised individuals. One critical virulence attribute is its morphogenetic plasticity. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of the cAMP/PKA pathway and promoter recruitment of the histone deacetylase Hda1 under reduced Tor1 signaling. Molecular mechanisms for the temporal connection and the link to Tor1 signaling are not clear. Here, through a forward genetic screen, we report the identification of the GATA family transcription factor Brg1 as the factor that recruits Hda1 to promoters of hypha-specific genes during hyphal elongation. BRG1 expression requires both the removal of Nrg1 and a sub-growth inhibitory level of rapamycin; therefore, it is a sensitive readout of Tor1 signaling. Interestingly, promoters of hypha-specific genes are not accessible to Brg1 in yeast cells. Furthermore, ectopic expression of Brg1 cannot induce hyphae, but can sustain hyphal development. Nucleosome mapping of a hypha-specific promoter shows that Nrg1 binding sites are in nucleosome free regions in yeast cells, whereas Brg1 binding sites are occupied by nucleosomes. Nucleosome disassembly during hyphal initiation exposes the binding sites for both regulators. During hyphal elongation, Brg1-mediated Hda1 recruitment causes nucleosome repositioning and occlusion of Nrg1 binding sites. We suggest that nucleosome repositioning is the underlying mechanism for the yeast-hyphal transition. The hypha-specific regulator Ume6 is a key downstream target of Brg1 and functions after Brg1 as a built-in positive feedback regulator of the hyphal transcriptional program to sustain hyphal development. With the levels of Nrg1 and Brg1 dynamically and sensitively controlled by the two major cellular growth pathways, temporal changes in nucleosome positioning during the yeast-to-hypha transition provide a mechanism for signal integration and cell fate specification. This mechanism is likely used broadly in development.
Author Summary
Candida is part of the gut microflora in healthy individuals, but can disseminate and cause systemic disease when the host's immune system is suppressed. Its ability to grow as yeast and hyphae in response to environmental cues is a major virulence attribute. Hyphal development requires temporary clearing of the transcription inhibitor Nrg1 upon activation of cAMP/PKA for initiation and promoter recruitment of the histone deacetylase Hda1 under reduced Tor1 signaling for maintenance. Here, we show that, during hyphal initiation when Nrg1 is gone, expression of the GATA family transcription factor Brg1 is activated under reduced Tor1 signaling. Accumulated Brg1 recruits Hda1 to hyphal promoters to reposition nucleosomes, leading to obstruction of Nrg1 binding sites and sustained hyphal development. The nucleosome repositioning during the yeast-hyphal transition provides a mechanism for temporal integration of extracellular signals and cell-fate specification. The hypha-specific transcription factor Ume6 functions after Brg1 in this succession of feed-forward regulation of hyphal development. Since misregulation of either Nrg1 or Ume6 causes altered virulence, and Brg1 regulates both Nrg1 accessibility and Ume6 transcription, our findings should provide a better understanding of how Candida controls its morphological program in different host niches to exist as a commensal and a pathogen.
PMCID: PMC3334898  PMID: 22536157
11.  Therapeutic Potential of Thiazolidinedione-8 as an Antibiofilm Agent against Candida albicans 
PLoS ONE  2014;9(5):e93225.
