PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (805754)

Clipboard (0)
None

Related Articles

1.  The Next Generation of Transcription Factor Binding Site Prediction 
PLoS Computational Biology  2013;9(9):e1003214.
Finding where transcription factors (TFs) bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs) is based on basic position weight matrices (PWMs) which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs) to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA-protein interactions, while providing a single unified framework suitable for the next generation of TFBS prediction.
Author Summary
Transcription factors are critical proteins for sequence-specific control of transcriptional regulation. Finding where these proteins bind to DNA is of key importance for global efforts to decipher the complex mechanisms of gene regulation. Greater understanding of the regulation of transcription promises to improve human genetic analysis by specifying critical gene components that have eluded investigators. Classically, computational prediction of transcription factor binding sites (TFBS) is based on models giving weights to each nucleotide at each position. We introduce a novel statistical model for the prediction of TFBS tolerant of a broader range of TFBS configurations than can be conveniently accommodated by existing methods. The new models are designed to address the confounding properties of nucleotide composition, inter-positional sequence dependence and variable lengths (e.g. variable spacing between half-sites) observed in the more comprehensive experimental data now emerging. The new models generate scores consistent with DNA-protein affinities measured experimentally and can be represented graphically, retaining desirable attributes of past methods. It demonstrates the capacity of the new approach to accurately assess DNA-protein interactions. With the rich experimental data generated from chromatin immunoprecipitation experiments, a greater diversity of TFBS properties has emerged that can now be accommodated within a single predictive approach.
doi:10.1371/journal.pcbi.1003214
PMCID: PMC3764009  PMID: 24039567
2.  A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription Factor Binding Sites 
PLoS ONE  2014;9(6):e99015.
The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond PWMs.
doi:10.1371/journal.pone.0099015
PMCID: PMC4057186  PMID: 24926895
3.  Identifying Functional Transcription Factor Binding Sites in Yeast by Considering Their Positional Preference in the Promoters 
PLoS ONE  2013;8(12):e83791.
Transcription factor binding site (TFBS) identification plays an important role in deciphering gene regulatory codes. With comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades, various computational approaches have been proposed to predict TFBSs in the genome. The TFBS dataset of a TF generated by each algorithm is a ranked list of predicted TFBSs of that TF, where top ranked TFBSs are statistically significant ones. However, whether these statistically significant TFBSs are functional (i.e. biologically relevant) is still unknown. Here we develop a post-processor, called the functional propensity calculator (FPC), to assign a functional propensity to each TFBS in the existing computationally predicted TFBS datasets. It is known that functional TFBSs reveal strong positional preference towards the transcriptional start site (TSS). This motivates us to take TFBS position relative to the TSS as the key idea in building our FPC. Based on our calculated functional propensities, the TFBSs of a TF in the original TFBS dataset could be reordered, where top ranked TFBSs are now the ones with high functional propensities. To validate the biological significance of our results, we perform three published statistical tests to assess the enrichment of Gene Ontology (GO) terms, the enrichment of physical protein-protein interactions, and the tendency of being co-expressed. The top ranked TFBSs in our reordered TFBS dataset outperform the top ranked TFBSs in the original TFBS dataset, justifying the effectiveness of our post-processor in extracting functional TFBSs from the original TFBS dataset. More importantly, assigning functional propensities to putative TFBSs enables biologists to easily identify which TFBSs in the promoter of interest are likely to be biologically relevant and are good candidates to do further detailed experimental investigation. The FPC is implemented as a web tool at http://santiago.ee.ncku.edu.tw/FPC/.
doi:10.1371/journal.pone.0083791
PMCID: PMC3873331  PMID: 24386279
4.  LASAGNA: A novel algorithm for transcription factor binding site alignment 
BMC Bioinformatics  2013;14:108.
Background
Scientists routinely scan DNA sequences for transcription factor (TF) binding sites (TFBSs). Most of the available tools rely on position-specific scoring matrices (PSSMs) constructed from aligned binding sites. Because of the resolutions of assays used to obtain TFBSs, databases such as TRANSFAC, ORegAnno and PAZAR store unaligned variable-length DNA segments containing binding sites of a TF. These DNA segments need to be aligned to build a PSSM. While the TRANSFAC database provides scoring matrices for TFs, nearly 78% of the TFs in the public release do not have matrices available. As work on TFBS alignment algorithms has been limited, it is highly desirable to have an alignment algorithm tailored to TFBSs.
