Search tips
Search criteria

Results 1-25 (617568)

Clipboard (0)

Related Articles

1.  Rapid Evolution of Sex Pheromone-Producing Enzyme Expression in Drosophila 
PLoS Biology  2009;7(8):e1000168.
Rapid evolution of gene expression patterns responsible for pheromone production in 24 species of Drosophila was mapped to simple mutations within the regulatory domain of the desatF gene.
A wide range of organisms use sex pheromones to communicate with each other and to identify appropriate mating partners. While the evolution of chemical communication has been suggested to cause sexual isolation and speciation, the mechanisms that govern evolutionary transitions in sex pheromone production are poorly understood. Here, we decipher the molecular mechanisms underlying the rapid evolution in the expression of a gene involved in sex pheromone production in Drosophilid flies. Long-chain cuticular hydrocarbons (e.g., dienes) are produced female-specifically, notably via the activity of the desaturase DESAT-F, and are potent pheromones for male courtship behavior in Drosophila melanogaster. We show that across the genus Drosophila, the expression of this enzyme is correlated with long-chain diene production and has undergone an extraordinary number of evolutionary transitions, including six independent gene inactivations, three losses of expression without gene loss, and two transitions in sex-specificity. Furthermore, we show that evolutionary transitions from monomorphism to dimorphism (and its reversion) in desatF expression involved the gain (and the inactivation) of a binding-site for the sex-determination transcription factor, DOUBLESEX. In addition, we documented a surprising example of the gain of particular cis-regulatory motifs of the desatF locus via a set of small deletions. Together, our results suggest that frequent changes in the expression of pheromone-producing enzymes underlie evolutionary transitions in chemical communication, and reflect changing regimes of sexual selection, which may have contributed to speciation among Drosophila.
Author Summary
Mate selection is a complex process involving communication between potential partners on many levels, such as visual, aural, and olfactory cues. Many animals use chemical signals in the form of pheromones to communicate and correctly recognize individuals of the appropriate species and sex during reproduction. Evolutionary changes in the production of these chemicals have been suggested to contribute to speciation. Yet, the molecular mechanisms governing these transitions have seldom been addressed. Here, we show that expression of the gene desatF, which encodes an enzyme involved in the production of the Drosophila pheromones known as dienes, is highly variable and rapidly evolving across Drosophila species. Changes in desatF gene expression correlate with changes in sex- and species-specific production of dienes. Further, these changes in diene production can be explained by simple modifications in the regulatory regions of the desatF gene, providing a molecular level understanding of the evolution of pheromone production in Drosophila.
PMCID: PMC2711336  PMID: 19652700
2.  Peripheral, Central and Behavioral Responses to the Cuticular Pheromone Bouquet in Drosophila melanogaster Males 
PLoS ONE  2011;6(5):e19770.
Pheromonal communication is crucial with regard to mate choice in many animals including insects. Drosophila melanogaster flies produce a pheromonal bouquet with many cuticular hydrocarbons some of which diverge between the sexes and differently affect male courtship behavior. Cuticular pheromones have a relatively high weight and are thought to be — mostly but not only — detected by gustatory contact. However, the response of the peripheral and central gustatory systems to these substances remains poorly explored. We measured the effect induced by pheromonal cuticular mixtures on (i) the electrophysiological response of peripheral gustatory receptor neurons, (ii) the calcium variation in brain centers receiving these gustatory inputs and (iii) the behavioral reaction induced in control males and in mutant desat1 males, which show abnormal pheromone production and perception. While male and female pheromones induced inhibitory-like effects on taste receptor neurons, the contact of male pheromones on male fore-tarsi elicits a long-lasting response of higher intensity in the dedicated gustatory brain center. We found that the behavior of control males was more strongly inhibited by male pheromones than by female pheromones, but this difference disappeared in anosmic males. Mutant desat1 males showed an increased sensitivity of their peripheral gustatory neurons to contact pheromones and a behavioral incapacity to discriminate sex pheromones. Together our data indicate that cuticular hydrocarbons induce long-lasting inhibitory effects on the relevant taste pathway which may interact with the olfactory pathway to modulate pheromonal perception.
PMCID: PMC3098836  PMID: 21625481
3.  Contact Chemoreceptors Mediate Male-Male Repulsion and Male-Female Attraction during Drosophila Courtship 
Cell  2012;149(5):1140-1151.