Candida albicans is known as a commensal microorganism but it is also the most common fungal pathogen in humans, causing both mucosal and systemic infections. Biofilm-associated C. albicans infections present clinically important features due to their high levels of resistance to traditional antifungal agents. Quorum sensing is closely associated with biofilm formation and increasing fungal pathogenicity. We investigated the ability of the novel bacterial quorum sensing quencher thiazolidinedione-8 (S-8) to inhibit the formation of, and eradication of mature C. albicans biofilms. In addition, the capability of S-8 to alter fungal adhesion to mammalian cells was checked. S-8 exhibited specific antibiofilm and antiadhesion activities against C. albicans, at four- to eightfold lower concentrations than the minimum inhibitory concentration (MIC). Using fluorescence microscopy, we observed that S-8 dose-dependently reduces C. albicans–GFP binding to RAW macrophages. S-8 at sub-MICs also interfered with fungal morphogenesis by inhibiting the yeast-to-hyphal form transition. In addition, the tested agent strongly affected fungal cell wall characteristics by modulating its hydrophobicity. We evaluated the molecular mode of S-8 antibiofilm and antiadhesion activities using real-time RT-PCR. The expression levels of genes associated with biofilm formation, adhesion and filamentation, HWP1, ALS3 and EAP1, respectively, were dose-dependently downregulated by S-8. Transcript levels of UME6, responsible for long-term hyphal maintenance, were also significantly decreased by the tested agent. Both signaling pathways of hyphal formation-cAMP-PKA and MAPK-were interrupted by S-8. Their upstream general regulator RAS1 was markedly suppressed by S-8. In addition, the expression levels of MAPK cascade components CST20, HST7 and CPH1 were downregulated by S-8. Finally, transcriptional repressors of filament formation, TUP1 and NRG1, were dramatically upregulated by our compound. Our results indicate that S-8 holds a novel antibiofilm therapeutic mean in the treatment and prevention of biofilm-associated C. albicans infections.
PMCID: PMC4010395  PMID: 24796422
12.  PKC Signaling Regulates Drug Resistance of the Fungal Pathogen Candida albicans via Circuitry Comprised of Mkc1, Calcineurin, and Hsp90 
PLoS Pathogens  2010;6(8):e1001069.
Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.
Author Summary
Treating fungal infections is challenging due to the emergence of drug resistance and the limited number of clinically useful antifungal drugs. We screened a library of 1,280 pharmacologically active compounds to identify those that reverse resistance of the leading human fungal pathogen, Candida albicans, to the most widely used antifungals, the azoles. This revealed a new role for protein kinase C (PKC) signaling in resistance to drugs targeting the cell membrane, including azoles, allylamines, and morpholines. We dissected mechanisms through which PKC regulates resistance in C. albicans and the model yeast Saccharomyces cerevisiae. PKC enabled survival of cell membrane stress at least in part through the mitogen-activated protein kinase (MAPK) cascade in both species. In S. cerevisiae, inhibition of PKC signaling blocked activation of a key regulator of membrane stress responses, calcineurin. In C. albicans, Pkc1 and calcineurin independently regulate resistance via a common target. Deletion of C. albicans PKC1 rendered fungistatic drugs fungicidal and reduced virulence in a mouse model. The molecular chaperone Hsp90, which stabilizes client proteins including calcineurin, also stabilized the terminal C. albicans MAPK, Mkc1. We establish new circuitry connecting PKC with Hsp90 and calcineurin and suggest a promising strategy for treating life-threatening fungal infections.
PMCID: PMC2928802  PMID: 20865172
13.  A Novel Pseudopodial Component of the Dendritic Cell Anti-Fungal Response: The Fungipod 
PLoS Pathogens  2010;6(2):e1000760.
Fungal pathologies are seen in immunocompromised and healthy humans. C-type lectins expressed on immature dendritic cells (DC) recognize fungi. We report a novel dorsal pseudopodial protrusion, the “fungipod”, formed by DC after contact with yeast cell walls. These structures have a convoluted cell-proximal end and a smooth distal end. They persist for hours, exhibit noticeable growth and total 13.7±5.6 µm long and 1.8±0.67 µm wide at the contact. Fungipods contain clathrin and an actin core surrounded by a sheath of cortactin. The actin cytoskeleton, but not microtubules, is required for fungipod integrity and growth. An apparent rearward flow (225±55 nm/second) exists from the zymosan contact site into the distal fungipod. The phagocytic receptor Dectin-1 is not required for fungipod formation, but CD206 (Mannose Receptor) is the generative receptor for these protrusions. The human pathogen Candida parapsilosis induces DC fungipod formation strongly, but the response is species specific since the related fungal pathogens Candida tropicalis and Candida albicans induce very few and no fungipods, respectively. Our findings show that fungipods are dynamic actin-driven cellular structures involved in fungal recognition by DC. They may promote yeast particle phagocytosis by DC and are a specific response to large (i.e., 5 µm) particulate ligands. Our work also highlights the importance of this novel protrusive structure to innate immune recognition of medically significant Candida yeasts in a species specific fashion.