Results
We designed a novel algorithm named LASAGNA, which is aware of the lengths of input TFBSs and utilizes position dependence. Results on 189 TFs of 5 species in the TRANSFAC database showed that our method significantly outperformed ClustalW2 and MEME. We further compared a PSSM method dependent on LASAGNA to an alignment-free TFBS search method. Results on 89 TFs whose binding sites can be located in genomes showed that our method is significantly more precise at fixed recall rates. Finally, we described LASAGNA-ChIP, a more sophisticated version for ChIP (Chromatin immunoprecipitation) experiments. Under the one-per-sequence model, it showed comparable performance with MEME in discovering motifs in ChIP-seq peak sequences.
Conclusions
We conclude that the LASAGNA algorithm is simple and effective in aligning variable-length binding sites. It has been integrated into a user-friendly webtool for TFBS search and visualization called LASAGNA-Search. The tool currently stores precomputed PSSM models for 189 TFs and 133 TFs built from TFBSs in the TRANSFAC Public database (release 7.0) and the ORegAnno database (08Nov10 dump), respectively. The webtool is available at http://biogrid.engr.uconn.edu/lasagna_search/.
doi:10.1186/1471-2105-14-108
PMCID: PMC3747862  PMID: 23522376
5.  Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions 
BMC Bioinformatics  2007;8:481.
Background
Reliable transcription factor binding site (TFBS) prediction methods are essential for computer annotation of large amount of genome sequence data. However, current methods to predict TFBSs are hampered by the high false-positive rates that occur when only sequence conservation at the core binding-sites is considered.
Results
To improve this situation, we have quantified the performance of several Position Weight Matrix (PWM) algorithms, using exhaustive approaches to find their optimal length and position. We applied these approaches to bio-medically important TFBSs involved in the regulation of cell growth and proliferation as well as in inflammatory, immune, and antiviral responses (NF-κB, ISGF3, IRF1, STAT1), obesity and lipid metabolism (PPAR, SREBP, HNF4), regulation of the steroidogenic (SF-1) and cell cycle (E2F) genes expression. We have also gained extra specificity using a method, entitled SiteGA, which takes into account structural interactions within TFBS core and flanking regions, using a genetic algorithm (GA) with a discriminant function of locally positioned dinucleotide (LPD) frequencies.
To ensure a higher confidence in our approach, we applied resampling-jackknife and bootstrap tests for the comparison, it appears that, optimized PWM and SiteGA have shown similar recognition performances. Then we applied SiteGA and optimized PWMs (both separately and together) to sequences in the Eukaryotic Promoter Database (EPD). The resulting SiteGA recognition models can now be used to search sequences for BSs using the web tool, SiteGA.
Analysis of dependencies between close and distant LPDs revealed by SiteGA models has shown that the most significant correlations are between close LPDs, and are generally located in the core (footprint) region. A greater number of less significant correlations are mainly between distant LPDs, which spanned both core and flanking regions. When SiteGA and optimized PWM models were applied together, this substantially reduced false positives at least at higher stringencies.
Conclusion
Based on this analysis, SiteGA adds substantial specificity even to optimized PWMs and may be considered for large-scale genome analysis. It adds to the range of techniques available for TFBS prediction, and EPD analysis has led to a list of genes which appear to be regulated by the above TFs.
doi:10.1186/1471-2105-8-481
PMCID: PMC2265442  PMID: 18093302
6.  Transcription Factor Binding Sites Prediction Based on Modified Nucleosomes 
PLoS ONE  2014;9(2):e89226.
In computational methods, position weight matrices (PWMs) are commonly applied for transcription factor binding site (TFBS) prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP) predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, “modified nucleosomes neighboring” and “modified nucleosomes occupancy”, to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method for TFBS prediction.
doi:10.1371/journal.pone.0089226
PMCID: PMC3931712  PMID: 24586611
7.  CSMET: Comparative Genomic Motif Detection via Multi-Resolution Phylogenetic Shadowing 
PLoS Computational Biology  2008;4(6):e1000090.