The elaborate courtship ritual of Drosophila males is dictated by neural circuitry established by the transcription factor Fruitless and triggered by sex-specific sensory cues. Deciphering the role of different stimuli in driving courtship behavior has been limited by the inability to selectively target appropriate sensory classes. Here, we identify two ion channel genes belonging to the degenerin/epithelial sodium channel family, ppk23 and ppk29, which are expressed in fruitless-positive neurons on the legs and are essential for courtship. Gene loss-of-function, cell inactivation and cell activation experiments demonstrate that these genes and neurons are necessary and sufficient to inhibit courtship toward males and promote courtship toward females. Moreover, these cells respond to cuticular hydrocarbons, with different cells selectively responding to male or female pheromones. These studies identify a large population of pheromone-sensing neurons and demonstrate the essential role of contact chemosensation in the early courtship steps of mate selection and courtship initiation.
PMCID: PMC3365544  PMID: 22632976
4.  Hierarchical chemosensory regulation of male-male social interactions in Drosophila 
Nature neuroscience  2011;14(6):757-762.
Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. Here we show that (Z)-7-tricosene (7-T), a male-enriched cuticular hydrocarbon (CH) previously shown to inhibit male-male courtship, is also essential for normal levels of aggression. The opposite influences of 7-T on aggression and courtship are independent, but both require the gustatory receptor Gr32a. Surprisingly, sensitivity to 7-T is required for the aggression-promoting effect of 11-cis-vaccenyl acetate (cVA), an olfactory pheromone, but 7-T sensitivity is independent of cVA. 7-T and cVA therefore regulate aggression in a hierarchical manner. Furthermore, the increased courtship caused by depletion of male CHs is suppressed by a mutation in the olfactory receptor Or47b. Thus, male social behaviors are controlled by gustatory pheromones that promote and suppress aggression and courtship, respectively, and whose influences are dominant to olfactory pheromones that enhance these behaviors.
PMCID: PMC3102769  PMID: 21516101
5.  Sex-specific triacylglycerides are widely conserved in Drosophila and mediate mating behavior 
eLife  2014;3:e01751.
Pheromones play an important role in the behavior, ecology, and evolution of many organisms. The structure of many insect pheromones typically consists of a hydrocarbon backbone, occasionally modified with various functional oxygen groups. Here we show that sex-specific triacylclyerides (TAGs) are broadly conserved across the subgenus Drosophila in 11 species and represent a novel class of pheromones that has been largely overlooked. In desert-adapted drosophilids, 13 different TAGs are secreted exclusively by males from the ejaculatory bulb, transferred to females during mating, and function synergistically to inhibit courtship from other males. Sex-specific TAGs are comprised of at least one short branched tiglic acid and a long linear fatty acyl component, an unusual structural motif that has not been reported before in other natural products. The diversification of chemical cues used by desert-adapted Drosophila as pheromones may be related to their specialized diet of fermenting cacti.
eLife digest
For animals, the ultimate purpose of life is to have sex, as nothing is more important than passing down your genes to future generations. A wide range of strategies are therefore employed throughout nature to maximize the chances of sexual success, from ostentatious courtship rituals to the subtle subliminal signals sent out using chemicals called pheromones. Plants and animals release pheromones to influence the behavior of other plants and animals, often without the recipient being aware of it.
Hundreds of different insect pheromones have been discovered. Fruit flies release a number of different pheromones, all with similar chemical structures. Now, Chin et al. have discovered that male flies belonging to several species of fruit fly that live in the desert release chemicals called triacylglycerides (TAGs), which are commonly used for energy storage by many organisms as pheromones. During sex, the male fly rubs the TAGs onto the body of the female, which makes her less attractive to other male flies for several hours, thus increasing his chances of parenthood and passing his genes to future generations.
TAGs are also found in other insect species, but have been largely overlooked as pheromones. Moreover, the TAGs discovered by Chin et al. have an unusual structure, not previously seen in nature, which may result from the diet of fermenting cacti the desert-dwelling fruit flies enjoy.
PMCID: PMC3948109  PMID: 24618898
ozone-induced dissociation; mass spectrometry; behavior; D. arizonae; D. mojavensis; laser desorption ionzation; D. melanogaster
6.  A new male sex-pheromone and novel cuticular cues for chemical communication in Drosophila 
Current biology : CB  2009;19(15):1245-1254.
