PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (977155)

Clipboard (0)
None

Related Articles

1.  Pseudosymmetry, high copy number and twinning complicate the structure determination of Desulfovibrio desulfuricans (ATCC 29577) flavodoxin 
Complications to molecular replacement resulting from a poor starting search model, pseudosymmetry, twinning and a high copy number in the asymmetric unit made the determination of the structure of D. desulfuricans (ATCC 29577) flavodoxin in two crystal forms challenging.
The crystal structure of oxidized flavodoxin from Desulfo­vibrio desulfuricans (ATCC 29577) was determined by molecular replacement in two crystal forms, P3121 and P43, at 2.5 and 2.0 Å resolution, respectively. Structure determination in space group P3121 was challenging owing to the presence of pseudo-translational symmetry and a high copy number in the asymmetric unit (8). Initial phasing attempts in space group P3121 by molecular replacement using a poor search model (46% identity) and multi-wavelength anomalous dispersion were unsuccessful. It was necessary to solve the structure in a second crystal form, space group P43, which was characterized by almost perfect twinning, in order to obtain a suitable search model for molecular replacement. This search model with complementary approaches to molecular replacement utilizing the pseudo-translational symmetry operators determined by analysis of the native Patterson map facilitated the selection and manual placement of molecules to generate an initial solution in the P3121 crystal form. During the early stages of refinement, application of the appropriate twin law, (−h, −k, l), was required to converge to reasonable R-factor values despite the fact that in the final analysis the data were untwinned and the twin law could subsequently be removed. The approaches used in structure determination and refinement may be applicable to other crystal structures characterized by these complicating factors. The refined model shows flexibility of the flavin mononucleotide coordinating loops indicated by the isolation of two loop conformations and provides a starting point for the elucidation of the mechanism used for protein-partner recognition.
doi:10.1107/S0907444909010075
PMCID: PMC2685730  PMID: 19465766
flavodoxins; pseudosymmetry; twinning; high copy number; molecular replacement
2.  Crystallization and preliminary crystallographic analysis of mouse peroxiredoxin II with significant pseudosymmetry 
Mouse peroxiredoxin II was crystallized in an orthorhombic space group and native X-ray diffraction data were collected.
Peroxiredoxin II was cloned from mouse B cells into pCold 1 expression vector and produced as a His-tagged recombinant protein in Escherichia coli. A ring form was isolated by gel filtration. A crystal obtained by the sitting-drop vapour-diffusion method diffracted to 1.77 Å resolution at 100 K. The crystal belonged to space group P21212, with unit-cell parameters a = 117.4, b = 133.9, c = 139.1 Å. The asymmetric unit is expected to contain six dimers of peroxiredoxin II, with a corresponding solvent content of 39.3%. Peaks in the native Patterson function together with pseudo-systematic absences suggested that the crystals suffered from severe translational pseudosymmetry.
doi:10.1107/S1744309110003684
PMCID: PMC2833056  PMID: 20208180
peroxiredoxins; pseudosymmetry
3.  Monoclinic crystal form of Aspergillus niger α-­amylase in complex with maltose at 1.8 Å resolution 
Two new crystal structures of A. niger α-amylase are reported, one of which reveals two hitherto unobserved maltose-binding sites.
Aspergillus niger α-amylase catalyses the hydrolysis of α-1,4-glucosidic bonds in starch. It shows 100% sequence identity to the A. oryzae homologue (also called TAKA-amylase), three crystal structures of which have been published to date. Two of them belong to the orthorhombic space group P212121 with one molecule per asymmetric unit and one belongs to the monoclinic space group P21 with three molecules per asymmetric unit. Here, the purification, crystallization and structure determination of A. niger α-amylase crystallized in the monoclinic space group P21 with two molecules per asymmetric unit in complex with maltose at 1.8 Å resolution is reported. Furthermore, a novel 1.6 Å resolution orthorhombic crystal form (space group P21212) of the native enzyme is presented. Four maltose molecules are observed in the maltose–α-amylase complex. Three of these occupy active-site subsites −2 and −1, +1 and +2 and the hitherto unobserved subsites +4 (Asp233, Gly234) and +5 (Asp235). The fourth maltose molecule binds at the distant binding sites d1 (Tyr382) and d2 (Trp385), also previously unobserved. Furthermore, it is shown that the active-site groove permits different binding modes of sugar units at subsites +1 and +2. This flexibility of the active-site cleft close to the catalytic centre might be needed for a productive binding of substrate chains and/or release of products.
doi:10.1107/S1744309106024729
PMCID: PMC2242925  PMID: 16880540
α-amylase; Aspergillus niger; maltose; Aspergillus oryzae; TAKA-amylase
4.  Crystallization and initial X-ray diffraction studies of the flavoenzyme NAD(P)H:(acceptor) oxidoreductase (FerB) from the soil bacterium Paracoccus denitrificans  
The flavin-dependent enzyme FerB from P. denitrificans has been purified and both native and SeMet-substituted FerB have been crystallized. The two variants crystallized in two different crystallographic forms belonging to the monoclinic space group P21 and the orthorhombic space group P21212, respectively. X-ray diffraction data were collected to 1.75 Å resolution for both forms.