Author Summary
Yeasts are normal microbial commensals of humans and a significant source of opportunistic infections, especially in immunocompromised individuals. We report a novel cellular protrusive structure, the fungipod, which participates in the host-microbe interaction between human immature dendritic cells (DC) and yeasts. The fungipod's structure is based on and propelled by a robust process of local actin cytoskeleton growth at the DC-yeast contact site, and this cytoskeletal remodeling results in a durable tubular structure over 10 µm long connecting the dorsal DC membrane and yeast. The fungal cell wall polysaccharides mannan and chitin trigger fungipod formation by stimulating the carbohydrate pattern recognition receptor CD206. Fungipods are part of a specific response to large particulate objects (i.e., yeast), and they may promote the human immature DC's relatively poor phagocytosis of yeast. The human fungal pathogen, Candida parapsilosis, induces a strong fungipod response from DC, and this response is highly species specific since the related pathogens Candida albicans and Candida tropicalis induce fungipods rarely. Our work highlights a novel cell biological element of fungal recognition by the innate immune system.
PMCID: PMC2820528  PMID: 20169183
14.  Dendritic Cells Discriminate between Yeasts and Hyphae of the Fungus Candida albicans 
The Journal of Experimental Medicine  2000;191(10):1661-1674.
The fungus Candida albicans behaves as a commensal as well as a true pathogen of areas highly enriched in dendritic cells, such as skin and mucosal surfaces. The ability of the fungus to reversibly switch between unicellular yeast to filamentous forms is thought to be important for virulence. However, whether it is the yeast or the hyphal form that is responsible for pathogenicity is still a matter of debate. Here we show the interaction, and consequences, of different forms of C. albicans with dendritic cells. Immature myeloid dendritic cells rapidly and efficiently phagocytosed both yeasts and hyphae of the fungus. Phagocytosis occurred through different phagocytic morphologies and receptors, resulting in phagosome formation. However, hyphae escaped the phagosome and were found lying free in the cytoplasm of the cells. In vitro, ingestion of yeasts activated dendritic cells for interleukin (IL)-12 production and priming of T helper type 1 (Th1) cells, whereas ingestion of hyphae inhibited IL-12 and Th1 priming, and induced IL-4 production. In vivo, generation of antifungal protective immunity was induced upon injection of dendritic cells ex vivo pulsed with Candida yeasts but not hyphae. The immunization capacity of yeast-pulsed dendritic cells was lost in the absence of IL-12, whereas that of hypha-pulsed dendritic cells was gained in the absence of IL-4. These results indicate that dendritic cells fulfill the requirement of a cell uniquely capable of sensing the two forms of C. albicans in terms of type of immune responses elicited. By the discriminative production of IL-12 and IL-4 in response to the nonvirulent and virulent forms of the fungus, dendritic cells appear to meet the challenge of Th priming and education in C. albicans saprophytism and infections.
PMCID: PMC2193147  PMID: 10811860
Candida albicans; yeast; hyphae; dendritic cells; cytokines
15.  Stage Specific Assessment of Candida albicans Phagocytosis by Macrophages Identifies Cell Wall Composition and Morphogenesis as Key Determinants 
PLoS Pathogens  2012;8(3):e1002578.
Candida albicans is a major life-threatening human fungal pathogen. Host defence against systemic Candida infection relies mainly on phagocytosis of fungal cells by cells of the innate immune system. In this study, we have employed video microscopy, coupled with sophisticated image analysis tools, to assess the contribution of distinct C. albicans cell wall components and yeast-hypha morphogenesis to specific stages of phagocytosis by macrophages. We show that macrophage migration towards C. albicans was dependent on the glycosylation status of the fungal cell wall, but not cell viability or morphogenic switching from yeast to hyphal forms. This was not a consequence of differences in maximal macrophage track velocity, but stems from a greater percentage of macrophages pursuing glycosylation deficient C. albicans during the first hour of the phagocytosis assay. The rate of engulfment of C. albicans attached to the macrophage surface was significantly delayed for glycosylation and yeast-locked morphogenetic mutant strains, but enhanced for non-viable cells. Hyphal cells were engulfed at a slower rate than yeast cells, especially those with hyphae in excess of 20 µm, but there was no correlation between hyphal length and the rate of engulfment below this threshold. We show that spatial orientation of the hypha and whether hyphal C. albicans attached to the macrophage via the yeast or hyphal end were also important determinants of the rate of engulfment. Breaking down the overall phagocytic process into its individual components revealed novel insights into what determines the speed and effectiveness of C. albicans phagocytosis by macrophages.