In many insect species, cuticular hydrocarbons serve as pheromones that can mediate complex social behaviors. In Drosophila melanogaster, several hydrocarbons including the male sex pheromone 11-cis-vaccenyl acetate (cVA) and female-specific 7,11-dienes influence courtship behavior and can function as cues for short-term memory associated with the mating experience. Behavioral and physiological studies suggest that other unidentified chemical communication cues are likely to exist. To more fully characterize the hydrocarbon profile of the D. melanogaster cuticle, we applied direct ultraviolet laser desorption/ionization orthogonal time-of-flight mass spectrometry (UV-LDI-o-TOF MS) and analyzed the surface of intact fruit flies at a spatial resolution of approximately 200 μm.
We report the chemical and spatial characterization of 28 species of cuticular hydrocarbons, including a new major class of oxygen-containing compounds. Using UV-LDI MS, pheromones previously shown to be expressed exclusively by one sex, e.g. cVA, 7,11-heptacosadiene, and 7,11-nonacosadiene, appear to be found on both male and female flies. In males, cVA co-localizes at the tip of the ejaculatory bulb with a second acetylated hydrocarbon named CH503. We describe the chemical structure of CH503 as 3-O-acetyl-1,3-dihydroxy-octacosa-11,19-diene and show one behavioral role for this compound as a long-lived inhibitor of male courtship. Like cVA, CH503 is transferred from males to females during mating. Unlike cVA, CH503 remains on the surface of females for at least 10 days.
Oxygenated hydrocarbons comprise one major previously undescribed class of compounds on the Drosophila cuticular surface. In addition to cVA, a newly-discovered long chain acetate, CH503, serves as a mediator of courtship-related chemical communication.
PMCID: PMC2726907  PMID: 19615904
7.  Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate 
Current biology : CB  2007;17(7):599-605.
Reproductive behavior in Drosophila has both stereotyped and plastic components that are driven by age- and sex-specific chemical cues. Males who unsuccessfully court virgin females subsequently avoid females that are of the same age as the trainer. In contrast, males trained with mature mated females associate volatile appetitive and aversive pheromonal cues and learn to suppress courtship of all females. Here we show that the volatile aversive pheromone that leads to generalized learning with mated females is (Z)-11-octadecenyl acetate (cis-vaccenyl acetate, cVA). cVA is a major component of the male cuticular hydrocarbon profile, but it is not found on virgin females. During copulation, cVA is transferred to the female in ejaculate along with sperm and peptides that decrease her sexual receptivity. When males sense cVA (either synthetic or from mated female or male extracts) in the context of female pheromone, they develop a generalized suppression of courtship. The effects of cVA on initial courtship of virgin females can be blocked by expression of tetanus toxin in Or65a, but not Or67d neurons, demonstrating that the aversive effects of this pheromone are mediated by a specific class of olfactory neuron. These findings suggest that transfer of cVA to females during mating may be part of the male’s strategy to suppress reproduction by competing males.
PMCID: PMC1913718  PMID: 17363250
Learning and memory; olfaction; Drosophila; pheromones; cis-vaccenyl acetate
8.  An Inhibitory Sex Pheromone Tastes Bitter for Drosophila Males 
PLoS ONE  2007;2(8):e661.
Sexual behavior requires animals to distinguish between the sexes and to respond appropriately to each of them. In Drosophila melanogaster, as in many insects, cuticular hydrocarbons are thought to be involved in sex recognition and in mating behavior, but there is no direct neuronal evidence of their pheromonal effect. Using behavioral and electrophysiological measures of responses to natural and synthetic compounds, we show that Z-7-tricosene, a Drosophila male cuticular hydrocarbon, acts as a sex pheromone and inhibits male-male courtship. These data provide the first direct demonstration that an insect cuticular hydrocarbon is detected as a sex pheromone. Intriguingly, we show that a particular type of gustatory neurons of the labial palps respond both to Z-7-tricosene and to bitter stimuli. Cross-adaptation between Z-7-tricosene and bitter stimuli further indicates that these two very different substances are processed by the same neural pathways. Furthermore, the two substances induced similar behavioral responses both in courtship and feeding tests. We conclude that the inhibitory pheromone tastes bitter to the fly.
PMCID: PMC1937024  PMID: 17710124
9.  A Bidirectional Circuit Switch Reroutes Pheromone Signals in Male and Female Brains 
Cell  2013;155(7):1610-1623.