The flavin-dependent enzyme FerB from Paracoccus denitrificans reduces a broad range of compounds, including ferric complexes, chromate and most notably quinones, at the expense of the reduced nicotinamide adenine dinucleotide cofactors NADH or NADPH. Recombinant unmodified and SeMet-substituted FerB were crystallized under similar conditions by the hanging-drop vapour-diffusion method with microseeding using PEG 4000 as the precipitant. FerB crystallized in several different crystal forms, some of which diffracted to approximately 1.8 Å resolution. The crystals of native FerB belonged to space group P21, with unit-cell parameters a = 61.6, b = 110.1, c = 65.2 Å, β = 118.2° and four protein molecules in the asymmetric unit, whilst the SeMet-substituted form crystallized in space group P21212, with unit-cell parameters a = 61.2, b = 89.2, c = 71.5 Å and two protein molecules in the asymmetric unit. Structure determination by the three-wavelength MAD/MRSAD method is now in progress.
doi:10.1107/S1744309110005099
PMCID: PMC2852337  PMID: 20383015
flavoenzymes; quinone reductases; Paracoccus denitrificans
5.  Imperfect pseudo-merohedral twinning in crystals of fungal fatty acid synthase 
A case of imperfect pseudo-merohedral twinning in monoclinic crystals of fungal fatty acid synthase is discussed. A space-group transition during crystal dehydration resulted in a Moiré pattern-like interference of the twinned diffraction patterns.
The recent high-resolution structures of fungal fatty acid synthase (FAS) have provided new insights into the principles of fatty acid biosynthesis by large multifunctional enzymes. The crystallographic phase problem for the 2.6 MDa fungal FAS was initially solved to 5 Å resolution using two crystal forms from Thermomyces lanuginosus. Monoclinic crystals in space group P21 were obtained from orthorhombic crystals in space group P212121 by dehydration. Here, it is shown how this space-group transition induced imperfect pseudo-merohedral twinning in the monoclinic crystal, giving rise to a Moiré pattern-like interference of the two twin-related reciprocal lattices. The strategy for processing the twinned diffraction images and obtaining a quantitative analysis is presented. The twinning is also related to the packing of the molecules in the two crystal forms, which was derived from self-rotation function analysis and molecular-replacement solutions using a low-resolution electron microscopy map as a search model.
doi:10.1107/S0907444909000778
PMCID: PMC2631638  PMID: 19171964
imperfect pseudo-merohedral twinning; fungal fatty acid synthase
6.  Surprises and pitfalls arising from (pseudo)symmetry 
The presence of pseudosymmetry can cause problems in structure determination and refinement. The relevant background and representative examples are presented.
It is not uncommon for protein crystals to crystallize with more than a single molecule per asymmetric unit. When more than a single molecule is present in the asymmetric unit, various pathological situations such as twinning, modulated crystals and pseudo translational or rotational symmetry can arise. The presence of pseudosymmetry can lead to uncertainties about the correct space group, especially in the presence of twinning. The background to certain common pathologies is presented and a new notation for space groups in unusual settings is introduced. The main concepts are illustrated with several examples from the literature and the Protein Data Bank.
doi:10.1107/S090744490705531X
PMCID: PMC2394827  PMID: 18094473
pathology; twinning; pseudosymmetry
7.  The pseudosymmetric structure of bis­(pentane-1,5-diaminium) iodide tris­(triiodide) 
The asymmetric unit of the title compound, [H3N(CH2)5NH3]2I[I3]3 or 2C5H16N2 2+·3I3 −·I−, consists of two crystallographically independent pentane-1,5-diaminium dications and two triiodide anions in general positions besides two additional triiodide and two iodide anions located on twofold axes. The compound crystallizes in the centrosymmetric monoclinic space group P2/n. The structure refinement was handicapped by the pseudosymmetry (pseudo-centering) of the structure and by twinning. The crystal structure is composed of two alternate layers, which differ in their arrangement of the pentane-1,5-diaminium dications and the iodide/triiodide anions and which are connected via weak to medium–strong N—H⋯I hydrogen bonds, constructing a complex hydrogen-bonded network.
