PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (872126)

Clipboard (0)
None

Related Articles

1.  Rilpivirine versus etravirine validity in NNRTI-based treatment failure in Thailand 
Journal of the International AIDS Society  2014;17(4Suppl 3):19740.
Introduction
Etravirine (ETR) and rilpivirine (RPV) are the second-generation non-nucleoside reverse transcriptase inhibitors (NNRTI) for treatment of HIV-1 infection. Etravirine is recommended for patients with virologic failure from first generation NNRTI-based regimen [1]. RPV has profile with similar properties to ETR but this agent is approved for treatment-naïve patients [2]. In Thailand, ETR is approximately 45 times more expensive than RPV. We aimed to study the patterns of genotypic resistance and possibility of using RPV in patients with virologic failure from two common NNRTI-based regimens: efavirenz (EFV)- or nevirapine (NVP)-based regimen.
Materials and Methods
Data of clinical samples with confirmed virologic failure during 2003–2010 were reviewed. We selected the samples from patients who failed EFV- or NVP-based regimen. Resistance-associated mutations (RAMs) were determined by IAS-USA Drug Resistance Mutations. DUET, Monogram scoring system and Stanford Genotypic Resistance Interpretation were applied to determine the susceptibility of ETR and RPV.
Results
A total of 2086 samples were analyzed. Samples from 1482 patients with virologic failure from NVP-based regimen treatment failure (NVP group) and 604 patients with virologic failure from EFV-based regimen treatment failure (EFV group) were included. 95% of samples were HIV-1 CRF01_AE subtype. Approximately 80% of samples in each group had one to three NNRTI-RAMs and 20% had four to seven NNRTI-RAMs. 181C mutation was the most common NVP-associated RAM (54.3% vs 14.7%, p<0.01). 103N mutation was the most common EFV-associated RAM (56.5% vs 19.1%, p<0.01). The calculated scores from all three scoring systems were concordant. In NVP group, 165 (11.1%) and 161 (10.9%) patients were susceptible to ETR and RPV, respectively (p=0.81). In EFV group, 195 (32.2%) and 191 (31.6%) patients were susceptible to ETR and RPV, respectively (p=0.81). The proportions of viruses that remained susceptible to ETR and RPV in EFV group were significantly higher than NPV group (ETR susceptibility 32.2% vs 11.1%, p<0.01, RPV susceptibility 31.6% vs 10.9%, p<0.01), respectively.
Conclusions
RPV might be a cost saving and reasonable second line NNRTI for patients who failed EFV- or NVP-containing regimens, especially in resource-limited setting because these two agents have comparable susceptibility identified by genotyping. From our study, approximately 30% of patients who failed EFV-based regimens had viruses that remained susceptible to RPV.
doi:10.7448/IAS.17.4.19740
PMCID: PMC4225409  PMID: 25397485
2.  A Novel Molecular Mechanism of Dual Resistance to Nucleoside and Nonnucleoside Reverse Transcriptase Inhibitors ▿  
Journal of Virology  2010;84(10):5238-5249.
Recently, mutations in the connection subdomain (CN) and RNase H domain of HIV-1 reverse transcriptase (RT) were observed to exhibit dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs). To elucidate the mechanism by which CN and RH mutations confer resistance to NNRTIs, we hypothesized that these mutations reduce RNase H cleavage and provide more time for the NNRTI to dissociate from the RT, resulting in the resumption of DNA synthesis and enhanced NNRTI resistance. We observed that the effect of the reduction in RNase H cleavage on NNRTI resistance is dependent upon the affinity of each NNRTI to the RT and further influenced by the presence of NNRTI-binding pocket (BP) mutants. D549N, Q475A, and Y501A mutants, which reduce RNase H cleavage, enhance resistance to nevirapine (NVP) and delavirdine (DLV), but not to efavirenz (EFV) and etravirine (ETR), consistent with their increase in affinity for RT. Combining the D549N mutant with NNRTI BP mutants further increases NNRTI resistance from 3- to 30-fold, supporting the role of NNRTI-RT affinity in our NNRTI resistance model. We also demonstrated that CNs from treatment-experienced patients, previously reported to enhance NRTI resistance, also reduce RNase H cleavage and enhance NNRTI resistance in the context of the patient RT pol domain or a wild-type pol domain. Together, these results confirm key predictions of our NNRTI resistance model and provide support for a unifying mechanism by which CN and RH mutations can exhibit dual NRTI and NNRTI resistance.
doi:10.1128/JVI.01545-09
PMCID: PMC2863829  PMID: 20219933
3.  Role of the K101E Substitution in HIV-1 Reverse Transcriptase in Resistance to Rilpivirine and Other Nonnucleoside Reverse Transcriptase Inhibitors 
Antimicrobial Agents and Chemotherapy  2013;57(11):5649-5657.
Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV.
doi:10.1128/AAC.01536-13
PMCID: PMC3811317  PMID: 24002090
4.  TMC278, a Next-Generation Nonnucleoside Reverse Transcriptase Inhibitor (NNRTI), Active against Wild-Type and NNRTI-Resistant HIV-1▿ † 
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have proven efficacy against human immunodeficiency virus type 1 (HIV-1). However, in the setting of incomplete viral suppression, efavirenz and nevirapine select for resistant viruses. The diarylpyrimidine etravirine has demonstrated durable efficacy for patients infected with NNRTI-resistant HIV-1. A screening strategy used to test NNRTI candidates from the same series as etravirine identified TMC278 (rilpivirine). TMC278 is an NNRTI showing subnanomolar 50% effective concentrations (EC50 values) against wild-type HIV-1 group M isolates (0.07 to 1.01 nM) and nanomolar EC50 values against group O isolates (2.88 to 8.45 nM). Sensitivity to TMC278 was not affected by the presence of most single NNRTI resistance-associated mutations (RAMs), including those at positions 100, 103, 106, 138, 179, 188, 190, 221, 230, and 236. The HIV-1 site-directed mutant with Y181C was sensitive to TMC278, whereas that with K101P or Y181I/V was resistant. In vitro, considerable cross-resistance between TMC278 and etravirine was observed. Sensitivity to TMC278 was observed for 62% of efavirenz- and/or nevirapine-resistant HIV-1 recombinant clinical isolates. TMC278 inhibited viral replication at concentrations at which first-generation NNRTIs could not suppress replication. The rates of selection of TMC278-resistant strains were comparable among HIV-1 group M subtypes. NNRTI RAMs emerging in HIV-1 under selective pressure from TMC278 included combinations of V90I, L100I, K101E, V106A/I, V108I, E138G/K/Q/R, V179F/I, Y181C/I, V189I, G190E, H221Y, F227C, and M230I/L. E138R was identified as a new NNRTI RAM. These in vitro analyses demonstrate that TMC278 is a potent next-generation NNRTI, with a high genetic barrier to resistance development.
doi:10.1128/AAC.00986-09
PMCID: PMC2812151  PMID: 19933797
5.  Nonnucleoside Reverse Transcriptase Inhibitor-Resistant HIV Is Stimulated by Efavirenz during Early Stages of Infection ▿  
Journal of Virology  2011;85(20):10861-10873.