Functional turnover of transcription factor binding sites (TFBSs), such as whole-motif loss or gain, are common events during genome evolution. Conventional probabilistic phylogenetic shadowing methods model the evolution of genomes only at nucleotide level, and lack the ability to capture the evolutionary dynamics of functional turnover of aligned sequence entities. As a result, comparative genomic search of non-conserved motifs across evolutionarily related taxa remains a difficult challenge, especially in higher eukaryotes, where the cis-regulatory regions containing motifs can be long and divergent; existing methods rely heavily on specialized pattern-driven heuristic search or sampling algorithms, which can be difficult to generalize and hard to interpret based on phylogenetic principles. We propose a new method: Conditional Shadowing via Multi-resolution Evolutionary Trees, or CSMET, which uses a context-dependent probabilistic graphical model that allows aligned sites from different taxa in a multiple alignment to be modeled by either a background or an appropriate motif phylogeny conditioning on the functional specifications of each taxon. The functional specifications themselves are the output of a phylogeny which models the evolution not of individual nucleotides, but of the overall functionality (e.g., functional retention or loss) of the aligned sequence segments over lineages. Combining this method with a hidden Markov model that autocorrelates evolutionary rates on successive sites in the genome, CSMET offers a principled way to take into consideration lineage-specific evolution of TFBSs during motif detection, and a readily computable analytical form of the posterior distribution of motifs under TFBS turnover. On both simulated and real Drosophila cis-regulatory modules, CSMET outperforms other state-of-the-art comparative genomic motif finders.
Author Summary
Functional turnover of transcription factor binding sites (TFBSs), such as whole-motif loss or gain, are common events during genome evolution, and play a major role in shaping the genome and regulatory circuitry of contemporary species. Conventional methods for searching non-conserved motifs across evolutionarily related species have little or no probabilistic machinery to explicitly model this important evolutionary process; therefore, they offer little insight into the mechanism and dynamics of TFBS turnover and have limited power in finding motif patterns shaped by such processes. In this paper, we propose a new method: Conditional Shadowing via Multi-resolution Evolutionary Trees, or CSMET, which uses a mathematically elegant and computationally efficient way to model biological sequence evolution at both nucleotide level at each individual site, and functional level of a whole TFBS. CSMET offers the first principled way to take into consideration lineage-specific evolution of TFBSs and CRMs during motif detection, and offers a readily computable analytical form of the posterior distribution of motifs under TFBS turnover. Its performance improves upon current state-of-the-art programs. It represents an initial foray into the problem of statistical inference of functional evolution of TFBS, and offers a well-founded mathematical basis for the development of more realistic and informative models.
doi:10.1371/journal.pcbi.1000090
PMCID: PMC2396503  PMID: 18535663
8.  Jaccard index based similarity measure to compare transcription factor binding site models 
Background
Positional weight matrix (PWM) remains the most popular for quantification of transcription factor (TF) binding. PWM supplied with a score threshold defines a set of putative transcription factor binding sites (TFBS), thus providing a TFBS model.
TF binding DNA fragments obtained by different experimental methods usually give similar but not identical PWMs. This is also common for different TFs from the same structural family. Thus it is often necessary to measure the similarity between PWMs. The popular tools compare PWMs directly using matrix elements. Yet, for log-odds PWMs, negative elements do not contribute to the scores of highly scoring TFBS and thus may be different without affecting the sets of the best recognized binding sites. Moreover, the two TFBS sets recognized by a given pair of PWMs can be more or less different depending on the score thresholds.
Results
We propose a practical approach for comparing two TFBS models, each consisting of a PWM and the respective scoring threshold. The proposed measure is a variant of the Jaccard index between two TFBS sets. The measure defines a metric space for TFBS models of all finite lengths. The algorithm can compare TFBS models constructed using substantially different approaches, like PWMs with raw positional counts and log-odds. We present the efficient software implementation: MACRO-APE (MAtrix CompaRisOn by Approximate P-value Estimation).
Conclusions
MACRO-APE can be effectively used to compute the Jaccard index based similarity for two TFBS models. A two-pass scanning algorithm is presented to scan a given collection of PWMs for PWMs similar to a given query.
Availability and implementation
MACRO-APE is implemented in ruby 1.9; software including source code and a manual is freely available at http://autosome.ru/macroape/ and in supplementary materials.
doi:10.1186/1748-7188-8-23
PMCID: PMC3851813  PMID: 24074225
Transcription factor binding site; TFBS; Transcription factor binding site model; Binding motif; Jaccard similarity; Position weight matrix; PWM; P-value; Position specific frequency matrix; PSFM; Macroape
9.  Tree-Based Position Weight Matrix Approach to Model Transcription Factor Binding Site Profiles 
PLoS ONE  2011;6(9):e24210.