Author Summary
Host defence against systemic candidiasis relies mainly on the ingestion and elimination of fungal cells by cells of the innate immune system, especially neutrophils and macrophages. Here we have used live cell video microscopy coupled with sophisticated image analysis to generate a temporal and spatial analysis in unprecedented detail of the specific effects of C. albicans viability, cell wall composition, morphogenesis and spatial orientation on two distinct stages (macrophage migration and engulfment of bound C. albicans) of the phagocytosis process. The novel methods employed here to study phagocytosis of C. albicans could be applied to study other pathogens and uptake of dying host cells. Thus, our studies have direct implications for a much broader community and provide a blueprint for future studies with other phagocytes/microorganisms that would significantly enhance our understanding of the mechanisms that govern effective phagocytosis and ultimately the innate immune response to infection.
PMCID: PMC3305454  PMID: 22438806
16.  Cell Cycle-Independent Phospho-Regulation of Fkh2 during Hyphal Growth Regulates Candida albicans Pathogenesis 
PLoS Pathogens  2015;11(1):e1004630.
The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity.
Author Summary
The fungus Candida albicans is a commensal in the human microbiota, responsible for superficial infections such as oral and vaginal thrush. However, it can become highly virulent, causing life-threatening systemic candidemia in severely immunocompromised patients, including those taking immunosuppressive drugs for transplantation, sufferers of AIDS and neutropenia, and individuals undergoing chemotherapy or at extremes of age. With a rapidly increasing ageing population worldwide, C. albicans and other fungal pathogens will become more prevalent, demanding a greater understanding of their pathogenesis for the development of effective therapeutics. Fungal pathogenicity requires a coordinated change in the pattern of gene expression orchestrated by a set of transcription factors. Here we have discovered that a transcription factor, Fkh2, is modified by phosphorylation under the control of the kinases Cdc28 and Cbk1 in response to conditions that activate virulence factor expression. Fkh2 is involved in a wide variety of cellular processes including cell proliferation, but this phosphorylation endows it with a specialized function in promoting the expression of genes required for tissue invasion, biofilm formation, and pathogenesis in the host. This study highlights the role of protein phosphorylation in regulating pathogenesis and furthers our understanding of the pathogenic switch in this important opportunistic fungal pathogen.
PMCID: PMC4305328  PMID: 25617770
17.  Dynamic, Morphotype-Specific Candida albicans β-Glucan Exposure during Infection and Drug Treatment 
PLoS Pathogens  2008;4(12):e1000227.
Candida albicans, a clinically important dimorphic fungal pathogen that can evade immune attack by masking its cell wall β-glucan from immune recognition, mutes protective host responses mediated by the Dectin-1 β-glucan receptor on innate immune cells. Although the ability of C. albicans to switch between a yeast- or hyphal-form is a key virulence determinant, the role of each morphotype in β-glucan masking during infection and treatment has not been addressed. Here, we show that during infection of mice, the C. albicans β-glucan is masked initially but becomes exposed later in several organs. At all measured stages of infection, there is no difference in β-glucan exposure between yeast-form and hyphal cells. We have previously shown that sub-inhibitory doses of the anti-fungal drug caspofungin can expose β-glucan in vitro, suggesting that the drug may enhance immune activity during therapy. This report shows that caspofungin also mediates β-glucan unmasking in vivo. Surprisingly, caspofungin preferentially unmasks filamentous cells, as opposed to yeast form cells, both in vivo and in vitro. The fungicidal activity of caspofungin in vitro is also filament-biased, as corroborated using yeast-locked and hyphal-locked mutants. The uncloaking of filaments is not a general effect of anti-fungal drugs, as another anti-fungal agent does not have this effect. These results highlight the advantage of studying host–pathogen interaction in vivo and suggest new avenues for drug development.
