Search tips
Search criteria

Results 1-25 (1363512)

Clipboard (0)

Related Articles

1.  Effects of Alcohol Intoxication on Response Conflict in a Flanker Task 
Events evoke seamlessly integrated stimulus evaluation and response preparation processing streams, guided by regulative functions that change behavior flexibly in accord with the internal goals and contextual demands. The neural basis of the effects of alcohol intoxication on these processing streams is poorly understood, despite the evidence of alcohol’s deleterious effects on both attention and motor control. In an attempt to separate and examine relative susceptibility of these two dimensions, we employed a color version of the Eriksen flanker task that manipulated compatibility at the stimulus- and response-processing levels. Functional magnetic resonance imaging (fMRI) was performed in healthy social drinkers as they participated in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions in a counterbalanced design. Alcohol increased reaction times to response-level incongruity and decreased accuracy overall. Relative to the no-conflict condition, the observed brain activity was predominantly evoked by response-related conflict in medial prefrontal and lateral prefrontal cortices under placebo, in agreement with extensive evidence of their role in conflict processing. Activity evoked by response incongruity in the medial frontal cortex and insula was insignificant under alcohol, indicating its interference with response inhibition and preparation. Conversely, activity in ventrolateral prefrontal and premotor areas was relatively greater under alcohol than placebo, suggesting their compensatory engagement. This finding is consistent with the compensatory prefrontal activity increase found in studies with chronic alcoholic individuals, indicating functional reorganization with a goal of optimizing response strategy. These results delineate functional differences and selective susceptibility of a prefrontal network subserving response-level conflict processing. Our findings are incompatible with notions that moderate alcohol primarily affects attentional or stimulus-related processing and argue instead that its primary influence is on response inhibition, selection, and execution, with ramifications for the models of behavioral self-control and the inability to refrain from drinking.
PMCID: PMC3682793  PMID: 23772336
Eriksen flanker; Anterior cingulated; Lateral prefrontal cortex; Compensatory activity
2.  Human Evoked Cortical Activity to Silent Gaps in Noise: Effects of Age, Attention, and Cortical Processing Speed 
Ear and Hearing  2012;33(3):330-339.
The goal of this study was to examine the degree to which age-related differences in early or automatic levels of auditory processing and attention-related processes explain age-related differences in auditory temporal processing. We hypothesized that age-related differences in attention and cognition compound age-related differences at automatic levels of processing, contributing to the robust age effects observed during challenging listening tasks.
We examined age-related and individual differences in cortical event-related potential (ERP) amplitudes and latencies, processing speed, and gap detection from twenty-five younger and twenty-five older adults with normal hearing. ERPs were elicited by brief silent periods (gaps) in an otherwise continuous broadband noise and were measured under two listening conditions, passive and active. During passive listening, participants ignored the stimulus and read quietly. During active listening, participants button pressed each time they detected a gap. Gap detection (percent detected) was calculated for each gap duration during active listening (3, 6, 9, 12 and 15 ms). Processing speed was assessed using the Purdue Pegboard test and the Connections Test. Repeated measures ANOVAs assessed effects of age on gap detection, processing speed, and ERP amplitudes and latencies. An “attention modulation” construct was created using linear regression to examine the effects of attention while controlling for age-related differences in auditory processing. Pearson correlation analyses assessed the extent to which attention modulation, ERPs, and processing speed predicted behavioral gap detection. Results: Older adults had significantly poorer gap detection and slower processing speed than younger adults. Even after adjusting for poorer gap detection, the neurophysiological response to gap onset was atypical in older adults with reduced P2 amplitudes and virtually absent N2 responses. Moreover, individual differences in attention modulation of P2 response latencies and N2 amplitudes predicted gap detection and processing speed in older adults. That is, older adults with P2 latencies that decreased and N2 amplitudes that increased with active listening had faster processing speed and better gap detection than those older adults whose P2 latencies increased and N2 amplitudes decreased with attention
Results from the current study are broadly consistent with previous findings that older adults exhibit significantly poorer gap detection than younger adults in challenging tasks. Even after adjusting for poorer gap detection, older and younger adults showed robust differences in their electrophysiological responses to sound offset. Furthermore, the degree to which attention modulated the ERP was associated with individual variation in measures of processing speed and gap detection. Taken together, these results suggests an age-related deficit in early or automatic levels of auditory temporal processing and that some older adults may be less able to compensate for declines in processing by attending to the stimulus. These results extend our previous findings and support the hypothesis that age-related differences in cognitive or attention-related processing, including processing speed, contribute to an age-related decrease in gap detection.