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are potent and commonly prescribed antiviral agents used in combination therapy (CART) of human immunodeficiency virus type 1 (HIV-1) infection. The development of drug resistance is a major limitation of CART. Reverse transcriptase (RT) genotypes with the NNRTI resistance mutations K101E+G190S are highly resistant to efavirenz (EFV) and can develop during failure of EFV-containing regimens in patients. We have previously shown that virus with K101E+G190S mutations can replicate more efficiently in the presence of EFV than in its absence. In this study, we evaluated the underlying mechanism for drug-dependent stimulation, using a single-cycle cell culture assay in which EFV was added either during the infection or the virus production step. We determined that EFV stimulates K101E+G190S virus during early infection and does not affect late steps of virus replication, such as increasing the amount of active RT incorporated into virions. Additionally, we showed that another NNRTI, nevirapine (NVP), stimulated K101E+G190S virus replication during the early steps of infection similar to EFV, but that the newest NNRTI, etravirine (ETR), did not. We also showed that EFV stimulates K101E+Y188L and K101E+V106I virus, but not K101E+L100I, K101E+K103N, K101E+Y181C, or K101E+G190A virus, suggesting that the stimulation is mutation specific. Real-time PCR of reverse transcription intermediates showed that although the drug did not stimulate minus-strand transfer, it did stimulate minus-strand strong-stop DNA synthesis. Our results indicate that stimulation most likely occurs through a mechanism whereby NNRTIs stimulate priming or elongation of the tRNA.
doi:10.1128/JVI.05116-11
PMCID: PMC3187512  PMID: 21835788
6.  Combination of V106I and V179D Polymorphic Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Confers Resistance to Efavirenz and Nevirapine but Not Etravirine▿ †  
Etravirine (ETV) is a second-generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) introduced recently for salvage antiretroviral treatment after the emergence of NNRTI-resistant human immunodeficiency virus type 1 (HIV-1). Following its introduction, two naturally occurring mutations in HIV-1 RT, V106I and V179D, were listed as ETV resistance-associated mutations. However, the effect of these mutations on the development of NNRTI resistance has not been analyzed yet. To select highly NNRTI-resistant HIV-1 in vitro, monoclonal HIV-1 strains harboring V106I and V179D (HIV-1V106I and HIV-1V179D) were propagated in the presence of increasing concentrations of efavirenz (EFV). Interestingly, V179D emerged in one of three selection experiments from HIV-1V106I and V106I emerged in two of three experiments from HIV-1V179D. Analysis of recombinant HIV-1 clones showed that the combination of V106I and V179D conferred significant resistance to EFV and nevirapine (NVP) but not to ETV. Structural analysis indicated that ETV can overcome the repulsive interactions caused by the combination of V106I and V179D through fine-tuning of its binding module to RT facilitated by its plastic structure, whereas EFV and NVP cannot because of their rigid structures. Analysis of clinical isolates showed comparable drug susceptibilities, and the same combination of mutations was found in some database patients who experienced virologic NNRTI-based treatment failure. The combination of V106I and V179D is a newly identified NNRTI resistance pattern of mutations. The combination of polymorphic and minor resistance-associated mutations should be interpreted carefully.
doi:10.1128/AAC.01480-09
PMCID: PMC2849364  PMID: 20124001
7.  Human Immunodeficiency Virus Type 1 Resistance or Cross-Resistance to Nonnucleoside Reverse Transcriptase Inhibitors Currently under Development as Microbicides ▿ †  
Microbicides based on nonnucleoside reverse transcriptase inhibitors (NNRTIs) are currently being developed to protect women from HIV acquisition through sexual contact. However, the large-scale introduction of these products raises two major concerns. First, when these microbicides are used by undiagnosed HIV-positive women, they could potentially select for viral resistance, which may compromise subsequent therapeutic options. Second, NNRTI-based microbicides that are inactive against NNRTI-resistant strains might promote the selective transmission of these viruses. In order to address these concerns, drug resistance was selected in vitro by the serial passage of three viral isolates from subtypes B and C and CRF02_AG (a circulating recombinant form) in activated peripheral blood mononuclear cells (PBMCs) under conditions of increasing concentrations of three NNRTIs (i.e., TMC120, UC781, and MIV-160) that are currently being developed as candidate microbicides. TMC120 and MIV-160 displayed a high genetic barrier to resistance development, whereas resistance to UC781 emerged rapidly, similarly to efavirenz and nevirapine. Phenotypically, the selected viruses appeared to be highly cross-resistant to current first-line therapeutic NNRTIs (i.e., delavirdine, nevirapine, and efavirenz), although they retained some susceptibility to the more recently developed NNRTIs lersivirine and etravirine. The ability of UC781, TMC120, and MIV-160 to inhibit the in vitro-selected NNRTI-resistant viruses was also limited, although residual activity could be observed for the candidate microbicide NNRTI MIV-170. Interestingly, only four p2/p7/p1/p6/PR/RT/INT recombinant NNRTI-resistant viruses (i.e., TMC120-resistant VI829, EFV-resistant VI829, MIV-160-resistant VI829, and EFV-resistant MP568) showed impairments in replicative fitness. Overall, these in vitro analyses demonstrate that due to potential cross-resistance, the large-scale introduction of single-NNRTI-based microbicides should be considered with caution.
doi:10.1128/AAC.01426-10
PMCID: PMC3067143  PMID: 21282453
8.  N348I in the Connection Domain of HIV-1 Reverse Transcriptase Confers Zidovudine and Nevirapine Resistance 
PLoS Medicine  2007;4(12):e335.
Background
The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre's database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance.
Methods and Findings
The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre's database. N348I increased in prevalence from below 1% in 368 treatment-naïve individuals to 12.1% in 1,009 treatment-experienced patients (p = 7.7 × 10−12). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p < 0.001), the lamivudine resistance mutations M184V/I (p < 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p < 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p < 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wild-type HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4-fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance.
Conclusions
This study provides the first in vivo evidence that treatment with RT inhibitors can select a mutation (i.e., N348I) outside the polymerase domain of the HIV-1 RT that confers dual-class resistance. Its emergence, which can happen early during therapy, may significantly impact on a patient's response to antiretroviral therapies containing zidovudine and nevirapine. This study also provides compelling evidence for investigating the role of other mutations in the connection and RNase H domains in virological failure.
Analyzing HIV sequences from a Canadian cohort, Gilda Tachedjian and colleagues identify a common mutation in a little-studied domain of reverse transcriptase that confers resistance to two drug classes.
Editors' Summary
Background.