The Drosophila sex pheromone cVA elicits different behaviors in males and females. First- and second-order olfactory neurons show identical pheromone responses, suggesting that sex genes differentially wire circuits deeper in the brain. Using in vivo whole-cell electrophysiology, we now show that two clusters of third-order olfactory neurons have dimorphic pheromone responses. One cluster responds in females; the other responds in males. These clusters are present in both sexes and share a common input pathway, but sex-specific wiring reroutes pheromone information. Regulating dendritic position, the fruitless transcription factor both connects the male-responsive cluster and disconnects the female-responsive cluster from pheromone input. Selective masculinization of third-order neurons transforms their morphology and pheromone responses, demonstrating that circuits can be functionally rewired by the cell-autonomous action of a switch gene. This bidirectional switch, analogous to an electrical changeover switch, provides a simple circuit logic to activate different behaviors in males and females.
Graphical Abstract
•Two clusters of higher olfactory neurons show sex-specific responses to pheromone•Common sensory input is wired to a different cluster in each sex, rerouting information•Bidirectional circuit switch depends on dendritic location of third-order neurons•Circuit state determined by cell-autonomous action of a switch gene, fruitless
A circuitry change consisting of dendritic repositioning of third-order sensory neurons enables one pheromone to elicit differential responses in male and female flies. This bidirectional switch, analogous to an electrical changeover switch, provides a simple circuit logic to activate different behaviors in males and females.
PMCID: PMC3898676  PMID: 24360281
The Journal of Neuroscience  2012;32(13):4665-4674.
Detection of specific female pheromones stimulates courtship behavior in Drosophila melanogaster males, but the chemosensory molecules, cells and mechanisms involved remain poorly understood. Here we show that ppk25, a DEG/ENaC ion channel subunit required for normal male response to females, is expressed at highest levels in a single sexually dimorphic gustatory neuron of most taste hairs on legs and wings, but not in neurons that detect courtship-inhibiting pheromones or food. Synaptic inactivation of ppk25-expressing neurons, or knockdown of ppk25 expression in all gustatory neurons significantly impairs male response to females, whereas gustatory expression of ppk25 rescues the courtship behavior of ppk25 mutant males. Remarkably, the only other detectable albeit significantly weaker expression of ppk25 occurs in olfactory neurons implicated in modulation of courtship behavior. However, expression of ppk25 in olfactory neurons is not required for male courtship under our experimental conditions. These data show that ppk25 functions specifically in peripheral taste neurons involved in activation of courtship behavior, an unexpected function for this type of channel. Furthermore, our work identifies a small subset of gustatory neurons with an essential role in activation of male courtship behavior, most likely in response to female pheromones.
PMCID: PMC3324785  PMID: 22457513
11.  Genes Involved in Sex Pheromone Discrimination in Drosophila melanogaster and Their Background-Dependent Effect 
PLoS ONE  2012;7(1):e30799.
Mate choice is based on the comparison of the sensory quality of potential mating partners, and sex pheromones play an important role in this process. In Drosophila melanogaster, contact pheromones differ between male and female in their content and in their effects on male courtship, both inhibitory and stimulatory. To investigate the genetic basis of sex pheromone discrimination, we experimentally selected males showing either a higher or lower ability to discriminate sex pheromones over 20 generations. This experimental selection was carried out in parallel on two different genetic backgrounds: wild-type and desat1 mutant, in which parental males showed high and low sex pheromone discrimination ability respectively. Male perception of male and female pheromones was separately affected during the process of selection. A comparison of transcriptomic activity between high and low discrimination lines revealed genes not only that varied according to the starting genetic background, but varied reciprocally. Mutants in two of these genes, Shaker and quick-to-court, were capable of producing similar effects on discrimination on their own, in some instances mimicking the selected lines, in others not. This suggests that discrimination of sex pheromones depends on genes whose activity is sensitive to genetic context and provides a rare, genetically defined example of the phenomenon known as “allele flips,” in which interactions have reciprocal effects on different genetic backgrounds.
PMCID: PMC3264623  PMID: 22292044
12.  Sequential Learning of Pheromonal Cues Modulates Memory Consolidation in Trainer-Specific Associative Courtship Conditioning 
Current biology : CB  2005;15(3):194-206.
Associative memory formation requires that animals choose predictors for experiences they need to remember. When an artificial odor is paired with an aversive experience, that odor becomes the predictor. In more natural settings, however, animals can have multiple salient experiences that need to be remembered and prioritized. The mechanisms by which animals deal with multiple experiences are incompletely understood.