Author Summary
Candida is a common human commensal but disseminated candidiasis is a serious clinical problem, especially among immunocompromised patients. The innate immune system controls Candida infection, in part through the germline-encoded β-glucan receptor Dectin-1. However, during in vitro growth, Candida albicans mutes Dectin-1 recognition by cloaking its β-glucan underneath a layer of mannan. Bridging these two seemingly contradictory observations, we demonstrate that C. albicans masks β-glucan early during infection, but it becomes exposed later, allowing Dectin-1 to recognize the fungi and mediate immunity. Remarkably, treatment of mice with sub-therapeutic doses of the antifungal drug caspofungin causes exposure of β-glucan on C. albicans even when it would not be exposed naturally. We introduce a new technique for monitoring of epitope exposure during infection, which can be used to monitor the availability of any epitope for immune recognition. This technique allowed us to show that natural unmasking of β-glucan is not morphotype-specific, but drug-mediated unmasking is biased towards the invasive filamentous form of C. albicans. These results highlight the unexplored area of dynamic epitope exposure during infection and therapy, which might be targetable to enhance immune recognition and fungal clearance.
PMCID: PMC2587227  PMID: 19057660
18.  Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p 
Microbiology  2012;158(Pt 12):2975-2986.
The bacterium Staphylococcus (St.) aureus and the opportunistic fungus Candida albicans are currently among the leading nosocomial pathogens, often co-infecting critically ill patients, with high morbidity and mortality. Previous investigations have demonstrated preferential adherence of St. aureus to C. albicans hyphae during mixed biofilm growth. In this study, we aimed to characterize the mechanism behind this observed interaction. C. albicans adhesin-deficient mutant strains were screened by microscopy to identify the specific receptor on C. albicans hyphae recognized by St. aureus. Furthermore, an immunoassay was developed to validate and quantify staphylococcal binding to fungal biofilms. The findings from these experiments implicated the C. albicans adhesin agglutinin-like sequence 3 (Als3p) in playing a major role in the adherence process. This association was quantitatively established using atomic force microscopy, in which the adhesion force between single cells of the two species was significantly reduced for a C. albicans mutant strain lacking als3. Confocal microscopy further confirmed these observations, as St. aureus overlaid with a purified recombinant Als3 N-terminal domain fragment (rAls3p) exhibited robust binding. Importantly, a strain of Saccharomyces cerevisiae heterologously expressing Als3p was utilized to further confirm this adhesin as a receptor for St. aureus. Although the parental strain does not bind bacteria, expression of Als3p on the cell surface conferred upon the yeast the ability to strongly bind St. aureus. To elucidate the implications of these in vitro findings in a clinically relevant setting, an ex vivo murine model of co-infection was designed using murine tongue explants. Fluorescent microscopic images revealed extensive hyphal penetration of the epithelium typical of C. albicans mucosal infection. Interestingly, St. aureus bacterial cells were only seen within the epithelial tissue when associated with the invasive hyphae. This differed from tongues infected with St. aureus alone or in conjunction with the als3 mutant strain of C. albicans, where bacterial presence was limited to the outer layers of the oral tissue. Collectively, the findings generated from this study identified a key role for C. albicans Als3p in mediating this clinically relevant fungal–bacterial interaction.
PMCID: PMC4083660  PMID: 22918893
19.  Systems Level Dissection of Candida Recognition by Dectins: A Matter of Fungal Morphology and Site of Infection 
Pathogens  2015;4(3):639-661.
Candida albicans is an ubiquitous fungal commensal of human skin and mucosal surfaces, and at the same time a major life-threatening human fungal pathogen in immunocompromised individuals. Host defense mechanisms rely on the capacity of professional phagocytes to recognize Candida cell wall antigens. During the past decade, the host immune response to Candida was dissected in depth, highlighting the essential role of C-type lectin receptors, especially regarding the power of the Dectins’ family in discriminating between the tolerated yeast-like form of Candida and its invading counterpart, the hyphae. This review focuses on the immuno-modulatory properties of the Candida morphologies and their specific interactions with the host innate immune system in different body surfaces.