In the 1980s, infection with the human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS), was a death sentence. Although the first antiretroviral drugs (compounds that block HIV's life cycle) were developed quickly, single antiretrovirals only transiently suppress HIV infection. HIV rapidly accumulates random changes (mutations) in its genetic material, some of which make it drug resistant. Nowadays, there are many different antiretrovirals. Some inhibit the viral protease, an enzyme used to assemble new viruses. Others block reverse transcriptase (RT), which makes replicates of the genes of the virus. Nucleoside/nucleotide RT inhibitors (NRTIs; for example, zidovudine—also called AZT—and lamivudine) and non-nucleoside RT inhibitors (NNRTIs; for example, nevirapine and efavirenz) interfere with the activity of RT by binding to different sites in its so-called “DNA polymerase domain,” the part of the enzyme that constructs copies of the viral genes. Highly active antiretroviral therapy (HAART), which was introduced in the mid 1990s, combines several antiretrovirals (usually a protease inhibitor and two NRTIs or an NNRTI and two NRTIs) so that the replication of any virus that develops resistance to one drug is inhibited by the other drugs in the mix. When treated with HAART, HIV infection is usually a chronic, stable condition rather than a fatal disease.
Why Was This Study Done?
Unfortunately, HIV that is resistant to drugs still develops in some patients. To improve the prevention and management of drug resistance, a better understanding of the mutations that cause resistance is needed. Resistance to RT inhibitors usually involves mutations in the DNA polymerase domain that reduce the efficacy of NRTIs (including thymidine analogue mutations—also known as TAMs—and lamivudine-resistance mutations) and NNRTIs. Blood tests that detect these resistance mutations (genotype tests) have been used for several years to guide individualized selection of HIV drugs. Recently, however, mutations outside the DNA polymerase domain have also been implicated in resistance to RT inhibitors. In this study, the researchers have used data and samples collected since the mid 1990s by Canada's British Columbia Centre for Excellence in HIV/AIDS to investigate the clinical relevance of a mutation called N348I. This mutation changes an asparagine (a type of amino acid) to an isoleucine in a region of RT known as the connection domain. The researchers have also investigated how this mutation causes resistance to RT inhibitors in laboratory tests.
What Did the Researchers Do and Find?
The researchers analyzed the first two-thirds of the RT gene in viruses isolated from a large number of the Centre's patients. Virus carrying the N348I mutation was present in less than one in 100 patients whose HIV infection had never been treated, but in more than one in 10 treatment-experienced patients. The mutation appeared early in therapy, often in viruses that had TAMs, a lamivudine-resistance mutation called M184V/I, and/or NNRTI resistance mutations. Patients treated with zidovudine and nevirapine were 2.6 times more likely to have the N348I mutation than patients not treated with these drugs. Furthermore, the appearance of the N348I mutation often coincided with an increase in viral load, although other mutations that appeared at a similar time could have contributed to this increase. When the researchers introduced the N348I mutation into HIV growing in the laboratory, they found that it decreased the susceptibility of the virus to zidovudine and to NNRTIs.
What Do These Findings Mean?
These findings show that the treatment of patients with RT inhibitors can select a drug-resistant HIV variant that has a mutation outside the enzyme's DNA polymerase domain. Because this N348I mutation, which is commonly selected in vivo and has also been seen in other studies, confers resistance to two classes of RT inhibitors and can emerge early during therapy, it could have a large impact on patient responses to antiviral regimens that contain zidovudine and nevirapine. Although these findings do not show that the N348I mutation alone causes treatment failure, they may have implications for genotypic and phenotypic resistance testing, which is often used to guide treatment decisions. At present, genotype tests for resistance to RT inhibitors look for mutations only in the DNA polymerase domain of RT. This study is the first to demonstrate that it might be worth looking for the N348I mutation (and for other mutations outside the DNA polymerase domain) to improve the ability of genotypic and phenotypic resistance tests to predict treatment outcomes.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040335.
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
HIV InSite has comprehensive information on all aspects of HIV/AIDS, including links to fact sheets (in English, French, and Spanish) about antiretrovirals, and chapters explaining antiretroviral resistance testing
NAM, a UK registered charity, provides information about all aspects of HIV and AIDS, including fact sheets on types of HIV drugs, drug resistance, and resistance tests (in English, Spanish, French, Portuguese, and Russian)
The US Centers for Disease Control and Prevention provides information on HIV/AIDS and on treatment (in English and Spanish)
AIDSinfo, a service of the US Department of Health and Human Services provides information for patients on HIV and its treatment
doi:10.1371/journal.pmed.0040335
PMCID: PMC2100143  PMID: 18052601
9.  Human Immunodeficiency Virus Type 1 Recombinant Reverse Transcriptase Enzymes Containing the G190A and Y181C Resistance Mutations Remain Sensitive to Etravirine▿  
Antimicrobial Agents and Chemotherapy  2009;53(11):4667-4672.
Etravirine (ETR) is a second-generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) active against common human immunodeficiency virus type 1 (HIV-1) drug-resistant strains. This study was designed to determine the extent to which each of the Y181C or G190A mutations in RT might confer resistance to ETR and other members of the NNRTI family of drugs. Recombinant HIV-1 RT enzymes containing either the Y181C or the G190A mutation, or both mutations in tandem, were purified. Both RNA- and DNA-dependent DNA polymerase assays were performed in order to determine the extent to which each of these mutations might confer resistance in cell-free biochemical assays against each of ETR, efavirenz, and nevirapine. Both the biochemical and the cell-based phenotypic assays confirmed the susceptibility of G190A-containing enzymes and viruses to ETR. The results of this study indicate that the G190A mutation is not associated with resistance to ETR.
doi:10.1128/AAC.00800-09
PMCID: PMC2772356  PMID: 19704127
10.  Efficacy of Short-Course AZT Plus 3TC to Reduce Nevirapine Resistance in the Prevention of Mother-to-Child HIV Transmission: A Randomized Clinical Trial 
PLoS Medicine  2009;6(10):e1000172.
Neil Martinson and colleagues report a randomized trial of adding short-course zidovudine+lamivudine to reduce drug resistance from single-dose nevirapine used to prevent mother-to-child transmission of HIV.
Background
Single-dose nevirapine (sdNVP)—which prevents mother-to-child transmission of HIV—selects non-nucleoside reverse-transcriptase inhibitor (NNRTI) resistance mutations in the majority of women and HIV-infected infants receiving it. This open-label, randomised trial examined the efficacy of short-course zidovudine (AZT) and lamivudine (3TC) with sdNVP in reducing NNRTI resistance in mothers, and as a secondary objective, in infants, in a setting where sdNVP was standard-of-care.
Methods and Findings
sdNVP alone, administered at the onset of labour and to the infant, was compared to sdNVP with AZT plus 3TC, given as combivir (CBV) for 4 (NVP/CBV4) or 7 (NVP/CBV7) days, initiated simultaneously with sdNVP in labour; their newborns received the same regimens. Women were randomised 1∶1∶1. HIV-1 resistance was assessed by population sequencing at: baseline, 2, and 6 wk after birth. An unplanned interim analysis resulted in early stopping of the sdNVP arm. 406 pregnant women were randomised and took study medication (sdNVP 74, NVP/CBV4 164, and NVP/CBV7 168). HIV-1 resistance mutations emerged in 59.2%, 11.7%, and 7.3% of women in the sdNVP, NVP/CBV4, and NVP/CBV7 arms by 6 wk postpartum; differences between NVP-only and both NVP/CBV arms were significant (p<0.0001), but the difference between NVP/CBV4 and NVP/CBV7 was not (p = 0.27). Estimated efficacy comparing combined CBV arms with sdNVP was 85.6%. Similar resistance reductions were seen in infants who were HIV-infected by their 6-wk visit.