PMCID: PMC3340542  PMID: 22374321
3.  The Effects of Methylphenidate on Cognitive Control in Active Methamphetamine Dependence Using Functional Magnetic Resonance Imaging 
Methamphetamine (MA) dependence is associated with cognitive deficits. Methylphenidate (MPH) has been shown to improve inhibitory control in healthy and cocaine-dependent subjects. This study aimed to understand the neurophysiological effects before and after acute MPH administration in active MA-dependent and control subjects. Fifteen MA-dependent and 18 control subjects aged 18–46 years were scanned using functional magnetic resonance imaging before and after either a single oral dose of MPH (18 mg) or placebo while performing a color-word Stroop task. Baseline accuracy was lower (p = 0.026) and response time (RT) was longer (p < 0.0001) for the incongruent compared to congruent condition, demonstrating the task probed cognitive control. Increased activation of the dorsolateral prefrontal cortex (DLPFC) and parietal cortex during the incongruent and Stroop effect conditions, respectively was observed in MA-dependent compared to control subjects (p < 0.05), suggesting the need to recruit neural resources within these regions for conflict resolution. Post- compared to pre-MPH treatment, increased RT and DLPFC activation for the Stroop effect were observed in MA-dependent subjects (p < 0.05). In comparison to MPH-treated controls and placebo-treated MA-dependent subjects, MPH-treated MA-dependent subjects showed decreased activation of parietal and occipital regions during the incongruent and Stroop effect conditions (p < 0.05). These findings suggest that in MA-dependent subjects, MPH facilitated increased recruitment of the DLPFC for Stroop conflict resolution, and a decreased need for recruitment of neural resources in parietal and occipital regions compared to the other groups, while maintaining a comparable level of task performance to that achieved pre-drug administration. Due to the small sample size, the results from this study are preliminary; however, they inform us about the effects of MPH on the neural correlates of cognitive control in active MA-dependent subjects.
PMCID: PMC3944404  PMID: 24639656
cognitive control; BOLD; drug dependence; fMRI; methamphetamine; methylphenidate; Stroop
4.  Individual differences in emotion-cognition interactions: emotional valence interacts with serotonin transporter genotype to influence brain systems involved in emotional reactivity and cognitive control 
The serotonin transporter gene (5-HTTLPR) influences emotional reactivity and attentional bias toward or away from emotional stimuli, and has been implicated in psychopathological states, such as depression and anxiety disorder. The short allele is associated with increased reactivity and attention toward negatively-valenced emotional information, whereas the long allele is associated with increased reactivity and attention toward positively-valenced emotional information. The neural basis for individual differences in the ability to exert cognitive control over these bottom-up biases in emotional reactivity and attention is unknown, an issue investigated in the present study. Healthy adult participants were divided into two groups, either homozygous carriers of the 5-HTTLPR long allele or homozygous carriers of the short allele, and underwent functional magnetic resonance imaging (fMRI) while completing an Emotional Stroop-like task that varied in the congruency of task-relevant and task-irrelevant information and the emotional valence of the task-irrelevant information. Behaviorally, participants demonstrated the classic “Stroop effect” (responses were slower for incongruent than congruent trials), which did not differ by 5-HTTLPR genotype. However, fMRI results revealed that genotype influenced the degree to which neural systems were engaged depending on the valence of the conflicting task-irrelevant information. While the “Long” group recruited prefrontal control regions and superior temporal sulcus during conflict when the task-irrelevant information was positively-valenced, the “Short” group recruited these regions during conflict when the task-irrelevant information was negatively-valenced. Thus, participants successfully engaged cognitive control to overcome conflict in an emotional context using similar neural circuitry, but the engagement of this circuitry depended on emotional valence and 5-HTTLPR status. These results suggest that the interplay between emotion and cognition is modulated, in part, by a genetic polymorphism that influences serotonin neurotransmission.
PMCID: PMC3701233  PMID: 23847500
5-HTTLPR; Stroop; fMRI; prefrontal cortex (PFC); eye-gaze; anxiety; positive affect
5.  Acute Alcohol Intoxication Impairs Top-down Regulation of Stroop Incongruity as Revealed by BOLD fMRI 
Human brain mapping  2011;33(2):319-333.
Functional neuroanatomy of executive functions has been delineated in a large number of neuroimaging studies using conflict-inducing tasks. The neural basis of alcohol’s effects on cognitive control is poorly understood despite the evidence of impaired ability to evaluate competing demands and to inhibit maladaptive responses. In order to investigate effects of moderate intoxication, healthy social drinkers participated in both alcohol (0.60 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions while being scanned using blood oxygen level dependent (BOLD) fMRI. A modified 4-color Stroop task combined reading and color naming and used manual responses. Twenty subjects (10 women) were instructed to press a button corresponding to the font color except when a word was written in gray in which case they had to respond to the meaning of the word. Alcohol increased reaction times and a tendency to make more errors on incongruent trials. Behavioral indices of alcohol-induced premature responding correlated with the current drinking levels and impulsivity traits, suggesting an interaction between alcohol effects and personality predispositions. A distributed fronto-parietal cortical network was activated by incongruity. However, moderate alcohol inebriation selectively attenuated anterior cingulate cortex (ACC) activation during both high-conflict trials and erroneous responses, indicating vulnerability of the regulative function subserved by the ACC. By disrupting top-down, strategic processing, alcohol may interfere with goal-directed behavior, resulting in poor self control. The present results support models proposing that alcohol-induced prefrontal impairments diminish inhibitory control and are modulated by dispositional risk factors and levels of alcohol consumption.