Here we show that Drosophila males can be trained to discriminate between different types of female pheromones; they suppress courtship specifically to the type of female that was associated with unsuccessful courtship. Such “trainer-specific” learning is mediated by hydrocarbon olfactory cues and modifies the male’s processing of those cues. Animals that are unable to use olfactory cues can still learn by using other sensory modalities, but memory in this case is not specific to the trainer female’s maturation state. Concurrent and serial presentation of different pheromones demonstrates that the ability to consolidate memory of pheromonal cues can be modified by the temporal order in which they appear.
Suppression of memory by new learning demonstrates that the dynamics of memory consolidation are subject to plasticity in Drosophila. This type of metaplasticity is essential for navigation of experience-rich natural environments.
PMCID: PMC2805828  PMID: 15694302
13.  Drosophila Pheromone-Sensing Neurons Expressing the ppk25 Ion Channel Subunit Stimulate Male Courtship and Female Receptivity 
PLoS Genetics  2014;10(3):e1004238.
As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating courtship and mating.
Author Summary
Drosophila mating behaviors serve as an attractive model to understand how external sensory cues are detected and used to generate appropriate behavioral responses. Pheromones present on the cuticle of Drosophila have important roles in stimulating male courtship toward females and inhibiting male courtship directed at other males. Recently, stimulatory pheromones emitted by females and inhibitory pheromones emitted by males have been shown to stimulate distinct subsets of gustatory neurons on the legs. We have previously shown that a DEG/ENaC ion channel subunit, ppk25, is involved in male courtship toward females but not in inhibition of male-male courtship. Here we show that ppk25 is specifically expressed and functions in a subset of gustatory neurons that mediate physiological and behavioral responses to female-specific stimulatory pheromones. Furthermore, ppk25 is also required for the function of those neurons to activate male courtship in response to other pheromones that are not female-specific. In addition to their roles in males, we find that ppk25, and the related DEG/ENaC subunits ppk23 and ppk29, also stimulate female mating behavior. In conclusion, these results show that, in both sexes, ppk25 functions in a group of neurons with a specialized role in stimulating mating behaviors.
PMCID: PMC3967927  PMID: 24675786
14.  Male–male pheromone signalling in a lekking Drosophila 
Interest in sex pheromones has mainly been focused on mate finding, while relatively little attention has been given to the role of sex pheromones in mate choice and almost none to competition over mates. Here, we study male response to male pheromones in the lekking Drosophila grimshawi, where males deposit long-lasting pheromone streaks that attract males and females to the leks and influence mate assessment. We used two stocks of flies and both stocks adjusted their pheromone depositing behaviour in response to experimental manipulation, strongly indicating male ability to distinguish between competitors from qualitative differences in pheromone streaks alone. This is the first example of an insect distinguishing between individual odour signatures. Pheromone signalling influenced competition over mates, as males adjusted their investment in pheromone deposition in response to foreign pheromone streaks. Both sexes adapt their behaviour according to information from olfactory cues in D. grimshawi, but the relative benefits from male–female, as compared to male–male signalling, remain unknown. It seems likely that the pheromone signalling system originally evolved for attracting females to leks. The transition to a signalling system for conveying information about individuals may well, however, at least in part have been driven by benefits from male–male signalling.
PMCID: PMC1560072  PMID: 16608691
individual recognition; scent matching; male competition; mate choice; lekking
15.  Moths Behaving like Butterflies. Evolutionary Loss of Long Range Attractant Pheromones in Castniid Moths: A Paysandisia archon Model 
PLoS ONE  2012;7(1):e29282.
In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the ‘female calling plus male seduction’ system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae (“butterfly-moths”), which includes some important crop pests, no pheromones have been found so far.
Methodology/Principal Findings
Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings.
This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.
PMCID: PMC3251578  PMID: 22238600
16.  Volatile Drosophila Cuticular Pheromones Are Affected by Social but Not Sexual Experience 
PLoS ONE  2012;7(7):e40396.