doi:10.1107/S1600536812014420
PMCID: PMC3344470  PMID: 22590232
8.  Pseudo-merohedral twinning and noncrystallographic symmetry in orthorhombic crystals of SIVmac239 Nef core domain bound to different-length TCRζ fragments 
P212121 crystals of SIV Nef core domain bound to a peptide fragment of the T-cell receptor ζ subunit exhibited noncrystallographic symmetry and nearly perfect pseudo-merohedral twinning simulating tetragonal symmetry. For a different peptide fragment, nontwinned tetragonal crystals were observed but diffracted to lower resolution. The structure was determined after assignment of the top molecular-replacement solutions to various twin or NCS domains followed by refinement under the appropriate twin law.
HIV/SIV Nef mediates many cellular processes through interactions with various cytoplasmic and membrane-associated host proteins, including the signalling ζ subunit of the T-­cell receptor (TCRζ). Here, the crystallization strategy, methods and refinement procedures used to solve the structures of the core domain of the SIVmac239 isolate of Nef (Nefcore) in complex with two different TCRζ fragments are described. The structure of SIVmac239 Nefcore bound to the longer TCRζ polypeptide (Leu51–Asp93) was determined to 3.7 Å resolution (R work = 28.7%) in the tetragonal space group P43212. The structure of SIVmac239 Nefcore in complex with the shorter TCRζ polypeptide (Ala63–Arg80) was determined to 2.05 Å resolution (R work = 17.0%), but only after the detection of nearly perfect pseudo-merohedral crystal twinning and proper assignment of the orthorhombic space group P212121. The reduction in crystal space-group symmetry induced by the truncated TCRζ polypeptide appears to be caused by the rearrangement of crystal-contact hydrogen-bonding networks and the substitution of crystallographic symmetry operations by similar noncrystallographic symmetry (NCS) operations. The combination of NCS rotations that were nearly parallel to the twin operation (k, h, −l) and a and b unit-cell parameters that were nearly identical predisposed the P212121 crystal form to pseudo-merohedral twinning.
doi:10.1107/S090744490904880X
PMCID: PMC2815668  PMID: 20124696
pseudo-merohedral twinning; noncrystallographic symmetry; pseudosymmetry; human immunodeficiency virus; Nef; T-cell receptor
9.  Crystallization, data collection and phasing of two digestive lysozymes from Musca domestica  
The digestive lysozymes 1 and 2 from M. domestica were crystallized by vapour diffusion. The crystallographic data were processed to a maximum resolution of 1.9 Å in both cases.
Lysozymes are mostly known for their defensive role against bacteria, but in several animals lysozymes have a digestive function. Here, the initial crystallographic characterization of two digestive lysozymes from Musca domestica are presented. The proteins were crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium sulfate or PEG/2-propanol as the precipitant. X-ray diffraction data were collected to a maximum resolution of 1.9 Å using synchrotron radiation. The lysozyme 1 and 2 crystals belong to the monoclinic space group P21 (unit-cell parameters a = 36.52, b = 79.44, c = 45.20 Å, β = 102.97°) and the orthorhombic space group P21212 (unit-cell parameters a = 73.90, b = 96.40, c = 33.27 Å), respectively. The crystal structures were solved by molecular replacement and structure refinement is in progress.
doi:10.1107/S1744309106024201
PMCID: PMC2242927  PMID: 16880547
digestive lysozymes; Musca domestica
10.  A novel monoclinic phase of impurity-doped CaGa2S4 as a phosphor with high emission intensity 
In the solid-state synthesis of impurity-doped CaGa2S4, calcium tetra­thio­digallate(III), a novel phosphor material (denominated as the X-phase), with monoclinic symmetry in the space group P21/a, has been discovered. Its emission intensity is higher than that of the known ortho­rhom­bic polymorph of CaGa2S4 crystallizing in the space group Fddd. The asymmetric unit of the monoclinic phase consists of two Ca, four Ga and eight S sites. Each of the Ca and Ga atoms is surrounded by seven and four sulfide ions, respectively, thereby sharing each of the sulfur sites with the nearest neighbours. In contrast, the corresponding sites in the ortho­rhom­bic phase are surrounded by eight and four S atoms, respectively. The photoluminescence peaks from Mn2+ and Ce3+ in the doped X-phase, both of which are supposed to replace Ca2+ ions, have been observed to shift towards the high energy side in comparison with those in the ortho­rhom­bic phase. This suggests that the crystal field around the Mn2+ and Ce3+ ions in the X-phase is weaker than that in the ortho­rhom­bic phase.
doi:10.1107/S1600536812019113
PMCID: PMC3379052  PMID: 22719273
11.  Purification, crystallization and preliminary X-ray analysis of Enterococcus casseliflavus aminoglycoside-2′′-phosphotransferase-IVa 
Aminoglycoside-2′′-phosphotransferase-IVa [APH(2′′)-IVa] is an enzyme that is responsible for high-level gentamicin resistance in E. casseliflavus isolates. Three different crystals of wild-type substrate-free APH(2′′)-IVa have been prepared and preliminary X-ray diffraction experiments have been undertaken on all three crystal forms.