PMCID: PMC4584279  PMID: 26308062
Candida albicans; innate immunity; morphology; C-type lectin receptors; pathogen; yeast-hyphae
20.  Integrin αXβ2 Is a Leukocyte Receptor for Candida albicans and Is Essential for Protection against Fungal Infections 
The opportunistic fungus Candida albicans is one of the leading causes of infections in immunocompromised patients, and innate immunity provides a principal mechanism for protection from the pathogen. In the present work, the role of integrin αXβ2 in the pathogenesis of fungal infection was assessed. Both purified αXβ2 and αXβ2-expressing human epithelial kidney 293 cells recognized and bound to the fungal hyphae of SC5314 strain of C. albicans but not to the yeast form or to hyphae of a strain deficient in the fungal mannoprotein, Pra1. The binding of the integrin to the fungus was inhibited by β-glucans but not by mannans, implicating a lectin-like activity in recognition but distinct in specificity from that of αMβ2. Mice deficient in αXβ2 were more prone to systemic infection with the LD50 fungal inoculum decreasing 3-fold in αXβ2-deficient mice compared with wild-type mice. After challenging i.v. with 1.5 × 104 cell/g, 60% of control C57BL/6 mice died within 14 d compared with 100% mortality of αXβ2-deficient mice within 9 d. Organs taken from αXβ2-deficient mice 16 h postinfection revealed a 10-fold increase in fungal invasion into the brain and a 2-fold increase into the liver. These data indicate that αXβ2 is important for protection against systemic C. albicans infections and macrophage subsets in the liver, Kupffer cells, and in the brain, microglial cells use αXβ2 to control fungal invasion.
PMCID: PMC3424400  PMID: 22844116
21.  Candida albicans Hypha Formation and Mannan Masking of β-Glucan Inhibit Macrophage Phagosome Maturation 
mBio  2014;5(6):e01874-14.
Candida albicans is a major life-threatening human fungal pathogen in the immunocompromised host. Host defense against systemic Candida infection relies heavily on the capacity of professional phagocytes of the innate immune system to ingest and destroy fungal cells. A number of pathogens, including C. albicans, have evolved mechanisms that attenuate the efficiency of phagosome-mediated inactivation, promoting their survival and replication within the host. Here we visualize host-pathogen interactions using live-cell imaging and show that viable, but not heat- or UV-killed C. albicans cells profoundly delay phagosome maturation in macrophage cell lines and primary macrophages. The ability of C. albicans to delay phagosome maturation is dependent on cell wall composition and fungal morphology. Loss of cell wall O-mannan is associated with enhanced acquisition of phagosome maturation markers, distinct changes in Rab GTPase acquisition by the maturing phagosome, impaired hyphal growth within macrophage phagosomes, profound changes in macrophage actin dynamics, and ultimately a reduced ability of fungal cells to escape from macrophage phagosomes. The loss of cell wall O-mannan leads to exposure of β-glucan in the inner cell wall, facilitating recognition by Dectin-1, which is associated with enhanced phagosome maturation.
Innate cells engulf and destroy invading organisms by phagocytosis, which is essential for the elimination of fungal cells to protect against systemic life-threatening infections. Yet comparatively little is known about what controls the maturation of phagosomes following ingestion of fungal cells. We used live-cell microscopy and fluorescent protein reporter macrophages to understand how C. albicans viability, filamentous growth, and cell wall composition affect phagosome maturation and the survival of the pathogen within host macrophages. We have demonstrated that cell wall glycosylation and yeast-hypha morphogenesis are required for disruption of host processes that function to inactivate pathogens, leading to survival and escape of this fungal pathogen from within host phagocytes. The methods employed here are applicable to study interactions of other pathogens with phagocytic cells to dissect how specific microbial features impact different stages of phagosome maturation and the survival of the pathogen or host.
PMCID: PMC4324242  PMID: 25467440
22.  Mucins Suppress Virulence Traits of Candida albicans 
mBio  2014;5(6):e01911-14.