PMCID: PMC3754428  PMID: 21391268
cognitive control; anterior cingulate; error-related activity
6.  Cardiorespiratory Fitness and Attentional Control in the Aging Brain 
A growing body of literature provides evidence for the prophylactic influence of cardiorespiratory fitness on cognitive decline in older adults. This study examined the association between cardiorespiratory fitness and recruitment of the neural circuits involved in an attentional control task in a group of healthy older adults. Employing a version of the Stroop task, we examined whether higher levels of cardiorespiratory fitness were associated with an increase in activation in cortical regions responsible for imposing attentional control along with an up-regulation of activity in sensory brain regions that process task-relevant representations. Higher fitness levels were associated with better behavioral performance and an increase in the recruitment of prefrontal and parietal cortices in the most challenging condition, thus providing evidence that cardiorespiratory fitness is associated with an increase in the recruitment of the anterior processing regions. There was a top-down modulation of extrastriate visual areas that process both task-relevant and task-irrelevant attributes relative to the baseline. However, fitness was not associated with differential activation in the posterior processing regions, suggesting that fitness enhances attentional function by primarily influencing the neural circuitry of anterior cortical regions. This study provides novel evidence of a differential association of fitness with anterior and posterior brain regions, shedding further light onto the neural changes accompanying cardiorespiratory fitness.
PMCID: PMC3024830  PMID: 21267428
cardiorespiratory fitness; Stroop task; cognitive and attentional control
7.  PTSD symptom severity is associated with increased recruitment of top-down attentional control in a trauma-exposed sample☆ 
NeuroImage : Clinical  2014;7:19-27.
Recent neuroimaging work suggests that increased amygdala responses to emotional stimuli and dysfunction within regions mediating top down attentional control (dorsomedial frontal, lateral frontal and parietal cortices) may be associated with the emergence of anxiety disorders, including posttraumatic stress disorder (PTSD). This report examines amygdala responsiveness to emotional stimuli and the recruitment of top down attention systems as a function of task demands in a population of U.S. military service members who had recently returned from combat deployment in Afghanistan/Iraq. Given current interest in dimensional aspects of pathophysiology, it is worthwhile examining patients who, while not meeting full PTSD criteria, show clinically significant functional impairment.
Fifty-seven participants with sub-threshold levels of PTSD symptoms completed the affective Stroop task while undergoing fMRI. Participants with PTSD or depression at baseline were excluded.
Greater PTSD symptom severity scores were associated with increased amygdala activation to emotional, particularly positive, stimuli relative to neutral stimuli. Furthermore, greater PTSD symptom severity was associated with increased superior/middle frontal cortex response during task conditions relative to passive viewing conditions. In addition, greater PTSD symptom severity scores were associated with: (i) increased activation in the dorsolateral prefrontal, lateral frontal, inferior parietal cortices and dorsomedial frontal cortex/dorsal anterior cingulate cortex (dmFC/dACC) in response to emotional relative to neutral stimuli; and (ii) increased functional connectivity during emotional trials, particularly positive trials, relative to neutral trials between the right amygdala and dmFC/dACC, left caudate/anterior insula cortex, right lentiform nucleus/caudate, bilateral inferior parietal cortex and left middle temporal cortex.
We suggest that these data may reflect two phenomena associated with increased PTSD symptomatology in combat-exposed, but PTSD negative, armed services members. First, these data indicate increased emotional responsiveness by: (i) the positive relationship between PTSD symptom severity and amygdala responsiveness to emotional relative to neutral stimuli; (ii) greater BOLD response as a function of PTSD symptom severity in regions implicated in emotion (striatum) and representation (occipital and temporal cortices) during emotional relative to neutral conditions; and (iii) increased connectivity between the amygdala and regions implicated in emotion (insula/caudate) and representation (middle temporal cortex) as a function of PTSD symptom severity during emotional relative to neutral trials. Second, these data indicate a greater need for the recruitment of regions implicated in top down attention as indicated by (i) greater BOLD response in superior/middle frontal gyrus as a function of PTSD symptom severity in task relative to view conditions; (ii) greater BOLD response in dmFC/dACC, lateral frontal and inferior parietal cortices as a function of PTSD symptom severity in emotional relative to neutral conditions and (iii) greater functional connectivity between the amygdala and inferior parietal cortex as a function of PTSD symptom severity during emotional relative to neutral conditions.
•Greater PTSD symptoms associated with increased amygdala activation to emotional stimuli•PTSD symptoms associated with greater top down attention response in task and emotion conditions•PTSD symptoms were associated with slower reaction times.•Increased top down attention recruitment may compensate for heightened emotional responses.
PMCID: PMC4299952  PMID: 25610763
Post-traumatic stress disorder; Emotion attention; Amygdala; Top down attention
8.  Effects of motivation on reward and attentional networks: an fMRI study 
Brain and Behavior  2012;2(6):741-753.