The deactivation of aminoglycoside antibiotics by chemical modification is one of the major sources of bacterial resistance to this family of therapeutic compounds, which includes the clinically relevant drugs streptomycin, kanamycin and gentamicin. The aminoglycoside phosphotransferases (APHs) form one such family of enzymes responsible for this resistance. The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-IVa [APH(2′′)-IVa] from Enterococcus casseliflavus, has been cloned and the protein (comprising 306 amino-acid residues) has been expressed in Escherichia coli and purified. The enzyme was crystallized in three substrate-free forms. Two of the crystal forms belonged to the orthorhombic space group P212121 with similar unit-cell parameters, although one of the crystal forms had a unit-cell volume that was approximately 13% smaller than the other and a very low solvent content of around 38%. The third crystal form belonged to the monoclinic space group P21 and preliminary X-ray diffraction analysis was consistent with the presence of two molecules in the asymmetric unit. The orthorhombic crystal forms of apo APH(2′′)-IVa both diffracted to 2.2 Å resolution and the monoclinic crystal form diffracted to 2.4 Å resolution; synchrotron diffraction data were collected from these crystals at SSRL (Stanford, California, USA). Structure determination by molecular replacement using the structure of the related enzyme APH(2′′)-IIa is proceeding.
doi:10.1107/S1744309109050039
PMCID: PMC2805544  PMID: 20057078
aminoglycoside-2′′-phosphotransferase-IVa; Enterococcus casseliflavus; antibiotic resistance
12.  Pseudomerohedrally twinned monoclinic structure of unfolded ‘free’ nona­ctin: comparative analysis of its large conformational change upon encapsulation of alkali metal ions 
The title compound, C40H64O12, crystallizes in a pseudo­merohedrally twinned primitive monoclinic cell with similar contributions of the two twin components. There are two symmetry-independent half-mol­ecules of nona­ctin in the asymmetric unit. Each mol­ecule has a pseudo-S 4 symmetry and resides on a crystallographic twofold axis; the axes pass through the mol­ecular center of mass and are perpendicular to the plane of the macrocycle. The literature description of the room-temperature structure of nona­ctin as an order–disorder structure in an ortho­rhom­bic unit cell is corrected. We report a low-temperature high-precision ordered structure of ‘free’ nona­ctin that allowed for the first time precise determination of its bond distances and angles. It possesses an unfolded and more planar geometry than its complexes with encapsulated Na+, K+, Cs+, Ca2+ or NH4 + cations that exhibit more isometric overall conformations.
doi:10.1107/S0108270109033083
PMCID: PMC2816929  PMID: 19805886
13.  Crystallographic characterization of two novel crystal forms of human insulin induced by chaotropic agents and a shift in pH 
Background
Insulin is a therapeutic protein that is widely used for the treatment of diabetes. Its biological function was discovered more than 80 years ago and it has since then been characterized extensively. Crystallization of the insulin molecule has always been a key activity since the protein is often administered by subcutaneous injections of crystalline insulin formulations. Over the years, insulin has been crystallized and characterized in a number of crystal systems.
Results
Interestingly, we have now discovered two new crystal forms of human insulin. The crystals were obtained when the two chaotropic agents, urea and thiocyanate were present in the crystallization experiments, and their structures were determined by X-ray crystallography. The crystals belong to the orthorhombic and monoclinic crystal systems, with space groups C2221 and C2 respectively. The orthorhombic crystals were obtained at pH 6.5 and contained three insulin hexamers in R6 conformation in the asymmetric unit whilst the monoclinic C2 crystals were obtained at pH 7.0 and contained one R6 hexamer in the asymmetric unit. Common for the two new crystals is a hexamer-hexamer interaction that has not been found in any of the previous crystal forms of insulin. The contacts involve a tight glutamate-glutamate interaction with a distance of 2.3 Å between groups. The short distance suggests a low barrier hydrogen bond. In addition, two tyrosine-tyrosine interactions occupying a known phenol binding pocket contribute to the stabilization of the contacts. Within the crystals, distinct binding sites for urea were found, adding further to the discussion on the role of urea in protein denaturation.