Conclusions
A short course of AZT plus 3TC, supplementing maternal and infant sdNVP, reduces emergent NNRTI resistance mutations in both mothers and their infants. However, this trial was not powered to detect small differences between the CBV arms.
Trial registration
www.ClinicalTrials.gov NCT 00144183
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Currently, about 33 million people are infected with the human immunodeficiency virus (HIV), which causes AIDS. HIV can be treated with combination antiretroviral therapy (ART), commonly three individual antiretroviral drugs that together efficiently suppress the replication of the virus. HIV infection of a child by an HIV-positive mother during pregnancy, labor, delivery, or breastfeeding is called mother-to-child transmission (MTCT). In 2007, an estimated 420,000 children were newly infected with HIV, the majority through MTCT. Most of these mothers and children live in sub-Saharan Africa where child and maternal mortality rates are high and mortality in HIV-infected children is extremely high. MTCT is preventable and there is a global commitment, agreed at the UN General Assembly Session on HIV/AIDS in 2001, to reduce the proportion of infants infected with HIV by 50% by 2010.
Why Was This Study Done?
In many resource-limited settings, MTCT is prevented by giving a single dose of nevirapine (an antiretroviral drug which has a long duration in the body and protects the fetus during labor and delivery only) to HIV-infected women in labor and also to a baby within 72 hours of birth. However, nevirapine, a non-nucleoside reverse-transcriptase inhibitor (NNRTI), which suppresses the replication of the virus, is associated with increased resistance of HIV, in mother and child, to NNRTI. This resistance reduces the effectiveness of future treatments of both mother and child with combination ART that includes an NNRTI; such regimens are the mainstay for long-term treatment of HIV in developing countries. The researchers investigated whether giving other antiretroviral drugs with nevirapine, during labor and delivery, to both mother and her newborn reduced the chances of them developing resistance to NNRTIs.
What Did the Researchers Do and Find?
The researchers selected 406 HIV-positive pregnant women for study across five sites in South Africa between February 2003 and May 2007. The women and their newborn babies were randomly assigned to receive, either (i) a single dose of nevirapine, (ii) a single dose of nevirapine plus combivir (zidovudine combined with lamivudine) for four days, or (iii) a single dose of nevirapine plus combivir for seven days. At two days, two weeks, and six weeks after delivery blood was collected from mothers and babies. HIV virus from blood samples was analyzed for resistance mutations, and mothers and children with resistance mutations were monitored for a further 96 weeks until no resistance was detected or combination ART (also called “HAART”) was started. Enrollment into the single-dose nevirapine arm was stopped early because a very high rate of NNRTI resistance mutations was found and other investigators reported long-term bad consequences of NNRTI-resistance on subsequent ART. The two nevirapine plus combivir arms were continued. The researchers found that selection of resistance mutations by single-dose nevirapine was reduced in mother and child by the addition of zidovudine and lamivudine for a short period; resistance mutations were found in 59.2% of women who got nevirapine only but only 11.7%, and 7.3% of women treated nevirapine plus four days combivir, and nevirapine plus seven days combivir respectively. A reduction was also seen in new NNRTI resistant mutations in the HIV-infected infants that received combivir. The study did not have enough women to show that there was a real difference between the resistance in the four-day and seven-day combivir regimens.
What Do These Findings Mean?
These findings show that a short-course treatment of zidovudine and lamivudine in addition to a single dose of nevirapine during labor and birth reduces the selection of NNRTI resistance mutations in both mother and child. The drug regimens appeared safe, and easy to provide and adhere to. Preliminary results from this study contributed to a change in clinical practice for the care of pregnant women with HIV; in 2004 the World Health Organisation guidelines introduced a short course of combivir with nevirapine for the management of pregnant HIV-infected women. However, the study had some limitations. It used HIV-positive women who were mainly infected with a subtype of HIV called HIV-1 clade C and who had a lot of virus in their blood. NNRTI resistance after treatment with nevirapine is more common in clade C than in others and this study does not address the effect of these combinations for preventing NNRTI resistance in other HIV subtypes. Also, World Health Organization, national, and international guidelines recommend combination ART during pregnancy, as it decreases HIV transmission from mother to child in the uterus to <2% in resource-limited settings. Although long-term combination treatment may not be available in all locations, this study does not tell us how the short-term combinations during and after delivery tested would compare to longer-term combinations given to pregnant women in reducing both HIV transmission and HIV drug resistance.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000172.
This study is further discussed in a PLoS Medicine Perspective by Lehman et al.
The US Centers for Disease Control and Prevention provide information for HIV treatment and prevention
MedlinePlus provides extensive information on symptoms and treatment for HIV/AIDS as well as access to related clinical trials and medical literature
aidsmap, a nonprofit, nongovernmental organization provides information on HIV and supporting those living with HIV
The World Health Organization gives information on the prevention of mother-to-child transmission of HIV
doi:10.1371/journal.pmed.1000172
PMCID: PMC2760761  PMID: 19859531
11.  Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication 
Journal of Virology  2003;77(2):1512-1523.
Suboptimal treatment of human immunodeficiency virus type 1 (HIV-1) infection with nonnucleoside reverse transcriptase inhibitors (NNRTI) often results in the rapid selection of drug-resistant virus. Several amino acid substitutions at position 190 of reverse transcriptase (RT) have been associated with reduced susceptibility to the NNRTI, especially nevirapine (NVP) and efavirenz (EFV). In the present study, the effects of various 190 substitutions observed in viruses obtained from NNRTI-experienced patients were characterized with patient-derived HIV isolates and confirmed with a panel of isogenic viruses. Compared to wild-type HIV, which has a glycine at position 190 (G190), viruses with 190 substitutions (A, C, Q, S, V, E, or T, collectively referred to as G190X substitutions) were markedly less susceptible to NVP and EFV. In contrast, delavirdine (DLV) susceptibility of these G190X viruses increased from 3 to 300-fold (hypersusceptible) or was only slightly decreased. The replication capacity of viruses with certain 190 substitutions (C, Q, V, T, and E) was severely impaired and was correlated with reduced virion-associated RT activity and incomplete protease (PR) processing of the viral p55gag polyprotein. These defects were the result of inadequate p160gagpol incorporation into virions. Compensatory mutations within RT and PR improved replication capacity, p55gag processing, and RT activity, presumably through increased incorporation of p160gagpol into virions. We observe an inverse relationship between the degree of NVP and EFV resistance and the impairment of viral replication in viruses with substitutions at 190 in RT. These observations may have important implications for the future design and development of antiretroviral drugs that restrict the outgrowth of resistant variants with high replication capacity.
doi:10.1128/JVI.77.2.1512-1523.2003
PMCID: PMC140843  PMID: 12502865
12.  The Connection Domain Mutation N348I in HIV-1 Reverse Transcriptase Enhances Resistance to Etravirine and Rilpivirine but Restricts the Emergence of the E138K Resistance Mutation by Diminishing Viral Replication Capacity 
Journal of Virology  2014;88(3):1536-1547.