Existing evidence suggests that reward and attentional networks function in concert and that activation in one system influences the other in a reciprocal fashion; however, the nature of these influences remains poorly understood. We therefore developed a three-component task to assess the interaction effects of reward anticipation and conflict resolution on the behavioral performance and the activation of brain reward and attentional systems. Sixteen healthy adult volunteers aged 21–45 years were scanned with functional magnetic resonance imaging (fMRI) while performing the task. A two-way repeated measures analysis of variance (ANOVA) with cue (reward vs. non-reward) and target (congruent vs. incongruent) as within-subjects factors was used to test for main and interaction effects. Neural responses to anticipation, conflict, and reward outcomes were tested. Behaviorally there were main effects of both reward cue and target congruency on reaction time. Neuroimaging results showed that reward anticipation and expected reward outcomes activated components of the attentional networks, including the inferior parietal and occipital cortices, whereas surprising non-rewards activated the frontoinsular cortex bilaterally and deactivated the ventral striatum. In turn, conflict activated a broad network associated with cognitive control and motor functions. Interaction effects showed decreased activity in the thalamus, anterior cingulated gyrus, and middle frontal gyrus bilaterally when difficult conflict trials (e.g., incongruent targets) were preceded by reward cues; in contrast, the ventral striatum and orbitofrontal cortex showed greater activation during congruent targets preceded by reward cues. These results suggest that reward anticipation is associated with lower activation in attentional networks, possibly due to increased processing efficiency, whereas more difficult, conflict trials are associated with lower activity in regions of the reward system, possibly because such trials are experienced as less rewarding.
PMCID: PMC3500461  PMID: 23170237
Attention; brain reward system; fMRI; motivation; neuroimaging; neuroscience
9.  Neural Substrates of Attentive Listening Assessed with a Novel Auditory Stroop Task 
A common explanation for the interference effect in the classic visual Stroop test is that reading a word (the more automatic semantic response) must be suppressed in favor of naming the text color (the slower sensory response). Neuroimaging studies also consistently report anterior cingulate/medial frontal, lateral prefrontal, and anterior insular structures as key components of a network for Stroop-conflict processing. It remains unclear, however, whether automatic processing of semantic information can explain the interference effect in other variants of the Stroop test. It also is not known if these frontal regions serve a specific role in visual Stroop conflict, or instead play a more universal role as components of a more generalized, supramodal executive-control network for conflict processing. To address these questions, we developed a novel auditory Stroop test in which the relative dominance of semantic and sensory feature processing is reversed. Listeners were asked to focus either on voice gender (a more automatic sensory discrimination task) or on the gender meaning of the word (a less automatic semantic task) while ignoring the conflicting stimulus feature. An auditory Stroop effect was observed when voice features replaced semantic content as the “to-be-ignored” component of the incongruent stimulus. Also, in sharp contrast to previous Stroop studies, neural responses to incongruent stimuli studied with functional magnetic resonance imaging revealed greater recruitment of conflict loci when selective attention was focused on gender meaning (semantic task) over voice gender (sensory task). Furthermore, in contrast to earlier Stroop studies that implicated dorsomedial cortex in visual conflict processing, interference-related activation in both of our auditory tasks was localized ventrally in medial frontal areas, suggesting a dorsal-to-ventral separation of function in medial frontal cortex that is sensitive to stimulus context.
PMCID: PMC3020403  PMID: 21258643
anterior cingulate; anterior insula; attention; auditory Stroop; conflict processing; fMRI; medial frontal gyrus
10.  Momentary reductions of attention permit greater processing of irrelevant stimuli 
NeuroImage  2009;48(3):609-615.
Momentary reductions of attention can have extremely adverse outcomes, but it remains unclear whether increased distraction from irrelevant stimuli contributes to such outcomes. To investigate this hypothesis, we examined trial-by-trial relationships between brain activity and response time in twenty healthy adults while they performed a cross-modal selective attention task. In each trial, participants identified a relevant visual letter while ignoring an irrelevant auditory letter, which was mapped either to the same response as the visual letter (congruent trials) or to a different response (incongruent trials). As predicted, reductions of attention (i.e., increases of response time) were associated not only with decreased activity in sensory regions that processed the relevant visual stimuli, suggesting a failure to enhance the processing of those stimuli, but also with increased activity in sensory regions that processed the irrelevant auditory stimuli, suggesting a failure to suppress the processing of those stimuli. Reductions of attention were also linked to larger increases of activity in incongruent than in congruent trials in anterior cingulate regions that detect response conflict, suggesting that failing to suppress the sensory processing of the irrelevant auditory stimuli during attentional reductions allowed those stimuli to more readily activate conflicting responses in incongruent trials. These findings indicate that heightened levels of distraction during momentary reductions of attention likely stem, at least in part, from increased processing of irrelevant stimuli.
PMCID: PMC2738758  PMID: 19596451
attention; auditory; visual; response conflict; fMRI; cognitive
11.  Top-down attentional control in spatially coincident stimuli enhances activity in both task-relevant and task-irrelevant regions of cortex 
Behavioural brain research  2008;197(1):186-197.