Conclusion
The change in space group from C2221 to C2 was primarily caused by an increase in pH. The fewer number of hexamer-hexamer interactions comprising the short hydrogen bond in the C2 space group suggest that pH is the driving force. In addition, the distance between the two glutamates increases from 2.32 Å in the C2221 crystals to 2.4 Å in the C2 crystals. However, in both cases the low barrier hydrogen bond and the tyrosine-tyrosine interaction should contribute to the stability of the crystals which is crucial when used in pharmaceutical formulations.
doi:10.1186/1472-6807-7-83
PMCID: PMC2241603  PMID: 18093308
14.  Cloning, expression, purification, crystallization and preliminary X-ray analysis of the human RuvBL1–RuvBL2 complex 
A truncated variant of the human RuvBL1–RuvBL2 complex was cloned, expressed, purified and crystallised. Synchrotron diffraction data to 4 Å resolution were used to carry out a preliminary crystallographic analysis of the complex.
The complex of RuvBL1 and its homologue RuvBL2, two evolutionarily highly conserved eukaryotic proteins belonging to the AAA+ (ATPase associated with diverse cellular activities) family of ATPases, was co-expressed in Escherichia coli. For crystallization purposes, the flexible domains II of RuvBL1 and RuvBL2 were truncated. The truncated RuvBL1–RuvBL2 complex was crystallized using the hanging-drop vapour-diffusion method at 293 K. The crystals were hexagonal-shaped plates and belonged to either the orthorhombic space group C2221, with unit-cell parameters a = 111.4, b = 188.0, c = 243.4 Å and six monomers in the asymmetric unit, or the monoclinic space group P21, with unit-cell parameters a = 109.2, b = 243.4, c = 109.3 Å, β = 118.7° and 12 monomers in the asymmetric unit. The crystal structure could be solved by molecular replacement in both possible space groups and the solutions obtained showed that the complex forms a dodecamer.
doi:10.1107/S174430910802558X
PMCID: PMC2531268  PMID: 18765919
RuvBL1; RuvBL2; ATPases
15.  Structure determination of enterovirus 71 
Determination of the orientation of the enterovirus 71 virions in the crystal required the calculation of a locked rotation function that included only icosahedral threefold and fivefold symmetry axes. Otherwise, misleading high rotation-function values were produced by accidental alignment of icosahedral and crystallographic twofold axes.
Enterovirus 71 is a picornavirus that causes hand, foot and mouth disease but may induce fatal neurological illness in infants and young children. Enterovirus 71 crystallized in a body-centered orthorhombic space group with two particles in general orientations in the crystallographic asymmetric unit. Determination of the particle orientations required that the locked rotation function excluded the twofold symmetry axes from the set of icosahedral symmetry operators. This avoided the occurrence of misleading high rotation-function values produced by the alignment of icosahedral and crystallographic twofold axes. Once the orientations and positions of the particles had been established, the structure was solved by molecular replacement and phase extension.
doi:10.1107/S0907444912025772
PMCID: PMC3489104  PMID: 22948923
enterovirus 71; viruses; rotation function; molecular replacement
16.  Crystallization and preliminary X-ray crystallographic analysis of a blue-light-absorbing proteorhodopsin 
A purified blue-light-absorbing proteorhodopsin D97N mutant protein (BPR_D97N) has been crystallized using the vapour-diffusion method.
Proteorhodopsins (PRs), seven-transmembrane chromoproteins with retinal as a chromophore, are light-driven proton pumps. To elucidate the light-driven proton-pumping mechanism of PRs, a pET28a vector containing the blue-light-absorbing proteorhodopsin (BPR) gene was constructed and the protein was overexpressed in Escherichia coli. The protein was purified by immobilized metal-ion affinity chromatography (IMAC). The purified BPR D97N mutant protein (BPR_D97N) was crystallized using the vapour-diffusion method. Preliminary X-ray diffraction data analysis showed that the crystal belonged to the orthorhombic space group P21212, with unit-cell parameters a = 161.6, b = 168.6, c = 64.7 Å. A complete data set was collected to 3.3 Å resolution using synchrotron radiation on beamline X06 of the Swiss Light Source (SLS). Molecular replacement was unsuccessful. To solve the structure of BPR_D97N by experimental phasing, selenomethionine-substituted protein crystals were prepared. These crystals diffracted to 3.0 Å resolution and a complete data set was collected on beamline BL17U of the Shanghai Synchrotron Radiation Facility (SSRF). Heavy-atom substructure determination and phasing by SAD clearly showed that the crystal contained five molecules in the asymmetric unit, with a V M of 3.26 Å3 Da−1 and a solvent content of 62.3%.
doi:10.1107/S1744309111043612
PMCID: PMC3310530  PMID: 22442222
proteorhodopsins; BPR
17.  Crystallization and preliminary X-ray crystallographic analysis of the oxysterol-binding protein Osh3 from Saccharomyces cerevisiae  
The PH domain and ORD of the oxysterol-binding protein Osh3 from S. cerevisae were crystallized and X-ray diffraction data were collected.