Most of the position weight matrix (PWM) based bioinformatics methods developed to predict transcription factor binding sites (TFBS) assume each nucleotide in the sequence motif contributes independently to the interaction between protein and DNA sequence, usually producing high false positive predictions. The increasing availability of TF enrichment profiles from recent ChIP-Seq methodology facilitates the investigation of dependent structure and accurate prediction of TFBSs. We develop a novel Tree-based PWM (TPWM) approach to accurately model the interaction between TF and its binding site. The whole tree-structured PWM could be considered as a mixture of different conditional-PWMs. We propose a discriminative approach, called TPD (TPWM based Discriminative Approach), to construct the TPWM from the ChIP-Seq data with a pre-existing PWM. To achieve the maximum discriminative power between the positive and negative datasets, the cutoff value is determined based on the Matthew Correlation Coefficient (MCC). The resulting TPWMs are evaluated with respect to accuracy on extensive synthetic datasets. We then apply our TPWM discriminative approach on several real ChIP-Seq datasets to refine the current TFBS models stored in the TRANSFAC database. Experiments on both the simulated and real ChIP-Seq data show that the proposed method starting from existing PWM has consistently better performance than existing tools in detecting the TFBSs. The improved accuracy is the result of modelling the complete dependent structure of the motifs and better prediction of true positive rate. The findings could lead to better understanding of the mechanisms of TF-DNA interactions.
doi:10.1371/journal.pone.0024210
PMCID: PMC3166302  PMID: 21912677
10.  Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression 
BMC Genomics  2004;5:16.
Background
Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions.
Results
We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI.
Conclusion
Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions.
doi:10.1186/1471-2164-5-16
PMCID: PMC375527  PMID: 15053842
promoter; tissue-specific gene expression; position weight matrix; regulatory motif
11.  Low nucleosome occupancy is encoded around functional human transcription factor binding sites 
BMC Genomics  2008;9:332.
Background
Transcriptional regulation of genes in eukaryotes is achieved by the interactions of multiple transcription factors with arrays of transcription factor binding sites (TFBSs) on DNA and with each other. Identification of these TFBSs is an essential step in our understanding of gene regulatory networks, but computational prediction of TFBSs with either consensus or commonly used stochastic models such as Position-Specific Scoring Matrices (PSSMs) results in an unacceptably high number of hits consisting of a few true functional binding sites and numerous false non-functional binding sites. This is due to the inability of the models to incorporate higher order properties of sequences including sequences surrounding TFBSs and influencing the positioning of nucleosomes and/or the interactions that might occur between transcription factors.
Results
Significant improvement can be expected through the development of a new framework for the modeling and prediction of TFBSs that considers explicitly these higher order sequence properties. It would be particularly interesting to include in the new modeling framework the information present in the nucleosome positioning sequences (NPSs) surrounding TFBSs, as it can be hypothesized that genomes use this information to encode the formation of stable nucleosomes over non-functional sites, while functional sites have a more open chromatin configuration.
In this report we evaluate the usefulness of the latter feature by comparing the nucleosome occupancy probabilities around experimentally verified human TFBSs with the nucleosome occupancy probabilities around false positive TFBSs and in random sequences.
Conclusion
We present evidence that nucleosome occupancy is remarkably lower around true functional human TFBSs as compared to non-functional human TFBSs, which supports the use of this feature to improve current TFBS prediction approaches in higher eukaryotes.
doi:10.1186/1471-2164-9-332
PMCID: PMC2490708  PMID: 18627598
12.  Improved predictions of transcription factor binding sites using physicochemical features of DNA 
Nucleic Acids Research  2012;40(22):e175.
Typical approaches for predicting transcription factor binding sites (TFBSs) involve use of a position-specific weight matrix (PWM) to statistically characterize the sequences of the known sites. Recently, an alternative physicochemical approach, called SiteSleuth, was proposed. In this approach, a linear support vector machine (SVM) classifier is trained to distinguish TFBSs from background sequences based on local chemical and structural features of DNA. SiteSleuth appears to generally perform better than PWM-based methods. Here, we improve the SiteSleuth approach by considering both new physicochemical features and algorithmic modifications. New features are derived from Gibbs energies of amino acid–DNA interactions and hydroxyl radical cleavage profiles of DNA. Algorithmic modifications consist of inclusion of a feature selection step, use of a nonlinear kernel in the SVM classifier, and use of a consensus-based post-processing step for predictions. We also considered SVM classification based on letter features alone to distinguish performance gains from use of SVM-based models versus use of physicochemical features. The accuracy of each of the variant methods considered was assessed by cross validation using data available in the RegulonDB database for 54 Escherichia coli TFs, as well as by experimental validation using published ChIP-chip data available for Fis and Lrp.
doi:10.1093/nar/gks771
PMCID: PMC3526315  PMID: 22923524
13.  Predicting transcription factor binding sites using local over-representation and comparative genomics 
BMC Bioinformatics  2006;7:396.