Models of selective attention predict that focused attention to spatially contiguous stimuli may result in enhanced activity in areas of cortex specialized for processing task-relevant and task-irrelevant information. We examined this hypothesis by localizing color-sensitive areas (CSA) and word and letter sensitive areas of cortex and then examining modulation of these regions during performance of a modified version of the Stroop task in which target and distractors are spatially coincident. We report that only the incongruent condition with the highest cognitive demand showed increased activity in CSA relative to other conditions, indicating an attentional enhancement in target processing areas. We also found an enhancement of activity in one region sensitive to word/letter processing during the most cognitively demanding incongruent condition indicating greater processing of the distractor dimension. Correlations with performance revealed that top-down modulation during the task was critical for effective filtering of irrelevant information in conflict conditions. These results support predictions made by models of selective attention and suggest an important mechanism of top-down attentional control in spatially contiguous stimuli.
PMCID: PMC2845993  PMID: 18804123
Attentional control; Top-down modulation; Stroop task; Color-sensitive; Visual word form area
12.  High cognitive reserve is associated with a reduced age-related deficit in spatial conflict resolution 
Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR) and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69–79 years-old) and 18 younger controls (18–34 years-old) matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs) if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn−1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors.
PMCID: PMC3520054  PMID: 23248595
cognitive aging; conflict; cognitive reserve; spatial Stroop
13.  Effects of Working Memory Load on Visual Selective Attention: Behavioral and Electrophysiological Evidence 
Working memory and attention interact in a way that enables us to focus on relevant items and maintain current goals. The influence of working memory on attention has been noted in several studies using dual task designs. Multitasking increases the demands on working memory and reduces the amount of resources available for cognitive control functions such as resolving stimulus conflict. However, few studies have investigated the temporal activation of the cortex while multitasking. The present study addresses the extent to which working memory load influences early (P1) and late (P300) attention-sensitive event-related potential components using a dual task paradigm. Participants performed an arrow flanker task alone (single task condition) or concurrently with a Sternberg memory task (dual task condition). In the flanker task, participants responded to the direction of a central arrow surrounded by congruent or incongruent arrows. In the dual task condition, participants were presented with a Sternberg task that consisted of either four or seven consonants to remember prior to a short block of flanker trials. Participants were slower and less accurate on incongruent versus congruent trials. Furthermore, accuracy on incongruent trials was reduced in both dual task conditions. Likewise, P300 amplitude to incongruent flanker stimuli decreased when working memory load increased. These findings suggest that interference from incongruent flankers was more difficult to suppress when working memory was taxed. In addition, P1 amplitude was diminished on all flanker trials in the dual task condition. This result indicates that top-down attentional control over early visual processing is diminished by increasing demands on working memory. Both the behavioral and electrophysiological results suggest that working memory is critical in maintaining attentional focus and resolving conflict.
PMCID: PMC3115462  PMID: 21716633
dual task; working memory; ERPs; attention; P1; P300
14.  Proactive and Reactive Control During Emotional Interference and its Relationship to Trait Anxiety 
Brain research  2012;1481:13-36.
In classic Stroop paradigms, increasing the proportion of control-demanding incongruent trials results in strategic adjustments in behavior and implementation of cognitive control processes. We manipulated expectancy for incongruent trials in an emotional facial Stroop task to investigate the behavioral and neural effects of proportion manipulation in a cognitively demanding task with emotional stimuli. Subjects performed a high expectancy (HE) task (65% incongruent trials) and a low expectancy (LE) task (35% incongruent trials) during functional magnetic resonance imaging (fMRI). As in standard Stroop tasks, behavioral interference was reduced in the emotional facial Stroop HE task compared to the LE task. Functional MRI data revealed a switch in cognitive control strategy, from a reactive, event-related activation of a medial and lateral cognitive control network and right amygdala in the LE task to a proactive, sustained activation of right dorsolateral prefrontal cortex (DLPFC) in the HE task. Higher trait anxiety was associated with impairment (slower response time and decreased accuracy) as well as reduced activity in left ventrolateral prefrontal cortex, anterior insula, and orbitofrontal cortex in the HE task on high conflict trials with task-irrelevant emotional information, suggesting that individual differences in anxiety may be associated with expectancy-related strategic control adjustments, particularly when emotional stimuli must be ignored.
PMCID: PMC3541031  PMID: 22960116
amygdala; anterior cingulate cortex; conflict monitoring; fMRI; prefrontal cortex; sustained and transient control
15.  Reduced dorsal anterior cingulate cortical activity during emotional regulation and top-down attentional control in Generalized Social Phobia (GSP), Generalized Anxiety Disorder (GAD) and comorbid GSP/GAD 
Biological psychiatry  2012;72(6):476-482.
Generalized Social Phobia (GSP) and Generalized Anxiety Disorder (GAD) are both associated with emotion dysregulation. In healthy subjects, research implicates dorsal anterior cingulate (dACC) in both explicit emotion regulation and top-down attentional control. While studies have examined these processes in GSP or GAD, no work compares findings across the two disorders. Moreover, no work examines functioning in cases comorbid for both disorders (GSP/GAD). Here we compare the neural correlates of explicit emotion regulation (EER) and top-down attentional control (TAC) in GSP, GAD, and GSP/GAD.