Oxysterol-binding protein (OSBP) related proteins (ORPs) are conserved from yeast to humans and are implicated in regulation of sterol homeostasis and in signal transduction pathways. Osh3 of Saccharomyces cerevisiae is a pleckstrin-homology (PH) domain-containing ORP member that regulates phosphoinositide metabolism at endoplasmic reticulum–plasma membrane contact sites. The N-terminal PH domain of Osh3 was purified and crystallized as a lysozyme fusion and the resulting crystal diffracted to 2.3 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 98.03, b = 91.31, c = 84.13 Å, β = 81.41°. With two molecules in the asymmetric unit, the Matthews coefficient was 3.13 Å3 Da−1. Initial attempts to solve the structure by molecular-replacement techniques using T4 lysozyme as a search model were successful. The C-terminal OSBP-related domain (OBD) of Osh3 was crystallized by the vapour-diffusion method and the resulting crystal diffracted to 1.5 Å resolution. The crystal was orthorhombic, belonging to space group P212121, with unit-cell parameters a = 41.57, b = 87.52, c = 100.58 Å. With one molecule in the asymmetric unit, the Matthews coefficient was 2.01 Å3 Da−1. Initial attempts to solve the structure by the single-wavelength anomalous dispersion technique using bromine were successful.
doi:10.1107/S1744309112042510
PMCID: PMC3509973  PMID: 23192032
oxysterol-binding protein; Osh3; Saccharomyces cerevisiae
18.  Structure of the orthorhombic form of human inosine triphosphate pyrophosphatase 
X-ray crystallographic analysis of human inosine triphosphate pyrophosphohydrolase provided the secondary structure and active-site structure at 1.6 Å resolution in an orthorhombic crystal form. The structure gives a framework for future structure–function studies employing site-directed mutagenesis and for the identification of substrate/product-binding sites.
The structure of human inosine triphosphate pyrophosphohydrolase (ITPA) has been determined using diffraction data to 1.6 Å resolution. ITPA contributes to the accurate replication of DNA by cleansing cellular dNTP pools of mutagenic nucleotide purine analogs such as dITP or dXTP. A similar high-resolution unpublished structure has been deposited in the Protein Data Bank from a monoclinic and pseudo-merohedrally twinned crystal. Here, cocrystallization of ITPA with a molar ratio of XTP appears to have improved the crystals by eliminating twinning and resulted in an orthorhombic space group. However, there was no evidence for bound XTP in the structure. Comparison with substrate-bound NTPase from a thermophilic organism predicts the movement of residues within helix α1, the loop before α6 and helix α7 to cap off the active site when substrate is bound.
doi:10.1107/S1744309106041790
PMCID: PMC2225220  PMID: 17077483
inosine triphosphate pyrophosphohydrolase
19.  Superoxide reductase from Nanoarchaeum equitans: expression, purification, crystallization and preliminary X-ray crystallographic analysis 
Diffraction-quality crystals of N. equitans neelaredoxin have been produced. The expression, purification and crystallization of the protein and preliminary X-ray crystallographic analysis of the crystals are reported.
Superoxide reductases (SORs) are the most recent oxygen-detoxification system to be identified in anaerobic and microaerobic bacteria and archaea. SORs are metalloproteins that are characterized by their possession of a catalytic nonhaem iron centre in the ferrous form coordinated by four histidine ligands and one cysteine ligand. Ignicoccus hospitalis, a hyperthermophilic crenarchaeon, is the only organism known to date to serve as a host for Nanoarchaeum equitans, a nanosized hyperthermophilic archaeon isolated from a submarine hot vent which completely depends on the presence of and contact with I. hospitalis cells for growth to occur. Similarly to I. hospitalis, N. equitans has a neelaredoxin (a 1Fe-type SOR) that keeps toxic oxygen species under control, catalysing the one-electron reduction of superoxide to hydrogen peroxide. Blue crystals of recombinant N. equitans SOR in the oxidized form (12.7 kDa, 109 residues) were obtained using polyethylene glycol (PEG 2000 MME) as precipitant. These crystals diffracted to 1.9 Å resolution at 100 K and belonged to the orthorhombic space group P212121, with unit-cell parameters a = 51.88, b = 82.01, c = 91.30 Å. Cell-content analysis suggested the presence of four monomers in the asymmetric unit. The Matthews coefficient (V M) was determined to be 1.9 Å3 Da−1, corresponding to an estimated solvent content of 36%. Self-rotation function and native Patterson calculations suggested a tetramer with 222 point-group symmetry, similar to other 1Fe-SORs. The three-dimensional structure will be determined by the molecular-replacement method.