Candida albicans is the most prevalent fungal pathogen of humans, causing a variety of diseases ranging from superficial mucosal infections to deep-seated systemic invasions. Mucus, the gel that coats all wet epithelial surfaces, accommodates C. albicans as part of the normal microbiota, where C. albicans resides asymptomatically in healthy humans. Through a series of in vitro experiments combined with gene expression analysis, we show that mucin biopolymers, the main gel-forming constituents of mucus, induce a new oval-shaped morphology in C. albicans in which a range of genes related to adhesion, filamentation, and biofilm formation are downregulated. We also show that corresponding traits are suppressed, rendering C. albicans impaired in forming biofilms on a range of different synthetic surfaces and human epithelial cells. Our data suggest that mucins can manipulate C. albicans physiology, and we hypothesize that they are key environmental signals for retaining C. albicans in the host-compatible, commensal state.
The yeast Candida albicans causes both superficial infections of the mucosa and life-threatening infections upon entering the bloodstream. However, C. albicans is not always harmful and can exist as part of the normal microbiota without causing disease. Internal body surfaces that are susceptible to infection by C. albicans are coated with mucus, which we hypothesize plays an important role in preventing infections. Here, we show that the main components of mucus, mucin glycoproteins, suppress virulence attributes of C. albicans at the levels of gene expression and the corresponding morphological traits. Specifically, mucins suppress attachment to plastic surfaces and human cells, the transition to cell-penetrating hyphae, and the formation of biofilms (drug-resistant microbial communities). Additionally, exposure to mucins induces an elongated morphology that physically resembles the mating-competent opaque state but is phenotypically distinct. We suggest that mucins are potent antivirulence molecules that have therapeutic potential for suppressing C. albicans infections.
PMCID: PMC4235211  PMID: 25389175
23.  Hyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance 
PLoS Biology  2011;9(7):e1001105.
Phenotypic plasticity is common in development. For Candida albicans, the most common cause of invasive fungal infections in humans, morphological plasticity is its defining feature and is critical for its pathogenesis. Unlike other fungal pathogens that exist primarily in either yeast or hyphal forms, C. albicans is able to switch reversibly between yeast and hyphal growth forms in response to environmental cues. Although many regulators have been found involved in hyphal development, the mechanisms of regulating hyphal development and plasticity of dimorphism remain unclear. Here we show that hyphal development involves two sequential regulations of the promoter chromatin of hypha-specific genes. Initiation requires a rapid but temporary disappearance of the Nrg1 transcriptional repressor of hyphal morphogenesis via activation of the cAMP-PKA pathway. Maintenance requires promoter recruitment of Hda1 histone deacetylase under reduced Tor1 (target of rapamycin) signaling. Hda1 deacetylates a subunit of the NuA4 histone acetyltransferase module, leading to eviction of the NuA4 acetyltransferase module and blockage of Nrg1 access to promoters of hypha-specific genes. Promoter recruitment of Hda1 for hyphal maintenance happens only during the period when Nrg1 is gone. The sequential regulation of hyphal development by the activation of the cAMP-PKA pathway and reduced Tor1 signaling provides a molecular mechanism for plasticity of dimorphism and how C. albicans adapts to the varied host environments in pathogenesis. Such temporally linked regulation of promoter chromatin by different signaling pathways provides a unique mechanism for integrating multiple signals during development and cell fate specification.
Author Summary
Many organisms are able to change their phenotype in response to changes in the environment, a phenomenon referred to as plasticity. Candida albicans, a major opportunistic fungal pathogen of humans, can undergo reversible morphological changes between yeast (spherical) and hyphal (filamentous) forms of growth in response to environmental cues. This morphological plasticity is essential for its pathogenesis and survival in its hosts. In this study, we show that hyphal development is initiated and maintained by two major nutrient-sensing cellular growth pathways that act by removing the inhibition provided by the transcriptional repressor Nrg1. While initiation requires a rapid but temporary disappearance of Nrg1 via activation of the cAMP-dependent protein kinase A pathway, maintenance requires the recruitment to promoters of the Hda1 histone deacetylase under conditions of reduced signaling by the target of rapamycin (TOR) kinase, leading to chromatin remodeling that blocks Nrg1 access to the promoters of hypha-specific genes. We observed that recruitment of Hda1 to promoters happens only during the time window when Nrg1 is absent. Such temporally linked regulation of promoter chromatin by different signaling pathways provides a unique mechanism for integrating multiple signals in the regulation of gene expression and phenotypic plasticity during development and cell fate specification.