Background
Identifying cis-regulatory elements is crucial to understanding gene expression, which highlights the importance of the computational detection of overrepresented transcription factor binding sites (TFBSs) in coexpressed or coregulated genes. However, this is a challenging problem, especially when considering higher eukaryotic organisms.
Results
We have developed a method, named TFM-Explorer, that searches for locally overrepresented TFBSs in a set of coregulated genes, which are modeled by profiles provided by a database of position weight matrices. The novelty of the method is that it takes advantage of spatial conservation in the sequence and supports multiple species. The efficiency of the underlying algorithm and its robustness to noise allow weak regulatory signals to be detected in large heterogeneous data sets.
Conclusion
TFM-Explorer provides an efficient way to predict TFBS overrepresentation in related sequences. Promising results were obtained in a variety of examples in human, mouse, and rat genomes. The software is publicly available at .
doi:10.1186/1471-2105-7-396
PMCID: PMC1570149  PMID: 16945132
14.  A Bayesian hidden Markov model for motif discovery through joint modeling of genomic sequence and ChIP-chip data 
Biometrics  2009;65(4):1087-1095.
SUMMARY
We propose a unified framework for the analysis of Chromatin (Ch) Immunoprecipitation (IP) microarray (ChIP-chip) data for detecting transcription factor binding sites (TFBSs) or motifs. ChIP-chip assays are used to focus the genome-wide search for TFBSs by isolating a sample of DNA fragments with TFBSs and applying this sample to a microarray with probes corresponding to tiled segments across the genome. Present analytical methods use a two-step approach: (i) analyze array data to estimate IP enrichment peaks then (ii) analyze the corresponding sequences independently of intensity information. The proposed model integrates peak finding and motif discovery through a unified Bayesian hidden Markov model (HMM) framework that accommodates the inherent uncertainty in both measurements. A Markov Chain Monte Carlo algorithm is formulated for parameter estimation, adapting recursive techniques used for HMMs. In simulations and applications to a yeast RAP1 dataset, the proposed method has favorable TFBS discovery performance compared to currently available two-stage procedures in terms of both sensitivity and specificity.
doi:10.1111/j.1541-0420.2008.01180.x
PMCID: PMC2794970  PMID: 19210737
Data augmentation; Gene regulation; Tiling array; Transcription factor binding site
15.  Variable structure motifs for transcription factor binding sites 
BMC Genomics  2010;11:30.
Background
Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets.
Results
We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance.
Conclusions
We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable models of motifs of variable structure that are suitable for follow-up structural studies. To our knowledge, we are the first to apply variable length motif models to eukaryotic ChIP-seq data sets and consequently the first to show their value in this domain. The results include a novel motif for the ubiquitous transcription factor Sp1.
doi:10.1186/1471-2164-11-30
PMCID: PMC2824720  PMID: 20074339
16.  Identification of co-occurring transcription factor binding sites from DNA sequence using clustered position weight matrices 
Nucleic Acids Research  2011;40(5):e38.
Accurate prediction of transcription factor binding sites (TFBSs) is a prerequisite for identifying cis-regulatory modules that underlie transcriptional regulatory circuits encoded in the genome. Here, we present a computational framework for detecting TFBSs, when multiple position weight matrices (PWMs) for a transcription factor are available. Grouping multiple PWMs of a transcription factor (TF) based on their sequence similarity improves the specificity of TFBS prediction, which was evaluated using multiple genome-wide ChIP-Seq data sets from 26 TFs. The Z-scores of the area under a receiver operating characteristic curve (AUC) values of 368 TFs were calculated and used to statistically identify co-occurring regulatory motifs in the TF bound ChIP loci. Motifs that are co-occurring along with the empirical bindings of E2F, JUN or MYC have been evaluated, in the basal or stimulated condition. Results prove our method can be useful to systematically identify the co-occurring motifs of the TF for the given conditions.
doi:10.1093/nar/gkr1252
PMCID: PMC3300004  PMID: 22187154
17.  CTF: a CRF-based transcription factor binding sites finding system 
BMC Genomics  2012;13(Suppl 8):S18.