Recognition of conspecifics and mates is based on a variety of sensory cues that are specific to the species, sex and social status of each individual. The courtship and mating activity of Drosophila melanogaster flies is thought to depend on the olfactory perception of a male-specific volatile pheromone, cis-vaccenyl acetate (cVA), and the gustatory perception of cuticular hydrocarbons (CHs), some of which are sexually dimorphic. Using two complementary sampling methods (headspace Solid Phase Micro-Extraction [SPME] and solvent extraction) coupled with GC-MS analysis, we measured the dispersion of pheromonal CHs in the air and on the substrate around the fly. We also followed the variations in CHs that were induced by social and sexual interactions. We found that all CHs present on the fly body were deposited as a thin layer on the substrate, whereas only a few of these molecules were also detected in the air. Moreover, social experience during early adult development and in mature flies strongly affected male volatile CHs but not cVA, whereas sexual interaction only had a moderate influence on dispersed CHs. Our study suggests that, in addition to their role as contact cues, CHs can influence fly behavior at a distance and that volatile, deposited and body pheromonal CHs participate in a three-step recognition of the chemical identity and social status of insects.
PMCID: PMC3394786  PMID: 22808151
17.  Regulation of Sex-Specific Selection of fruitless 5′ Splice Sites by transformer and transformer-2 
Molecular and Cellular Biology  1998;18(1):450-458.
In Drosophila melanogaster, the fruitless (fru) gene controls essentially all aspects of male courtship behavior. It does this through sex-specific alternative splicing of the fru pre-mRNA, leading to the production of male-specific fru mRNAs capable of expressing male-specific fru proteins. Sex-specific fru splicing involves the choice between alternative 5′ splice sites, one used exclusively in males and the other used only in females. Here we report that the Drosophila sex determination genes transformer (tra) and transformer-2 (tra-2) switch fru splicing from the male-specific pattern to the female-specific pattern through activation of the female-specific fru 5′ splice site. Activation of female-specific fru splicing requires cis-acting tra and tra-2 repeat elements that are part of an exonic splicing enhancer located immediately upstream of the female-specific fru 5′ splice site and are recognized by the TRA and TRA-2 proteins in vitro. This fru splicing enhancer is sufficient to promote the activation by tra and tra-2 of both a 5′ splice site and the female-specific doublesex (dsx) 3′ splice site, suggesting that the mechanisms of 5′ splice site activation and 3′ splice site activation may be similar.
PMCID: PMC121514  PMID: 9418892
18.  Contribution of oenocytes and pheromones to courtship behaviour in Drosophila 
BMC Biochemistry  2009;10:21.
In Drosophila, cuticular sex pheromones are long-chain unsaturated hydrocarbons synthesized from fatty acid precursors in epidermal cells called oenocytes. The species D. melanogaster shows sex pheromone dimorphism, with high levels of monoenes in males, and of dienes in females. Some biosynthesis enzymes are expressed both in fat body and oenocytes, rendering it difficult to estimate the exact role of oenocytes and of the transport of fatty acids from fat body to oenocytes in pheromone elaboration. To address this question, we RNAi silenced two main genes of the biosynthesis pathway, desat1 and desatF, in the oenocytes of D. melanogaster, without modifying their fat body expression.
Inactivation of desat1 in oenocytes resulted in a 96% and 78% decrease in unsaturated hydrocarbons in males and females, respectively. Female pheromones (dienes) showed a decrease of 90%. Inactivation of desatF, which is female-specific and responsible for diene formation, resulted in a dramatic loss of pheromones (-98%) paralleled with a two-fold increase in monoenes. Courtship parameters (especially courtship latency) from wild-type males were more affected by desat1 knocked-down females (courtship latency increased by four fold) than by desatF knocked-down ones (+65% of courtship latency).
The number of transcripts in oenocytes was estimated at 0.32 and 0.49 attomole/μg for desat1 in males and females, respectively, about half of the total transcripts in a fly. There were only 0.06 attomole/μg desatF transcripts in females, all located in the oenocytes.
Knock-down results for desat1 suggest that there must be very little transport of unsaturated precursors from fat body to the oenocytes, so pheromone synthesis occurs almost entirely through the action of biosynthesis enzymes within the oenocytes. Courtship experiments allow us to discuss the behavioral role of diene pheromones, which, under special conditions, could be replaced by monoenes in D. melanogaster. A possible explanation is given of how pheromones could have evolved in species such as D. simulans, which only synthesize monoenes.
PMCID: PMC2734525  PMID: 19671131
19.  Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila 
Nature  2009;463(7278):227-231.