Medication-free adults with GSP (EER n=19; TAC n=18), GAD (EER n=17; TAC n =17), GSP/GAD (EER n=17; TAC=15), or no psychopathology (EER n=18; TAC n=18). During EER, individuals alternatively viewed, up-regulated, and down-regulated responses to emotional pictures. During TAC, they performed an emotional Stroop task.
For both tasks, significant group-by-condition interactions emerged in dACC and parietal cortices. Healthy adults showed significantly increased recruitment during emotion regulation, relative to emotion-picture viewing. GAD, GSP, and GSP/GAD subjects showed no such increases, with all three groups differing from healthy adults but not from each other. Evidence of emotion-related disorder-specificity emerged in medial prefrontal cortex (MPFC) and amygdala. This disorder-specific responding varied as a function of stimulus emotion content but not emotion-regulatory demands.
GSP and GAD both involve reduced capacity for engaging emotion-regulation brain networks, whether explicitly or via top-down attentional control. A reduced ability to recruit regions implicated in top-down attention might represent a general risk factor for anxiety disorders.
PMCID: PMC3424322  PMID: 22592057
imaging; social anxiety; generalized anxiety; emotion regulation; anterior cingulate cortex; top-down attentional control
16.  Response conflict and frontocingulate dysfunction in unmedicated participants with Major Depression 
Neuropsychologia  2008;46(12):2904-2913.
Individuals with major depressive disorder (MDD) often exhibit impaired executive function, particularly in experimental tasks that involve response conflict and require adaptive behavioral adjustments. Prior research suggests that these deficits might be due to dysfunction within frontocingulate pathways implicated in response conflict monitoring and the recruitment of cognitive control. However, the temporal unfolding of conflict monitoring impairments in MDD remains poorly understood. To address this issue, we recorded 128-channel event-related potentials while 20 unmedicated participants with MDD and 20 demographically matched, healthy controls performed a Stroop task. Compared to healthy controls, MDD subjects showed larger Stroop interference effects and reduced N2 and N450 amplitudes. Source localization analyses at the time of maximal N450 activity revealed that MDD subjects had significantly reduced dorsal anterior cingulate cortex (dACC; Brodmann area 24/32) and left dorsolateral prefrontal cortex (Brodmann area 10/46) activation to incongruent relative to congruent trials. Consistent with the heterogeneous nature of depression, follow-up analyses revealed that depressed participants with the lowest level of conflict-related dACC activation 620 ms post-stimulus were characterized by the largest Stroop interference effects (relatively increased slowing and reduced accuracy for incongruent trials). Conversely, MDD participants with relatively stronger dACC recruitment did not differ from controls in terms of interference effects. These findings suggest that for some, but not all individuals, MDD is associated with impaired performance in trials involving competition among different response options, and reduced recruitment of frontocingulate pathways implicated in conflict monitoring and cognitive control.
PMCID: PMC2538441  PMID: 18577391
Depression; Action Monitoring; Anterior Cingulate Cortex; Dorsolateral Prefrontal Cortex; Cognitive Control; Executive Function
17.  Task Difficulty Modulates the Impact of Emotional Stimuli on Neural Response in Cognitive-Control Regions 
Both heightened reactivity to emotional stimuli and impaired cognitive control are key aspects of depression, anxiety, and addiction. But the impact of emotion on cognitive-control processes, and the factors that modulate this impact, are still not well understood. We examined the effects of threat and reward distracters on the neural correlates of cognitive control using functional MRI (fMRI) and the Multi-Source Interference Task (MSIT). Behaviorally, subjects were slower and less accurate on the more demanding incongruent trials compared to the easier congruent trials. In addition, both threat and reward distracters significantly impaired the speed of responding on incongruent trials relative to the no-distracter condition. At the neural level, we used the incongruent – congruent contrast to functionally define four cognitive-control regions of interest (ROIs): anterior cingulate cortex (ACC), left and right inferior frontal gyrus (IFG)/insula, and right dorsolateral prefrontal cortex (DLPFC). A repeated-measures analysis of variance on the extracted contrast values in these ROIs indicated a significant interaction of stimulus salience and task difficulty on the neural response in cognitive-control regions. Specifically, threat distracters significantly decreased the response in cognitive-control regions on incongruent trials, whereas they significantly increased that response on congruent trials, relative to the no-distracter condition. Exploratory analyses of the amygdala response showed a similar interaction of stimulus salience and task difficulty: threat distracters significantly decreased the amygdala response only on incongruent trials. Overall, our results suggest that the impact of emotional distracters on the neural response in cognitive-control regions as well as in the amygdala is modulated by task difficulty, and add to our understanding of the factors that determine whether emotion enhances or impairs cognition.
PMCID: PMC3464044  PMID: 23060828
emotion; cognitive control; executive function; emotion-cognition interactions; fMRI; ACC; DLPFC; IFG
18.  Interference Suppression vs. Response Inhibition: An Explanation for the Absence of a Bilingual Advantage in Preschoolers’ Stroop Task Performance 
Cognitive development  2013;28(4):354-363.