Clinical resistance to rilpivirine (RPV), a novel nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI), is associated an E-to-K mutation at position 138 (E138K) in RT together with an M184I/V mutation that confers resistance against emtricitabine (FTC), a nucleoside RT inhibitor (NRTI) that is given together with RPV in therapy. These two mutations can compensate for each other in regard to fitness deficits conferred by each mutation alone, raising the question of why E138K did not arise spontaneously in the clinic following lamivudine (3TC) use, which also selects for the M184I/V mutations. In this context, we have investigated the role of a N348I connection domain mutation that is prevalent in treatment-experienced patients. N348I confers resistance to both the NRTI zidovudine (ZDV) and the NNRTI nevirapine (NVP) and was also found to be associated with M184V and to compensate for deficits associated with the latter mutation. Now, we show that both N348I alone and N348I/M184V can prevent or delay the emergence of E138K under pressure with RPV or a related NNRTI, termed etravirine (ETR). N348I also enhanced levels of resistance conferred by E138K against RPV and ETR by 2.2- and 2.3-fold, respectively. The presence of the N348I or M184V/N348I mutation decreased the replication capacity of E138K virus, and biochemical assays confirmed that N348I, in a background of E138K, impaired RT catalytic efficiency and RNase H activity. These findings help to explain the low viral replication capacity of viruses containing the E138K/N348I mutations and how N348I delayed or prevented the emergence of E138K in patients with M184V-containing viruses.
doi:10.1128/JVI.02904-13
PMCID: PMC3911599  PMID: 24227862
13.  Altered Viral Fitness and Drug Susceptibility in HIV-1 Carrying Mutations That Confer Resistance to Nonnucleoside Reverse Transcriptase and Integrase Strand Transfer Inhibitors 
Journal of Virology  2014;88(16):9268-9276.
ABSTRACT
Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTI) and integrase (IN) strand transfer inhibitors (INSTI) are key components of antiretroviral regimens. To explore potential interactions between NNRTI and INSTI resistance mutations, we investigated the combined effects of these mutations on drug susceptibility and fitness of human immunodeficiency virus type 1 (HIV-1). In the absence of drug, single-mutant viruses were less fit than the wild type; viruses carrying multiple mutations were less fit than single-mutant viruses. These findings were explained in part by the observation that mutant viruses carrying NNRTI plus INSTI resistance mutations had reduced amounts of virion-associated RT and/or IN protein. In the presence of efavirenz (EFV), a virus carrying RT-K103N together with IN-G140S and IN-Q148H (here termed IN-G140S/Q148H) mutations was fitter than a virus with a RT-K103N mutation alone. Similarly, in the presence of EFV, the RT-E138K plus IN-G140S/Q148H mutant virus was fitter than one with the RT-E138K mutation alone. No effect of INSTI resistance mutations on the fitness of RT-Y181C mutant viruses was observed. Conversely, RT-E138K and -Y181C mutations improved the fitness of the IN-G140S/Q148H mutant virus in the presence of raltegravir (RAL); the RT-K103N mutation had no effect. The NNRTI resistance mutations had no effect on RAL susceptibility. Likewise, the IN-G140S/Q148H mutations had no effect on EFV or RPV susceptibility. However, both the RT-K103N plus IN-G140S/Q148H and the RT-E138K plus IN-G140S/Q148H mutant viruses had significantly greater fold increases in 50% inhibitory concentration (IC50) of EFV than viruses carrying a single NNRTI mutation. Likewise, the RT-E138K plus IN-G140S/Q148H mutant virus had significantly greater fold increases in RAL IC50 than that of the IN-G140S/Q148H mutant virus. These results suggest that interactions between RT and IN mutations are important for NNRTI and INSTI resistance and viral fitness.
IMPORTANCE Nonnucleoside reverse transcriptase inhibitors and integrase inhibitors are used to treat infection with HIV-1. Mutations that confer resistance to these drugs reduce the ability of HIV-1 to reproduce (that is, they decrease viral fitness). It is known that reverse transcriptase and integrase interact and that some mutations can disrupt their interaction, which is necessary for proper functioning of these two enzymes. To determine whether resistance mutations in these enzymes interact, we investigated their effects on drug sensitivity and viral fitness. Although individual drug resistance mutations usually reduced viral fitness, certain combinations of mutations increased fitness. When present in certain combinations, some integrase inhibitor resistance mutations increased resistance to nonnucleoside reverse transcriptase inhibitors and vice versa. Because these drugs are sometimes used together in the treatment of HIV-1 infection, these interactions could make viruses more resistant to both drugs, further limiting their clinical benefit.
doi:10.1128/JVI.00695-14
PMCID: PMC4136249  PMID: 24899199
14.  Impact of Y181C and/or H221Y mutation patterns of HIV-1 reverse transcriptase on phenotypic resistance to available non-nucleoside and nucleoside inhibitors in China 
BMC Infectious Diseases  2014;14:237.
Background
The aim of this study was to investigate the role of K101Q, Y181C and H221Y emerging in HIV-1 reverse transcriptase with different mutations patterns in phenotypic susceptibility to currently available NNRTIs (nevirapine NVP, efavirenz EFV) and NRTIs (zidovudine AZT, lamivudine 3TC, stavudine d4T) in China.
Methods
Phenotype testing of currently available NNRTIs (NVP, EFV) and NRTIs (AZT, 3TC, d4T) was performed on TZM-b1 cells using recombined virus strains. P ≤ 0.05 was defined significant considering the change of 50% inhibitory drug concentration (IC50) compared with the reference, while P ≤ 0.01 was considered to be statistically significant considering multiple comparisons.
Results
Triple-mutation K101Q/Y181C/H221Y and double-mutation K101Q/Y181C resulted in significant increase in NVP resistance (1253.9-fold and 986.4-fold), while only K101Q/Y181C/H221Y brought a 5.00-fold significant increase in EFV resistance. Remarkably, K101Q/H221Y was hypersusceptible to EFV (FC = 0.04), but was significantly resistant to the three NRTIs. Then, the interaction analysis suggested the interaction was not significant to NVP (F = 0.77, P = 0.4061) but significant to EFV and other three NRTIs.
Conclusion
Copresence of mutations reported to be associated with NNRTIs confers significant increase to NVP resistance. Interestingly, some may increase the susceptibility to EFV. Certainly, the double mutation (K101Q/H221Y) also changes the susceptibility of viruses to NRTIs. Interaction between two different sites makes resistance more complex.
doi:10.1186/1471-2334-14-237
PMCID: PMC4024112  PMID: 24885612
Nucleoside reverse transcriptase inhibitors (NRTIs); Non-nucleoside reverse transcriptase inhibitors (NNRTIs); HIV-1 resistance mutation; 50% inhibitory drug concentration
15.  Constrained patterns of covariation and clustering of HIV-1 non-nucleoside reverse transcriptase inhibitor resistance mutations 
Objectives
We characterized pairwise and higher order patterns of non-nucleoside reverse transcriptase inhibitor (NNRTI)-selected mutations because multiple mutations are usually required for clinically significant resistance to second-generation NNRTIs.