Background
Identifying the location of transcription factor bindings is crucial to understand transcriptional regulation. Currently, Chromatin Immunoprecipitation followed with high-throughput Sequencing (ChIP-seq) is able to locate the transcription factor binding sites (TFBSs) accurately in high throughput and it has become the gold-standard method for TFBS finding experimentally. However, due to its high cost, it is impractical to apply the method in a very large scale. Considering the large number of transcription factors, numerous cell types and various conditions, computational methods are still very valuable to accurate TFBS identification.
Results
In this paper, we proposed a novel integrated TFBS prediction system, CTF, based on Conditional Random Fields (CRFs). Integrating information from different sources, CTF was able to capture patterns of TFBSs contained in different features (sequence, chromatin and etc) and predicted the TFBS locations with a high accuracy. We compared CTF with several existing tools as well as the PWM baseline method on a dataset generated by ChIP-seq experiments (TFBSs of 13 transcription factors in mouse genome). Results showed that CTF performed significantly better than existing methods tested.
Conclusions
CTF is a powerful tool to predict TFBSs by integrating high throughput data and different features. It can be a useful complement to ChIP-seq and other experimental methods for TFBS identification and thus improve our ability to investigate functional elements in post-genomic era.
Availability: CTF is freely available to academic users at: http://cbb.sjtu.edu.cn/~ccwei/pub/software/CTF/CTF.php
doi:10.1186/1471-2164-13-S8-S18
PMCID: PMC3535700  PMID: 23282203
18.  SNP@lincTFBS: An Integrated Database of Polymorphisms in Human LincRNA Transcription Factor Binding Sites 
PLoS ONE  2014;9(7):e103851.
Large intergenic non-coding RNAs (lincRNAs) are a new class of functional transcripts, and aberrant expression of lincRNAs was associated with several human diseases. The genetic variants in lincRNA transcription factor binding sites (TFBSs) can change lincRNA expression, thereby affecting the susceptibility to human diseases. To identify and annotate these functional candidates, we have developed a database SNP@lincTFBS, which is devoted to the exploration and annotation of single nucleotide polymorphisms (SNPs) in potential TFBSs of human lincRNAs. We identified 6,665 SNPs in 6,614 conserved TFBSs of 2,423 human lincRNAs. In addition, with ChIPSeq dataset, we identified 139,576 SNPs in 304,517 transcription factor peaks of 4,813 lincRNAs. We also performed comprehensive annotation for these SNPs using 1000 Genomes Project datasets across 11 populations. Moreover, one of the distinctive features of SNP@lincTFBS is the collection of disease-associated SNPs in the lincRNA TFBSs and SNPs in the TFBSs of disease-associated lincRNAs. The web interface enables both flexible data searches and downloads. Quick search can be query of lincRNA name, SNP identifier, or transcription factor name. SNP@lincTFBS provides significant advances in identification of disease-associated lincRNA variants and improved convenience to interpret the discrepant expression of lincRNAs. The SNP@lincTFBS database is available at http://bioinfo.hrbmu.edu.cn/SNP_lincTFBS.
doi:10.1371/journal.pone.0103851
PMCID: PMC4116217  PMID: 25075616
19.  DISCOVER: a feature-based discriminative method for motif search in complex genomes 
Bioinformatics  2009;25(12):i321-i329.
Motivation: Identifying transcription factor binding sites (TFBSs) encoding complex regulatory signals in metazoan genomes remains a challenging problem in computational genomics. Due to degeneracy of nucleotide content among binding site instances or motifs, and intricate ‘grammatical organization’ of motifs within cis-regulatory modules (CRMs), extant pattern matching-based in silico motif search methods often suffer from impractically high false positive rates, especially in the context of analyzing large genomic datasets, and noisy position weight matrices which characterize binding sites. Here, we try to address this problem by using a framework to maximally utilize the information content of the genomic DNA in the region of query, taking cues from values of various biologically meaningful genetic and epigenetic factors in the query region such as clade-specific evolutionary parameters, presence/absence of nearby coding regions, etc. We present a new method for TFBS prediction in metazoan genomes that utilizes both the CRM architecture of sequences and a variety of features of individual motifs. Our proposed approach is based on a discriminative probabilistic model known as conditional random fields that explicitly optimizes the predictive probability of motif presence in large sequences, based on the joint effect of all such features.
Results: This model overcomes weaknesses in earlier methods based on less effective statistical formalisms that are sensitive to spurious signals in the data. We evaluate our method on both simulated CRMs and real Drosophila sequences in comparison with a wide spectrum of existing models, and outperform the state of the art by 22% in F1 score.
Availability and Implementation: The code is publicly available at http://www.sailing.cs.cmu.edu/discover.html.