Aggression is regulated by pheromones in many animal species1,2,3. However in no system have aggression pheromones, their cognate receptors and corresponding sensory neurons been identified. Here we show that 11-cis-vaccenyl acetate (cVA), a male-specific volatile pheromone, robustly promotes male-male aggression in the vinegar fly Drosophila melanogaster. The aggression-promoting effect of synthetic cVA requires olfactory sensory neurons (OSNs) expressing the receptor Or67d4,5,6, as well as the receptor itself. Activation of Or67d-expressing OSNs, either by genetic manipulation of their excitability or by exposure to male pheromones in the absence of other classes of OSNs, is sufficient to promote aggression. High densities of male flies can promote aggression through release of volatile cVA. In turn, cVA-promoted aggression can promote male fly dispersal from a food resource, in a manner dependent upon Or67d-expressing OSNs. These data suggest that cVA may mediate negative feedback control of male population density, through its effect on aggression. Identification of a pheromone-OSN pair controlling aggression in a genetic organism opens the way to unraveling the neurobiology of this evolutionarily conserved behavior.
PMCID: PMC2999963  PMID: 19966787
20.  Feminization of pheromone-sensing neurons affects mating decisions in Drosophila males 
Biology Open  2014;3(2):152-160.
The response of individual animals to mating signals depends on the sexual identity of the individual and the genetics of the mating targets, which represent the mating social context (social environment). However, how social signals are sensed and integrated during mating decisions remains a mystery. One of the models for understanding mating behaviors in molecular and cellular terms is the male courtship ritual in the fruit fly (Drosophila melanogaster). We have recently shown that a subset of gustatory receptor neurons (GRNs) that are enriched in the male appendages and express the ion channel ppk23 play a major role in the initiation and maintenance of male courtship via the perception of cuticular contact pheromones, and are likely to represent the main chemosensory pathway that influences mating decisions by males. Here we show that genetic feminization of ppk23-expressing GRNs in male flies resulted in a significant increase in male–male sexual attraction without an apparent impact on sexual attraction to females. Furthermore, we show that this increase in male–male sexual attraction is sensory specific, which can be modulated by variable social contexts. Finally, we show that feminization of ppk23-expressing sensory neurons lead to major transcriptional shifts, which may explain the altered interpretation of the social environment by feminized males. Together, these data indicate that the sexual cellular identity of pheromone sensing GRNs plays a major role in how individual flies interpret their social environment in the context of mating decisions.
PMCID: PMC3925318  PMID: 24463366
Fruit fly; Courtship; ppk23; Poxn; transformer; DEG/ENaC
21.  Natural Variation in the Strength and Direction of Male Mating Preferences for Female Pheromones in Drosophila melanogaster 
PLoS ONE  2014;9(1):e87509.
Many animal species communicate using chemical signals. In Drosophila, cuticular hydrocarbons (CHCs) are involved in species and sexual identification, and have long been thought to act as stimulatory pheromones as well. However, a previous study reported that D. melanogaster males were more attracted to females that were lacking CHCs. This surprising result is consistent with several evolutionary hypotheses but is at odds with other work demonstrating that female CHCs are attractive to males. Here, we investigated natural variation in male preferences for female pheromones using transgenic flies that cannot produce CHCs. By perfuming females with CHCs and performing mate choice tests, we found that some male genotypes prefer females with pheromones, some have no apparent preference, and at least one male genotype prefers females without pheromones. This variation provides an excellent opportunity to further investigate the mechanistic causes and evolutionary implications of divergent pheromone preferences in D. melanogaster males.
PMCID: PMC3905024  PMID: 24489930
22.  Love Is Blind: Indiscriminate Female Mating Responses to Male Courtship Pheromones in Newts (Salamandridae) 
PLoS ONE  2013;8(2):e56538.
Internal fertilization without copulation or prolonged physical contact is a rare reproductive mode among vertebrates. In many newts (Salamandridae), the male deposits a spermatophore on the substrate in the water, which the female subsequently takes up with her cloaca. Because such an insemination requires intense coordination of both sexes, male newts have evolved a courtship display, essentially consisting of sending pheromones under water by tail-fanning towards their potential partner. Behavioral experiments until now mostly focused on an attractant function, i.e. showing that olfactory cues are able to bring both sexes together. However, since males start their display only after an initial contact phase, courtship pheromones are expected to have an alternative function. Here we developed a series of intraspecific and interspecific two-female experiments with alpine newt (Ichthyosaura alpestris) and palmate newt (Lissotriton helveticus) females, comparing behavior in male courtship water and control water. We show that male olfactory cues emitted during tail-fanning are pheromones that can induce all typical features of natural female mating behavior. Interestingly, females exposed to male pheromones of their own species show indiscriminate mating responses to conspecific and heterospecific females, indicating that visual cues are subordinate to olfactory cues during courtship.