The well-documented advantage that bilingual speakers demonstrate across the lifespan on measures of controlled attention is not observed in preschoolers’ performance on Stroop task variations. We examined the role of task demands in explaining this discrepancy. Whereas the Color/Word Stroop used with adult participants requires interference suppression, the Stroop task typically used with preschoolers requires only response inhibition. We developed an age-appropriate conflict task that measures interference suppression. Fifty-one preschool children (26 bilinguals) completed this new Color/Shape task and the Day/Night task used in previous research. Bilingual in comparison to monolingual children performed better on incongruent trials of the Color/Shape task, but did not differ on other measures. The results indicate that the discrepancy between preschoolers and older individuals in performance on Stroop task adaptations results from characteristics of the task rather than developmental differences. Further, the findings provide additional support for the importance of interference suppression as a mechanism underlying the bilingual advantage.
PMCID: PMC3894626  PMID: 24453405
bilingual advantage; inhibition; preschool; Stroop; executive function; interference suppression
19.  Word Wins Over Face: Emotional Stroop Effect Activates the Frontal Cortical Network 
The prefrontal cortex (PFC) has been implicated in higher order cognitive control of behavior. Sometimes such control is executed through suppression of an unwanted response in order to avoid conflict. Conflict occurs when two simultaneously competing processes lead to different behavioral outcomes, as seen in tasks such as the anti-saccade, go/no-go, and the Stroop task. We set out to examine whether different types of stimuli in a modified emotional Stroop task would cause similar interference effects as the original Stroop-color/word, and whether the required suppression mechanism(s) would recruit similar regions of the medial PFC (mPFC). By using emotional words and emotional faces in this Stroop experiment, we examined the two well-learned automatic behaviors of word reading and recognition of face expressions. In our emotional Stroop paradigm, words were processed faster than face expressions with incongruent trials yielding longer reaction times and larger number of errors compared to the congruent trials. This novel Stroop effect activated the anterior and inferior regions of the mPFC, namely the anterior cingulate cortex, inferior frontal gyrus as well as the superior frontal gyrus. Our results suggest that prepotent behaviors such as reading and recognition of face expressions are stimulus-dependent and perhaps hierarchical, hence recruiting distinct regions of the mPFC. Moreover, the faster processing of word reading compared to reporting face expressions is indicative of the formation of stronger stimulus–response associations of an over-learned behavior compared to an instinctive one, which could alternatively be explained through the distinction between awareness and selective attention.
PMCID: PMC3020489  PMID: 21258644
emotion; face expression; anti-saccade; medial prefrontal cortex; fMRI; inferior frontal gyrus; inhibition
20.  The Influence of Concentrative Meditation Training on the Development of Attention Networks during Early Adolescence  
We investigate if concentrative meditation training (CMT) offered during adolescent development benefits subsystems of attention using a quasi-experimental design. Attentional alerting, orienting, and conflict monitoring were examined using the Attention Network Test (ANT) in 13–15 year old children who received CMT as part of their school curriculum (CMT group: N = 79) vs. those who received no such training (control group: N = 76). Alerting and conflict monitoring, but not orienting, differed between the CMT and control group. Only conflict monitoring demonstrated age-related improvements, with smaller conflict effect scores in older vs. younger participants. The influence of CMT on this system was similar to the influence of developmental maturity, with smaller conflict effects in the CMT vs. control group. To examine if CMT might also bolster conflict-triggered upregulation of attentional control, conflict effects were evaluated as a function of previous trial conflict demands (high conflict vs. low conflict). Smaller current-trial conflict effects were observed when previous conflict was high vs. low, suggesting that similar to adults, when previous conflict was high (vs. low) children in this age-range proactively upregulated control so that subsequent trial performance was benefitted. The magnitude of conflict-triggered control upregulation was not bolstered by CMT but CMT did have an effect for current incongruent trials preceded by congruent trials. Thus, CMT's influence on attention may be tractable and specific; it may bolster attentional alerting, conflict monitoring and reactive control, but does not appear to improve orienting.
PMCID: PMC3137946  PMID: 21808627
meditation; development; attention; conflict monitoring; conflict adaptation
21.  Age-related and individual differences in the use of prediction during language comprehension 
Brain and language  2010;115(3):149-161.
During sentence comprehension, older adults are less likely than younger adults to predict features of likely upcoming words. A pair of experiments assessed whether such differences would extend to tasks with reduced working memory demands and time pressures. In Experiment 1, event-related brain potentials were measured as younger and older adults read short phrases cuing antonyms or category exemplars, followed three seconds later by targets that were either congruent or incongruent and, for congruent category exemplars, of higher or lower typicality. When processing the less expected low typicality targets, younger – but not older – adults elicited a prefrontal positivity (500–900 ms) that has been linked to processing consequences of having predictions disconfirmed. Thus, age-related changes in prediction during comprehension generalize across task circumstances. Analyses of individual differences revealed that older adults with higher category fluency were more likely to show the young-like pattern. Experiment 2 showed that these age-related differences were not due to simple slowing of language production mechanisms, as older adults generated overt responses to the cues as quickly as – and more accurately than – younger adults. However, older adults who were relatively faster to produce category exemplars in Experiment 2 were more likely to have shown predictive processing patterns in Experiment 1. Taken together, the results link prediction during language comprehension to language production mechanisms and suggest that although older adults can produce speeded language output on demand, they are less likely to automatically recruit these mechanisms during comprehension unless top-down circuitry is particularly strong.