Contact: epxing@cs.cmu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btp230
PMCID: PMC2687984  PMID: 19478006
20.  Discovering protein–DNA binding sequence patterns using association rule mining 
Nucleic Acids Research  2010;38(19):6324-6337.
Protein–DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play an essential role in transcriptional regulation. Over the past decades, significant efforts have been made to study the principles for protein–DNA bindings. However, it is considered that there are no simple one-to-one rules between amino acids and nucleotides. Many methods impose complicated features beyond sequence patterns. Protein-DNA bindings are formed from associated amino acid and nucleotide sequence pairs, which determine many functional characteristics. Therefore, it is desirable to investigate associated sequence patterns between TFs and TFBSs. With increasing computational power, availability of massive experimental databases on DNA and proteins, and mature data mining techniques, we propose a framework to discover associated TF–TFBS binding sequence patterns in the most explicit and interpretable form from TRANSFAC. The framework is based on association rule mining with Apriori algorithm. The patterns found are evaluated by quantitative measurements at several levels on TRANSFAC. With further independent verifications from literatures, Protein Data Bank and homology modeling, there are strong evidences that the patterns discovered reveal real TF–TFBS bindings across different TFs and TFBSs, which can drive for further knowledge to better understand TF–TFBS bindings.
doi:10.1093/nar/gkq500
PMCID: PMC2965231  PMID: 20529874
21.  Towards biological characters of interactions between transcription factors and their DNA targets in mammals 
BMC Genomics  2012;13:388.
Background
In post-genomic era, the study of transcriptional regulation is pivotal to decode genetic information. Transcription factors (TFs) are central proteins for transcriptional regulation, and interactions between TFs and their DNA targets (TFBSs) are important for downstream genes’ expression. However, the lack of knowledge about interactions between TFs and TFBSs is still baffling people to investigate the mechanism of transcription.
Results
To expand the knowledge about interactions between TFs and TFBSs, three biological features (sequence feature, structure feature, and evolution feature) were utilized to build TFBS identification models for studying binding preference between TFs and their DNA targets in mammals. Results show that each feature does have fairly well performance to capture TFBSs, and the hybrid model combined all three features is more robust for TFBS identification. Subsequently, correspondence between TFs and their TFBSs was investigated to explore interactions among them in mammals. Results indicate that TFs and TFBSs are reciprocal in sequence, structure, and evolution level.
Conclusions
Our work demonstrates that, to some extent, TFs and TFBSs have developed a coevolutionary relationship in order to keep their physical binding and maintain their regulatory functions. In summary, our work will help understand transcriptional regulation and interpret binding mechanism between proteins and DNAs.
doi:10.1186/1471-2164-13-388
PMCID: PMC3472306  PMID: 22888987
22.  SwissRegulon, a database of genome-wide annotations of regulatory sites: recent updates 
Nucleic Acids Research  2012;41(Database issue):D214-D220.
Identification of genomic regulatory elements is essential for understanding the dynamics of cellular processes. This task has been substantially facilitated by the availability of genome sequences for many species and high-throughput data of transcripts and transcription factor (TF) binding. However, rigorous computational methods are necessary to derive accurate genome-wide annotations of regulatory sites from such data. SwissRegulon (http://swissregulon.unibas.ch) is a database containing genome-wide annotations of regulatory motifs, promoters and TF binding sites (TFBSs) in promoter regions across model organisms. Its binding site predictions were obtained with rigorous Bayesian probabilistic methods that operate on orthologous regions from related genomes, and use explicit evolutionary models to assess the evidence of purifying selection on each site. New in the current version of SwissRegulon is a curated collection of 190 mammalian regulatory motifs associated with ∼340 TFs, and TFBS annotations across a curated set of ∼35 000 promoters in both human and mouse. Predictions of TFBSs for Saccharomyces cerevisiae have also been significantly extended and now cover 158 of yeast’s ∼180 TFs. All data are accessible through both an easily navigable genome browser with search functions, and as flat files that can be downloaded for further analysis.
doi:10.1093/nar/gks1145
PMCID: PMC3531101  PMID: 23180783
23.  Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data 
BMC Genomics  2014;15:80.
Background
ChIP-Seq is widely used to detect genomic segments bound by transcription factors (TF), either directly at DNA binding sites (BSs) or indirectly via other proteins. Currently, there are many software tools implementing different approaches to identify TFBSs within ChIP-Seq peaks. However, their use for the interpretation of ChIP-Seq data is usually complicated by the absence of direct experimental verification, making it difficult both to set a threshold to avoid recognition of too many false-positive BSs, and to compare the actual performance of different models.