Patients and methods
We analysed viruses from 13 039 individuals with sequences containing at least one of 52 published NNRTI-selected mutations, including 1133 viruses from individuals who received efavirenz but no other NNRTI and 1510 viruses from individuals who received nevirapine but no other NNRTI. Of the 17 reported etravirine resistance-associated mutations (RAMs), Y181C/I/V, L100I, K101P and M230L were considered major based on published in vitro susceptibility data.
Results
Efavirenz preferentially selected for 16 mutations, including L100I (14% versus 0.1%, P < 0.001), K101P (3.3% versus 0.4%, P < 0.001) and M230L (2.8% versus 1.3%, P = 0.004), whereas nevirapine preferentially selected for 12 mutations, including Y181C/I/V (48% versus 6.9%, P < 0.001). Twenty-nine pairs of NNRTI-selected mutations covaried significantly, including Y181C with seven other mutations (A98G, K101E/H, V108I, G190A/S and H221Y), L100I with K103N, and K101P with K103S. Two pairs (Y181C + V179F and Y181C + G190S) were predicted to confer >10-fold decreased etravirine susceptibility. Seventeen percent of sequences had three or more NNRTI-selected mutations, mostly in clusters of covarying mutations. Many clusters had Y181C plus a non-major etravirine RAM; few had more than one major etravirine RAM.
Conclusions
Although major etravirine RAMs rarely occur in combination, 2 of 29 pairs of covarying mutations were associated with >10-fold decreased etravirine susceptibility. Viruses with three or more NNRTI-selected mutations often contained Y181C in combination with one or more minor etravirine RAMs; however, phenotypic and clinical correlates for most of these higher order combinations have not been published.
doi:10.1093/jac/dkq140
PMCID: PMC2882873  PMID: 20462946
Multidrug resistance; etravirine; antiviral therapy
16.  Combinations of Mutations in the Connection Domain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase: Assessing the Impact on Nucleoside and Nonnucleoside Reverse Transcriptase Inhibitor Resistance▿  
Recent reports have described the effect of mutations in the connection and RNase H domains of reverse transcriptase (RT) on nucleoside and nonnucleoside reverse transcriptase inhibitor (NRTI and NNRTI, respectively) resistance in the presence of thymidine analog resistance mutations (TAMs) and NNRTI mutations (J. H. Brehm, D. Koontz, J. D. Meteer, V. Pathak, N. Sluis-Cremer, and J. W. Mellors, J. Virol. 81:7852-7859, 2007; K. A. Delviks-Frankenberry, G. N. Nikolenko, R. Barr, and V. K. Pathak, J. Virol. 81:6837-6845, 2007; G. N. Nikolenko, K. A. Delviks-Frankenberry, S. Palmer, F. Maldarelli, M. J. Fivash, Jr., J. M. Coffin, and V. K. Pathak, Proc. Natl. Acad. Sci. U. S. A. 104:317-322, 2007; G. N. Nikolenko, S. Palmer, F. Maldarelli, J. W. Mellors, J. M. Coffin, and V. K. Pathak, Proc. Natl. Acad. Sci. U. S. A. 102:2093-2098, 2005; and S. H. Yap, C. W. Sheen, J. Fahey, M. Zanin, D. Tyssen, V. D. Lima, B. Wynhoven, M. Kuiper, N. Sluis-Cremer, P. R. Harrigan, and G. Tachedjian, PLoS Med. 4:e335, 2007). In the present study, novel mutations in the connection domain of RT (T369I/V), first identified in patient-derived viruses, were characterized, and their effects on NNRTI and NNRTI susceptibility were determined. Furthermore, the effect of N348I on NRTI and NNRTI resistance was confirmed. HIV-1 with either N348I or T369I/V demonstrated reduced susceptibility to nevirapine (NVP), efavirenz (EFV), delaviridine (DLV), and zidovudine (ZDV) compared to wild-type HIV-1. However, HIV-1 with T369I and N348I demonstrated 10- to 60-fold resistance to these same drugs. In clinical samples, these two connection domain RT mutations were predominantly observed in viruses containing TAMs and NNRTI mutations and did not alter the susceptible-resistant classifications of these samples. Introduction of T369I, N348I, or T369I/N348I also reduced replication capacity (RC). These observations suggest that it may be of scientific interest to test these mutations against new NNRTI candidates.
doi:10.1128/AAC.00870-09
PMCID: PMC2863632  PMID: 20194692
17.  Characterization of the E138K Resistance Mutation in HIV-1 Reverse Transcriptase Conferring Susceptibility to Etravirine in B and Non-B HIV-1 Subtypes ▿  
We have selected for resistance to etravirine (ETR) and efavirenz (EFV) in tissue culture using three subtype B, three subtype C, and two CRF02_AG clinical isolates, grown in cord blood mononuclear cells. Genotypic analysis was performed at baseline and at various weeks of selection. Phenotypic resistance in regard to ETR, EFV, and nevirapine (NVP) was evaluated at weeks 25 to 30 for all ETR-selected viruses and in viral clones that contained specific resistance mutations that were inserted by site-directed mutagenesis into pNL-4.3 and AG plasmids. The results show that ETR selected mutations at positions V90I, K101Q, E138K, V179D/E/F, Y181C, V189I, G190E, H221H/Y, and M230L and that E138K was the first of these to emerge in most instances. The time to the emergence of resistance was longer in the case of ETR (18 weeks) compared to EFV (11 weeks), and no differences in the patterns of emergent mutations could be documented between the B and non-B subtypes. Viral clones containing E138K displayed low-level phenotypic resistance to ETR (3.8-fold) and modestly impaired replication capacity (2-fold) compared to wild-type virus. ETR-selected virus showed a high degree of cross-resistance to NVP but not to EFV. We identified K101Q, E138K, V179E, V189I, G190E, and H221Y as mutations not included among the 17 currently recognized resistance-associated mutations for ETR.
doi:10.1128/AAC.01192-10
PMCID: PMC3028807  PMID: 21135184
18.  Non-nucleoside reverse transcriptase inhibitor (NNRTI) cross-resistance: implications for preclinical evaluation of novel NNRTIs and clinical genotypic resistance testing 
Objectives
The introduction of two new non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the past 5 years and the identification of novel NNRTI-associated mutations have made it necessary to reassess the extent of phenotypic NNRTI cross-resistance.
Methods
We analysed a dataset containing 1975, 1967, 519 and 187 genotype–phenotype correlations for nevirapine, efavirenz, etravirine and rilpivirine, respectively. We used linear regression to estimate the effects of RT mutations on susceptibility to each of these NNRTIs.