PMCID: PMC3139633  PMID: 21811397
24.  Histatin 5 inhibits adhesion of C. albicans to Reconstructed Human Oral Epithelium 
Candida albicans is the most pathogenic fungal species, commonly colonizing on human mucosal surfaces. As a polymorphic species, C. albicans is capable of switching between yeast and hyphal forms, causing an array of mucosal and disseminated infections with high mortality. While the yeast form is most commonly associated with systemic disease, the hyphae are more adept at adhering to and penetrating host tissue and are therefore frequently observed in mucosal fungal infections, most commonly oral candidiasis. The formation of a saliva-derived protein pellicle on the mucosa surface can provide protection against C. albicans on oral epithelial cells, and narrow information is available on the mucosal pellicle composition. Histatins are one of the most abundant salivary proteins and presents antifungal and antibacterial activities against many species of the oral microbiota, however, its presence has never been studied in oral mucosa pellicle. The objective of this study was to evaluate the potential of histatin 5 to protect the Human Oral Epithelium against C. albicans adhesion. Human Oral Epithelial Tissues (HOET) were incubated with PBS containing histatin 5 for 2 h, followed by incubation with C. albicans for 1 h at 37°C. The tissues were then washed several times in PBS, transferred to fresh RPMI and incubated for 16 h at 37°C at 5% CO2. HOET were then prepared for histopathological analysis using light microscopy. In addition, the TUNEL assay was employed to evaluate the apoptosis of epithelial cells using fluorescent microscopy. HOET pre-incubated with histatin 5 showed a lower rate of C. albicans growth and cell apoptosis when compared to the control groups (HOET alone and HOET incubated with C. albicans). The data suggest that the coating with histatin 5 is able to reduce C. albicans colonization on epithelial cell surfaces and also protect the basal cell layers from undergoing apoptosis.
PMCID: PMC4551819  PMID: 26379655
histatins; salivary proteins; mucosal pellicle; oral mucosa; Candida albicans
25.  Contribution of Candida albicans Cell Wall Components to Recognition by and Escape from Murine Macrophages ▿  
Infection and Immunity  2010;78(4):1650-1658.
The pathogenicity of the opportunistic human fungal pathogen Candida albicans depends on its ability to escape destruction by the host immune system. Using mutant strains that are defective in cell surface glycosylation, cell wall protein synthesis, and yeast-hypha morphogenesis, we have investigated three important aspects of C. albicans innate immune interactions: phagocytosis by primary macrophages and macrophage cell lines, hyphal formation within macrophage phagosomes, and the ability to escape from and kill macrophages. We show that cell wall glycosylation is critically important for the recognition and ingestion of C. albicans by macrophages. Phagocytosis was significantly reduced for mutants deficient in phosphomannan biosynthesis (mmn4Δ, pmr1Δ, and mnt3 mnt5Δ), whereas O- and N-linked mannan defects (mnt1Δ mnt2Δ and mns1Δ) were associated with increased ingestion, compared to the parent wild-type strains and genetically complemented controls. In contrast, macrophage uptake of mutants deficient in cell wall proteins such as adhesins (ece1Δ, hwp1Δ, and als3Δ) and yeast-locked mutants (clb2Δ, hgc1Δ, cph1Δ, efg1Δ, and efg1Δ cph1Δ), was similar to that observed for wild-type C. albicans. Killing of macrophages was abrogated in hypha-deficient strains, significantly reduced in all glycosylation mutants, and comparable to wild type in cell wall protein mutants. The diminished ability of glycosylation mutants to kill macrophages was not a consequence of impaired hyphal formation within macrophage phagosomes. Therefore, cell wall composition and the ability to undergo yeast-hypha morphogenesis are critical determinants of the macrophage's ability to ingest and process C. albicans.
PMCID: PMC2849426  PMID: 20123707

Results 1-25 (1229356)