doi:10.1107/S1744309111009432
PMCID: PMC3087648  PMID: 21543869
superoxide reductases; Nanoarchaeum equitans; oxidative stress; neelaredoxins
20.  Expression, purification, crystallization and structure determination of two glutathione S-transferase-like proteins from Shewanella oneidensis  
The production and purification of recombinant SoGST3 and SoGST6, two GST-like proteins from S. oneidensis, are reported and preliminary crystallographic studies of crystals of the recombinant enzymes are presented.
Genome analysis of Shewanella oneidensis, a Gram-negative bacterium with an unusual repertoire of respiratory and redox capabilities, revealed the presence of six glutathione S-transferase-like genes (sogst1–sogst6). Glutathione S-­transferases (GSTs; EC 2.5.1.18) are found in all kingdoms of life and are involved in phase II detoxification processes by catalyzing the nucleophilic attack of reduced glutathione on diverse electrophilic substrates, thereby decreasing their reactivity. Structure–function studies of prokaryotic GST-like proteins are surprisingly underrepresented in the scientific literature when compared with eukaryotic GSTs. Here, the production and purification of recombinant SoGST3 (SO_1576) and SoGST6 (SO_4697), two of the six GST-like proteins in S. oneidensis, are reported and preliminary crystallographic studies of crystals of the recombinant enzymes are presented. SoGST3 was crystallized in two different crystal forms in the presence of GSH and DTT that diffracted to high resolution: a primitive trigonal form in space group P31 that exhibited merohedral twinning with a high twin fraction and a primitive monoclinic form in space group P21. SoGST6 yielded primitive orthorhombic crystals in space group P212121 from which diffraction data could be collected to medium resolution after application of cryo-annealing protocols. Crystal structures of both SoGST3 and SoGST6 have been determined based on marginal search models by maximum-likelihood molecular replacement as implemented in the program Phaser.
doi:10.1107/S1744309108014589
PMCID: PMC2496851  PMID: 18540073
glutathione S-transferases; Shewanella oneidensis
21.  From small structural modifications to adjustment of structurally dependent properties: 1-methyl-3,5-bis­[(E)-2-thienyl­idene]-4-piperidone and 3,5-bis­[(E)-5-bromo-2-thienyl­idene]-1-methyl-4-piperidone 
The mol­ecules of the title compounds, C16H15NOS2, (I), and C16H13Br2NOS2, (II), are E,E-isomers and consist of an extensive conjugated system, which determines their mol­ecular geometries. Compound (I) crystallizes in the monoclinic space group P21/c. It has one thio­phene ring disordered over two positions, with a minor component contribution of 0.100 (3). Compound (II) crystallizes in the noncentrosymmetric ortho­rhom­bic space group Pca21 with two independent mol­ecules in the unit cell. These mol­ecules are related by a noncrystallographic pseudo-inversion center and possess very similar geometries. The crystal packings of (I) and (II) have a topologically common structural motif, viz. stacks along the b axis, in which the mol­ecules are bound by weak C—H⋯O hydrogen bonds. The noncentrosymmetric packing of (II) is governed by attractive inter­molecular Br⋯Br and Br⋯N inter­actions, which are also responsible for the very high density of (II) (1.861 Mg m−3).
doi:10.1107/S0108270109008336
PMCID: PMC2665971  PMID: 19346612
22.  An ortho­rhom­bic polymorph of pyrazino­[2,3-f][1,10]phenanthroline-2,3-dicarbonitrile 
The title compound, C16H6N6, is a polymorph of the previously reported structure [Kozlov & Goldberg (2008 ▶). Acta Cryst. C64, o498–o501]. Unlike the previously reported monoclinic polymorph (space group P21/c, Z = 8), the title compound reveals ortho­rhom­bic symmetry (space group Pnma, Z = 4). The mol­ecule shows crystallographic mirror symmetry, while the previously reported structure exhibits two independent mol­ecules per asymmetric unit. In the title compound, adjacent mol­ecules are essentially parallel along the c axis and tend to be vertical along the b axis with dihedral angles of 72.02 (6)°. However, in the reported polymorph, the entire crystal structure shows an anti­parallel arrangement of adjacent columns related by inversion centers and the two independent mol­ecules are nearly parallel with a dihedral angle of 2.48 (6)°.
doi:10.1107/S1600536811047039
PMCID: PMC3238907  PMID: 22199760
23.  Expression, purification, crystallization and preliminary X-ray diffraction analysis of the apo form of InsP5 2-K from Arabidopsis thaliana  
A mutated version of InsP5 2-K allows the production of crystals of the apo form and structure determination using X-ray crystallography.