Results
Sixteen mutations at 10 positions were significantly associated with the greatest contribution to reduced phenotypic susceptibility (≥10-fold) to one or more NNRTIs, including: 14 mutations at six positions for nevirapine (K101P, K103N/S, V106A/M, Y181C/I/V, Y188C/L and G190A/E/Q/S); 10 mutations at six positions for efavirenz (L100I, K101P, K103N, V106M, Y188C/L and G190A/E/Q/S); 5 mutations at four positions for etravirine (K101P, Y181I/V, G190E and F227C); and 6 mutations at five positions for rilpivirine (L100I, K101P, Y181I/V, G190E and F227C). G190E, a mutation that causes high-level nevirapine and efavirenz resistance, also markedly reduced susceptibility to etravirine and rilpivirine. K101H, E138G, V179F and M230L mutations, associated with reduced susceptibility to etravirine and rilpivirine, were also associated with reduced susceptibility to nevirapine and/or efavirenz.
Conclusions
The identification of novel cross-resistance patterns among approved NNRTIs illustrates the need for a systematic approach for testing novel NNRTIs against clinical virus isolates with major NNRTI-resistance mutations and for testing older NNRTIs against virus isolates with mutations identified during the evaluation of a novel NNRTI.
doi:10.1093/jac/dkt316
PMCID: PMC3861329  PMID: 23934770
HIV-1; drug resistance; linear regression; etravirine; rilpivirine
19.  The role of etravirine in the management of treatment-experienced pediatric patients with HIV 
Pediatric patients infected with human immunodeficiency virus (HIV) are now living longer, healthier lives due to the advent of combined antiretroviral (ARV) therapy, including regimens that often contain non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, first-generation NNRTIs such as nevirapine (NVP) and efavirenz (EFV) have a low genetic barrier to resistance, and both drugs can become ineffective with a single viral point mutation. New agents with activity against resistant viral strains must be available to salvage children and adolescents with virologic failure after NNRTI use. One such drug, etravirine, an oral second-generation NNRTI approved for use in the US in heavily treatment-experienced HIV-1-infected adults in 2008, is accumulating data in this younger population. Etravirine became approved by the US Food and Drug Administration in early 2012 to be used in combination with other ARV medications in HIV-1-infected children aged 6 years to <18 years who are failing their regimens with HIV-1 strains resistant to NNRTIs and other ARVs. This approval was largely based on data from a prospective, open-label, phase II clinical trial in this age group prescribed etravirine at 5.2 mg/kg twice daily (up to the adult dose of 200 mg twice daily) in combination with an investigator-selected optimized background regimen. Currently available 48-week follow-up data show complete viral suppression (<50 copies/mL) in 56% of the patients, with relatively few serious adverse events attributed to the drug. Additional studies and case reports from the field suggest its utility in clinical practice. This review is designed to increase the background understanding of this drug in pediatric HIV providers, to lay out the current pediatric data to support its use, and to define its practical role in the treatment of HIV-infected children now and in the future.
doi:10.2147/HIV.S32324
PMCID: PMC3628526  PMID: 23610529
salvage; resistance; children; adolescents; NNRTI; perinatal
20.  A Tight-Binding Mode of Inhibition Is Essential for Anti-Human Immunodeficiency Virus Type 1 Virucidal Activity of Nonnucleoside Reverse Transcriptase Inhibitors 
It was previously found that certain nonnucleoside reverse transcriptase inhibitors (NNRTI) possess virucidal activity against human immunodeficiency virus type 1 (HIV-1), and it was suggested that the tight-binding mode of inhibition of reverse transcriptase might be important for this virucidal activity (Borkow et al., J. Virol. 71:3023-3030, 1997). To test this, we compared six different NNRTI, including three tight-binding NNRTI, namely UC781, efavirenz (EFV) (Sustiva), and 5-chloro-3-phenylsulfonylindole-2-carboxamide (CSIC), and three rapid-equilibrium NNRTI, delavirdine (DLV) (Rescriptor), nevirapine (NVP) (Viramune), and UC84, in a variety of virucidal tests. Incubation of isolated HIV-1 virions with UC781, EFV, or CSIC rapidly inactivated the virus, whereas DLV, NVP, and UC84 were ineffective in this respect. Exposure of H9+ cells chronically infected by HIV-1 to the tight-binding NNRTI abolished the infectivity of nascent virus subsequently produced by these cells following removal of extracellular drug, thereby preventing cell-to-cell virus transmission in the absence of exogenous drug. In contrast, cell-to-cell transmission of HIV was blocked by DLV, NVP, and UC84 only when the drug remained in the extracellular medium. Pretreatment of uninfected lymphocytoid cells with UC781, EFV, or CSIC, but not DLV, NVP, or UC84, protected these cells from subsequent HIV-1 infection in the absence of extracellular drug. The protective effect was dependent on both the dose of NNRTI and the viral load. The overall virucidal efficacy of the tight-binding NNRTI tested was CSIC > UC781 ≃ EFV. We conclude that the tight-binding mode of inhibition is an essential characteristic for virucidal NNRTI and that antiviral potency is an insufficient predictor for virucidal utility of NNRTI.
doi:10.1128/AAC.46.6.1851-1856.2002
PMCID: PMC127238  PMID: 12019100
21.  Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability 
Introduction
Human immunodeficiency virus (HIV) type-1 non-nucleoside and nucleoside reverse transcriptase inhibitors (NNRTIs) are key drugs of highly active antiretroviral therapy (HAART) in the clinical management of acquired immune deficiency syndrome (AIDS)/HIV infection.
Discussion
First-generation NNRTIs, nevirapine (NVP), delavirdine (DLV) and efavirenz (EFV) are drugs with a low genetic barrier and poor resistance profile, which has led to the development of new generations of NNRTIs. Second-generation NNRTIs, etravirine (ETR) and rilpivirine (RPV) have been approved by the Food and Drug Administration and European Union, and the next generation of drugs is currently being clinically developed. This review describes recent clinical data, pharmacokinetics, metabolism, pharmacodynamics, safety and tolerability of commercialized NNRTIs, including the effects of sex, race and age differences on pharmacokinetics and safety. Moreover, it summarizes the characteristics of next-generation NNRTIs: lersivirine, GSK 2248761, RDEA806, BILR 355 BS, calanolide A, MK-4965, MK-1439 and MK-6186.