PMCID: PMC2975864  PMID: 20728207
aging; comprehension; production; prediction; category exemplar generation; event-related brain potentials; N400; frontal positivity; verbal fluency
22.  Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects 
Psychiatry research  2011;194(3):287-295.
Individuals who abuse methamphetamine (MA) perform at levels below those of healthy controls on tests that require cognitive control. As cognitive control deficits may influence the success of treatment for addiction, we sought to help clarify the neural correlates of this deficit. MA-dependent (n=10, abstinent 4–7 days) and control subjects (n=18) performed a color-word Stroop task, which requires cognitive control, during functional MRI (fMRI). The task included a condition in which participants were required to respond to one stimulus dimension while ignoring another conflicting dimension, and another condition without conflict. We compared the groups on performance and neural activation in the two conditions. MA-dependent subjects made more errors and responded more slowly than controls. Controlling for response times in the incongruent condition, voxel-wise mixed effects analyses (whole-brain corrected) demonstrated that MA-dependent subjects had less activation than control subjects in the right inferior frontal gyrus, supplementary motor cortex/anterior cingulate gyrus and the anterior insular cortex during the incongruent condition only. MA-dependent subjects did not exhibit greater activation in any brain region in either of the Stroop conditions. These preliminary findings suggest that hypofunction in cortical areas that are important for executive function underlies cognitive control deficits associated with MA dependence.
PMCID: PMC3225642  PMID: 22047731
Methamphetamine; Stroop; fMRI; cognitive control; prefrontal cortex; insula
23.  Effects of Secondary Task on Obstacle Avoidance in Healthy Young Adults 
Research studying attention and gait stability has suggested the process of recovering gait stability requires attentional resources, but the effect of performing a secondary task on stability during obstacle avoidance is poorly understood. Using a dual-task paradigm, the present experiment investigated the extent to which young adults are able to respond to a secondary auditory Stroop task (requiring executive attentional network resources) concurrently with obstacle crossing during gait as compared to performing unobstructed walking or sitting (control task). Our results demonstrated that as the level of difficulty in the postural task increased, there was a significant reduction in verbal response time from congruent to incongruent conditions in the Stroop task, but no differences in gait parameters, indicating that these postural tasks require attention, and that young adults use a strategy of modulating the auditory Stroop task performance while keeping stable gait performance under the dual-task situations. Our findings suggest the existence of a hierarchy of control within both postural task (obstacle avoidance requires the most information processing resources) and dual-task (with gait stability being a priority) conditions.
PMCID: PMC2556305  PMID: 17717655
24.  Conflict monitoring and adaptation in individuals at familial risk for developing bipolar disorder 
Bipolar disorders  2013;15(3):264-271.
To examine conflict monitoring and conflict-driven adaptation in individuals at familial risk for developing bipolar disorder.
We recruited 24 adolescents who had a parent with bipolar disorder and 23 adolescents with healthy parents. Participants completed an arrow version of the Eriksen Flanker Task that included trials with three levels of conflict: neutral, congruent, and incongruent flanks. Differences in performance were explored based upon the level of conflict in the current and previous trials.
Individuals at risk for developing bipolar disorder performed more slowly than youth with healthy parents in all trials. Analyses evaluating sequential effects revealed that at-risk subjects responded more slowly than youth of healthy parents for all trial types when preceded by an incongruent trial, for incongruent trials preceded by congruent trials, and for neutral and congruent trials when preceded by neutral trials. In contrast to the comparison group, at-risk adolescents failed to display a response time advantage for incongruent trials preceded by an incongruent trial. When removing subjects with attention-deficit hyperactivity disorder (ADHD), differences between groups in response time fell below significant level, but a difference in sequence modulation remained significant. Subjects at risk for bipolar disorder also displayed greater intra-subject response time variability for incongruent and congruent trials compared with the comparison adolescents. No differences in response accuracy were observed between groups.
Adolescents at risk for developing bipolar disorder displayed specific deficits in cognitive flexibility, which might be useful as a potential marker related to the development of bipolar disorder.
PMCID: PMC3644328  PMID: 23528067
at risk; bipolar disorder; conflict-driven adaptation; conflict monitoring; intra-subject variability in response time
25.  Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production 
Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI); vocal color naming while ignoring distractors (Stroop); and manual object discrimination while ignoring spatial position (Simon task). All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex (ACC) that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus (STG). Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category) relative to incongruent (categorically related) and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the ACC, a region that is likely implementing domain-general attentional control.
PMCID: PMC3856851  PMID: 24368899
attentional control; anterior cingulate cortex; superior temporal cortex; picture-word interference; Simon; Stroop; word production

Results 1-25 (1363512)