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5 2-K) is a key enzyme that catalyzes the synthesis of phytic acid (IP6) from inositol 1,3,4,5,6-pentakisphos­phate (IP5) and ATP. The first structure of IP5 2-K, that from Arabidopsis thaliana, has been solved previously; it only crystallized in the presence of inositol, either the substrate IP5 or the product IP6, and failed to crystallize in its free state (without inositol). Based on structural analysis, a point mutation of IP5 2-K (W129A) has been produced in order to overcome this limitation and obtain information about protein conformational changes upon substrate binding. Here, the production and crystallization of W129A IP5 2-K in its free state and with bound nucleotide is described. These crystals differed from the native crystals and belonged to the orthorhombic space group P21212, with unit-cell parameters a = 66.00, b = 68.23, c = 105.80 Å and a = 63.06, b = 71.80, c = 100.23 Å, respectively. The crystals diffracted to resolutions of 2.22 Å (apo) and 2.05 Å (nucleotide bound) using synchrotron radiation and contained one molecule per asymmetric unit. The structures have been determined using the molecular-replacement method and refinement is being undertaken.
doi:10.1107/S1744309112017307
PMCID: PMC3370915  PMID: 22684075
inositol kinases; inositol phosphate; phytic acid; IP6; IP5 2-K
24.  Monohalogenated ferrocenes C5H5FeC5H4 X (X = Cl, Br and I) and a second polymorph of C5H5FeC5H4I 
The structures of the three title monosubstituted ferrocenes, namely 1-chloro­ferrocene, [Fe(C5H5)(C5H4Cl)], (I), 1-bromo­ferrocene, [Fe(C5H5)(C5H4Br)], (II), and 1-iodo­ferrocene, [Fe(C5H5)(C5H4I)], (III), were determined at 100 K. The chloro- and bromo­ferrocenes are isomorphous crystals. The new triclinic polymorph [space group P , Z = 4, T = 100 K, V = 943.8 (4) Å3] of iodo­ferrocene, (III), and the previously reported monoclinic polymorph of (III) [Laus, Wurst & Schottenberger (2005 ▶). Z. Kristallogr. New Cryst. Struct. 220, 229–230; space group Pc, Z = 4, T = 100 K, V = 924.9 Å3] were obtained by crystallization from ethanolic solutions at 253 and 303 K, respectively. All four phases contain two independent mol­ecules in the unit cell. The relative orientations of the cyclo­penta­dienyl (Cp) rings are eclipsed and staggered in the independent mol­ecules of (I) and (II), while (III) demonstrates only an eclipsed conformation. The triclinic and monoclinic polymorphs of (III) contain nonbonded inter­molecular I⋯I contacts, causing different packing modes. In the triclinic form of (III), the mol­ecules are arranged in zigzag tetra­mers, while in the monoclinic form the mol­ecules are arranged in zigzag chains along the a axis. Crystallographic data for (III), along with the computed lattice energies of the two polymorphs, suggest that the monoclinic form is more stable.
doi:10.1107/S0108270109034763
PMCID: PMC2773730  PMID: 19893225
25.  Emerging from pseudo-symmetry: the redetermination of human carbonic anhydrase II in monoclinic P21 with a doubled a axis 
The structure of human carbonic anhydrase II in the monoclinic P21 space group with a doubled a axis from that of the usually observed unit cell has been re-determined and shown that the choice for how the four molecules in the unit cell are grouped (based on their coordinates) into pairs that represent a single asymmetric unit determines whether or not rotational disorder is observed/created during refinement.
The crystal structure of human carbonic anhydrase II in the monoclinic P21 space group with a doubled a axis from that of the usually observed unit cell has recently been reported, with one of the two molecules in the asymmetric unit demonstrating rotational disorder [Robbins et al. (2010 ▶), Acta Cryst. D66, 628–634]. The structure has been redetermined, with the coordinates of both pseudo-symmetrically related molecules in the crystallographic asymmetric unit translated by x′ = x ± 1/4, and no rotational disorder is observed. This corresponds to a different choice of how the four molecules in the unit cell should be grouped into pairs that represent a single asymmetric unit.
doi:10.1107/S0907444910023723
PMCID: PMC2917278  PMID: 20693695
doubled axis; systematically weak data; pseudo-translational symmetry; redetermination

Results 1-25 (977155)