Conclusions
This review presents a wide description of NNRTIs, providing useful information for researchers interested in this field, both in clinical use and in research.
doi:10.7448/IAS.16.1.18567
PMCID: PMC3764307  PMID: 24008177
human immunodeficiency virus; non-nucleoside reverse transcriptase inhibitors; nevirapine; delavirdine; efavirenz; etravirine; rilpivirine; next-generation non-nucleoside reverse transcriptase inhibitors
22.  Development of a New Methodology for Screening of Human Immunodeficiency Virus Type 1 Microbicides Based on Real-Time PCR Quantification▿  
Potential topical retrovirucides or vaginal microbicides against human immunodeficiency virus type 1 (HIV-1) include nonnucleoside reverse transcriptase inhibitors (NNRTIs). To be successful, such agents have to be highly active against cell-free virions. In the present study, we developed a new real-time PCR-based assay to measure the natural endogenous reverse transcription (NERT) activity directly on intact HIV-1 particles in the presence of reverse transcriptase (RT) inhibitors. We further evaluated the permeability to nevirapine (NVP) and efavirenz (EFV) and their retention within nascent viral particles. We also demonstrated the NVP and EFV inhibitory effects on NERT activity and the impact of resistance mutations measured directly by this new strategy. Furthermore, the results showed a clear correlation between NERT activity and classical infectivity assays. The 50% inhibitory concentrations (IC50s) of NVP and EFV were demonstrated to be up to 100-fold higher for cell-free than for cell-associated virions, suggesting that cell-free virions are less permeable to these drugs. Our results suggest that NVP and EFV penetrate both the envelope and the capsid of HIV-1 particles and readily inactivate cell-free virions. However, the characteristics of these NNRTIs, such as lower permeability and lower retention during washing procedures, in cell-free virions reduce their efficacies as microbicides. Here, we demonstrate the usefulness of the NERT real-time PCR as an assay for screening novel antiretroviral compounds with unique mechanisms of action.
doi:10.1128/AAC.00749-06
PMCID: PMC1797782  PMID: 17116672
23.  Resistance-Associated Mutations to Etravirine (TMC-125) in Antiretroviral-Naïve Patients Infected with Non-B HIV-1 Subtypes▿  
Susceptibility to etravirine (ETR), an expanded-spectrum nonnucleoside reverse transcriptase inhibitor (NNRTI), is dependent on the type and number of NNRTI resistance-associated mutations (RAMs). Studies have shown that some HIV-1 subtypes may have natural polymorphisms described as ETR RAMs. This study addresses the prevalence of ETR RAMs in treatment-naïve patients infected with HIV-1 non-B subtypes and its potential impact on ETR susceptibility. The prevalence of ETR RAMs in 726 antiretroviral-naïve patients infected with non-B HIV-1 subtypes was studied. ETR genotypic resistance was interpreted according to Agence Nationale de Recherches sur le SIDA and Stanford algorithms. NNRTI phenotypic susceptibilities of samples with at least one ETR RAM were measured. Overall, 75 (10.3%) of 726 sequences harbored at least one ETR RAM: sequences from 72 patients (10%) each had one ETR RAM, and sequences from 3 patients (0.4%) each had two ETR RAMs (V90I and Y181C in one case and V90I and A98G in two cases). None of the viruses had three or more ETR RAMs, and none were consequently classified as resistant to ETR. All sequences with two ETR RAMs belonged to subtype CRF02_AG. The presence of one ETR RAM was statistically more frequent in subtype CRF02_AG than in other non-B subtypes (P = 0.004). Three new mutation profiles (E138A and V179I, Y181C and H221Y, and V90I and Y181C) showing decreased ETR phenotypic susceptibility were identified. In conclusion, although the prevalence of ETR RAMs in treatment-naïve patients infected with non-B HIV-1 subtypes was 10%, in most cases this had no significant impact on ETR susceptibility. However, the transmission of drug-resistant viruses with Y181C in a non-B genetic background has a potential for impact on ETR susceptibility.
doi:10.1128/AAC.01335-09
PMCID: PMC2812140  PMID: 20008779
24.  Antiviral Activity and In Vitro Mutation Development Pathways of MK-6186, a Novel Nonnucleoside Reverse Transcriptase Inhibitor 
MK-6186 is a novel nonnucleoside reverse transcriptase inhibitor (NNRTI) which displays subnanomolar potency against wild-type (WT) virus and the two most prevalent NNRTI-resistant RT mutants (K103N and Y181C) in biochemical assays. In addition, it showed excellent antiviral potency against K103N and Y181C mutant viruses, with fold changes (FCs) of less than 2 and 5, respectively. When a panel of 12 common NNRTI-associated mutant viruses was tested with MK-6186, only 2 relatively rare mutants (Y188L and V106I/Y188L) were highly resistant, with FCs of >100, and the remaining viruses showed FCs of <10. Furthermore, a panel of 96 clinical virus isolates with NNRTI resistance mutations was evaluated for susceptibility to NNRTIs. The majority (70%) of viruses tested displayed resistance to efavirenz (EFV), with FCs of >10, whereas only 29% of the mutant viruses displayed greater than 10-fold resistance to MK-6186. To determine whether MK-6186 selects for novel resistance mutations, in vitro resistance selections were conducted with one isolate each from subtypes A, B, and C under low-multiplicity-of-infection (MOI) conditions. The results showed a unique mutation development pattern in which L234I was the first mutation to emerge in the majority of the experiments. In resistance selection under high-MOI conditions with subtype B virus, V106A was the dominant mutation detected in the breakthrough viruses. More importantly, mutant viruses selected by MK-6186 showed FCs of <10 against EFV or etravirine (ETR), and the mutant viruses containing mutations selected by EFV or ETR were sensitive to MK-6186 (FCs of <10).
doi:10.1128/AAC.00102-12
PMCID: PMC3370804  PMID: 22391531
25.  TMC125 Displays a High Genetic Barrier to the Development of Resistance: Evidence from In Vitro Selection Experiments 
Journal of Virology  2005;79(20):12773-12782.
TMC125 is a potent new investigational nonnucleoside reverse transcriptase inhibitor (NNRTI) that is active against human immunodeficiency virus type 1 (HIV-1) with resistance to currently licensed NNRTIs. Sequential passage experiments with both wild-type virus and NNRTI-resistant virus were performed to identify mutations selected by TMC125 in vitro. In addition to “classic” selection experiments at a low multiplicity of infection (MOI) with increasing concentrations of inhibitors, experiments at a high MOI with fixed concentrations of inhibitors were performed to ensure a standardized comparison between TMC125 and current NNRTIs. Both low- and high-MOI experiments demonstrated that the development of resistance to TMC125 required multiple mutations which frequently conferred cross-resistance to efavirenz and nevirapine. In high-MOI experiments, 1 μM TMC125 completely inhibited the breakthrough of resistant virus from wild-type and NNRTI-resistant HIV-1, in contrast to efavirenz and nevirapine. Furthermore, breakthrough of virus from site-directed mutant (SDM) SDM-K103N/Y181C occurred at the same time or later with TMC125 as breakthrough from wild-type HIV-1 with efavirenz or nevirapine. The selection experiments identified mutations selected by TMC125 that included known NNRTI-associated mutations L100I, Y181C, G190E, M230L, and Y318F and the novel mutations V179I and V179F. Testing the antiviral activity of TMC125 against a panel of SDMs indicated that the impact of these individual mutations on resistance was highly dependent upon the presence and identity of coexisting mutations. These results demonstrate that TMC125 has a unique profile of activity against NNRTI-resistant virus and possesses a high genetic barrier to the development of resistance in vitro.
doi:10.1128/JVI.79.20.12773-12782.2005
PMCID: PMC1235844  PMID: 16188980

Results 1-25 (872126)