Results
Using ChIP-Seq data for FoxA2 binding loci in mouse adult liver and human HepG2 cells we compared FoxA binding-site predictions for four computational models of two fundamental classes: pattern matching based on existing training set of experimentally confirmed TFBSs (oPWM and SiteGA) and de novo motif discovery (ChIPMunk and diChIPMunk). To properly select prediction thresholds for the models, we experimentally evaluated affinity of 64 predicted FoxA BSs using EMSA that allows safely distinguishing sequences able to bind TF. As a result we identified thousands of reliable FoxA BSs within ChIP-Seq loci from mouse liver and human HepG2 cells. It was found that the performance of conventional position weight matrix (PWM) models was inferior with the highest false positive rate. On the contrary, the best recognition efficiency was achieved by the combination of SiteGA & diChIPMunk/ChIPMunk models, properly identifying FoxA BSs in up to 90% of loci for both mouse and human ChIP-Seq datasets.
Conclusions
The experimental study of TF binding to oligonucleotides corresponding to predicted sites increases the reliability of computational methods for TFBS-recognition in ChIP-Seq data analysis. Regarding ChIP-Seq data interpretation, basic PWMs have inferior TFBS recognition quality compared to the more sophisticated SiteGA and de novo motif discovery methods. A combination of models from different principles allowed identification of proper TFBSs.
doi:10.1186/1471-2164-15-80
PMCID: PMC4234207  PMID: 24472686
ChIP-Seq; EMSA; Transcription factor binding sites; FoxA; SiteGA; PWM; Transcription factor binding model; Dinucleotide frequencies
24.  Evolutionary computation for discovery of composite transcription factor binding sites 
Nucleic Acids Research  2008;36(21):e142.
Previous research demonstrated the use of evolutionary computation for the discovery of transcription factor binding sites (TFBS) in promoter regions upstream of coexpressed genes. However, it remained unclear whether or not composite TFBS elements, commonly found in higher organisms where two or more TFBSs form functional complexes, could also be identified by using this approach. Here, we present an important refinement of our previous algorithm and test the identification of composite elements using NFAT/AP-1 as an example. We demonstrate that by using appropriate existing parameters such as window size, novel-scoring methods such as central bonusing and methods of self-adaptation to automatically adjust the variation operators during the evolutionary search, TFBSs of different sizes and complexity can be identified as top solutions. Some of these solutions have known experimental relationships with NFAT/AP-1. We also indicate that even after properly tuning the model parameters, the choice of the appropriate window size has a significant effect on algorithm performance. We believe that this improved algorithm will greatly augment TFBS discovery.
doi:10.1093/nar/gkn738
PMCID: PMC2588514  PMID: 18927103
25.  Phylogenetic simulation of promoter evolution: estimation and modeling of binding site turnover events and assessment of their impact on alignment tools 
Genome Biology  2007;8(10):R225.
Phylogenetic simulation of promoter evolution were used to analyze functional site turnover in regulatory sequences.
Background
The phenomenon of functional site turnover has important implications for the study of regulatory region evolution, such as for promoter sequence alignments and transcription factor binding site (TFBS) identification. At present, it remains difficult to estimate TFBS turnover rates on real genomic sequences, as reliable mappings of functional sites across related species are often not available. As an alternative, we introduce a flexible new simulation system, Phylogenetic Simulation of Promoter Evolution (PSPE), designed to study functional site turnovers in regulatory sequences.
Results
Using PSPE, we study replacement turnover rates of different individual TFBSs and simple modules of two sites under neutral evolutionary functional constraints. We find that TFBS replacement turnover can happen rapidly in promoters, and turnover rates vary significantly among different TFBSs and modules. We assess the influence of different constraints such as insertion/deletion rate and translocation distances. Complementing the simulations, we give simple but effective mathematical models for TFBS turnover rate prediction. As one important application of PSPE, we also present a first systematic evaluation of multiple sequence aligners regarding their capability of detecting TFBSs in promoters with site turnovers.
Conclusion
PSPE allows researchers for the first time to investigate TFBS replacement turnovers in promoters systematically. The assessment of alignment tools points out the limitations of current approaches to identify TFBSs in non-coding sequences, where turnover events of functional sites may happen frequently, and where we are interested in assessing the similarity on the functional level. PSPE is freely available at the authors' website.
doi:10.1186/gb-2007-8-10-r225
PMCID: PMC2246299  PMID: 17956628

Results 1-25 (805754)