PMCID: PMC3574087  PMID: 23457580
23.  The odor of origin: kinship and geographical distance are reflected in the marking pheromone of male beewolves (Philanthus triangulum F., Hymenoptera, Crabronidae) 
BMC Ecology  2007;7:11.
Pheromones play an important role for mate finding and courtship in many insects. In species where males are the signaling sex, females are expected to choose among potential mates with regard to the emitter's quality and/or genetic compatibility. One important aspect is the balance between negative and positive effects of in- vs. outbreeding. In the present study, we aimed to assess the potential of the territory marking pheromone of European beewolves as an indicator for genetic compatibility in the context of female choice.
We analyzed the sex pheromone composition of male European beewolves (Philanthus triangulum F., Hymenoptera, Crabronidae) from eight different locations across Central Europe (six in Germany, one in England, and one in Italy). The pheromone constitutes a complex blend of various long-chain hydrocarbons (alkanes, alkenes, alcohols, ketones, and a carbon acid). We demonstrate that pheromone composition differs significantly among distant populations (regional scale), among subpopulations (local scale) and between families within subpopulations. The differences in the pheromone blend are positively correlated with geographical distances as might be expected according to an isolation-by-distance model. On a local scale, family membership has a larger effect on pheromone composition than subpopulation affiliation, while the reverse is true for the regional scale.
Our results show that male pheromones can contain information on both kinship and geographical origin that may be used by females to choose adaptively among potential mates on the basis of their genetic distance.
PMCID: PMC2096619  PMID: 17927833
24.  Functional Specificity of Sex Pheromone Receptors in the Cotton Bollworm Helicoverpa armigera 
PLoS ONE  2013;8(4):e62094.
Male moths can accurately perceive the sex pheromone emitted from conspecific females by their highly accurate and specific olfactory sensory system. Pheromone receptors are of special importance in moth pheromone reception because of their central role in chemosensory signal transduction processes that occur in olfactory receptor neurons in the male antennae. There are a number of pheromone receptor genes have been cloned, however, only a few have been functionally characterized. Here we cloned six full-length pheromone receptor genes from Helicoverpa armigera male antennae. Real-time PCR showing all genes exhibited male-biased expression in adult antennae. Functional analyses of the six pheromone receptor genes were then conducted in the heterologous expression system of Xenopus oocytes. HarmOR13 was found to be a specific receptor for the major sex pheromone component Z11-16:Ald. HarmOR6 was equally tuned to both of Z9-16: Ald and Z9-14: Ald. HarmOR16 was sensitively tuned to Z11-16: OH. HarmOR11, HarmOR14 and HarmOR15 failed to respond to the tested candidate pheromone compounds. Our experiments elucidated the functions of some pheromone receptor genes of H. armigera. These advances may provide remarkable evidence for intraspecific mating choice and speciation extension in moths at molecular level.
PMCID: PMC3626661  PMID: 23614018
25.  Feminizing cholinergic neurons in a male Drosophila nervous system enhances aggression 
Fly  2009;3(3):179-184.
Previous studies in Drosophila have demonstrated that whether flies fight like males or females can be switched by selectively manipulating genes of the sex determination hierarchy in male and female nervous systems. Here we extend these studies by demonstrating that changing the sex of cholinergic neurons in male fruit fly nervous systems via expression of the transformer gene increases the levels of aggression shown by the flies without altering the way the flies fight. Transformer manipulation in this way does not change phototaxis, geotaxis, locomotion or odor avoidance of the mutant males compared to controls. Cholinergic neurons must be feminized via this route during the late larval/early pupal stages of development to show the enhanced aggression phenotype. Other investigators have shown that this is the same time period during which sexually dimorphic patterns of behavior are specified in flies. Neurons that co-express fruitless and choline acetyl transferase are found in varying numbers within different clusters of fruitless-expressing neurons: together they make up approximately 10% of the pool of fruitless-expressing neurons in the brain and nerve cord.
PMCID: PMC2831085  PMID: 19556850
Drosophila; aggression; cholinergic neurons; transformer; feminization

Results 1-25 (617568)