PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1386401)

Clipboard (0)
None

Related Articles

1.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action 
Biology Direct  2006;1:7.
Background
All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and variable arrays of the CRISPR-associated (cas) genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis.
Results
The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS) is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi) systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer), the endonuclease cleaving target mRNAs (slicer), and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA), by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale. Corollaries of this finding are that, even among closely related prokaryotes, the most commonly encountered phages and plasmids are different and/or that the dominant phages and plasmids turn over rapidly.
Conclusion
We proposed previously that Cas proteins comprise a novel DNA repair system. The association of the cas genes with CRISPR and, especially, the presence, in CRISPR units, of unique inserts homologous to phage and plasmid genes make us abandon this hypothesis. It appears most likely that CASS is a prokaryotic system of defense against phages and plasmids that functions via the RNAi mechanism. The functioning of this system seems to involve integration of fragments of foreign genes into archaeal and bacterial chromosomes yielding heritable immunity to the respective agents. However, it appears that this inheritance is extremely unstable on the evolutionary scale such that the repertoires of unique psiRNAs are completely replaced even in closely related prokaryotes, presumably, in response to rapidly changing repertoires of dominant phages and plasmids.
This article was reviewed by: Eric Bapteste, Patrick Forterre, and Martijn Huynen.
Open peer review
Reviewed by Eric Bapteste, Patrick Forterre, and Martijn Huynen.
For the full reviews, please go to the Reviewers' comments section.
doi:10.1186/1745-6150-1-7
PMCID: PMC1462988  PMID: 16545108
2.  The RNA- and DNA-targeting CRISPR–Cas immune systems of Pyrococcus furiosus 
Biochemical Society transactions  2013;41(6):1416-1421.
Using the hyperthermophile Pyrococcus furiosus, we have delineated several key steps in CRISPR (clustered regularly interspaced short palindromic repeats)–Cas (CRISPR-associated) invader defence pathways. P. furiosus has seven transcriptionally active CRISPR loci that together encode a total of 200 crRNAs (CRISPR RNAs). The 27 Cas proteins in this organism represent three distinct pathways and are primarily encoded in two large gene clusters. The Cas6 protein dices CRISPR locus transcripts to generate individual invader-targeting crRNAs. The mature crRNAs include a signature sequence element (the 5′ tag) derived from the CRISPR locus repeat sequence that is important for function. crRNAs are tailored into distinct species and integrated into three distinct crRNA–Cas protein complexes that are all candidate effector complexes. The complex formed by the Cmr [Cas module RAMP (repeat-associated mysterious proteins)] (subtype III-B) proteins cleaves complementary target RNAs and can be programmed to cleave novel target RNAs in a prokaryotic RNAi-like manner. Evidence suggests that the other two CRISPR–Cas systems in P. furiosus, Csa (Cas subtype Apern) (subtype I-A) and Cst (Cas subtype Tneap) (subtype I-B), target invaders at the DNA level. Studies of the CRISPR–Cas systems from P. furiosus are yielding fundamental knowledge of mechanisms of crRNA biogenesis and silencing for three of the diverse CRISPR–Cas pathways, and reveal that organisms such as P. furiosus possess an arsenal of multiple RNA-guided mechanisms to resist diverse invaders. Our knowledge of the fascinating CRISPR–Cas pathways is leading in turn to our ability to co-opt these systems for exciting new biomedical and biotechnological applications.
doi:10.1042/BST20130056
PMCID: PMC3996508  PMID: 24256230
clustered regularly interspaced short palindromic repeats (CRISPR); CRISPR-associated (Cas); non-coding RNA; prokaryotic immunity; Pyrococcus furiosus; virus
3.  Type I-E CRISPR-Cas Systems Discriminate Target from Non-Target DNA through Base Pairing-Independent PAM Recognition 
PLoS Genetics  2013;9(9):e1003742.
Discriminating self and non-self is a universal requirement of immune systems. Adaptive immune systems in prokaryotes are centered around repetitive loci called CRISPRs (clustered regularly interspaced short palindromic repeat), into which invader DNA fragments are incorporated. CRISPR transcripts are processed into small RNAs that guide CRISPR-associated (Cas) proteins to invading nucleic acids by complementary base pairing. However, to avoid autoimmunity it is essential that these RNA-guides exclusively target invading DNA and not complementary DNA sequences (i.e., self-sequences) located in the host's own CRISPR locus. Previous work on the Type III-A CRISPR system from Staphylococcus epidermidis has demonstrated that a portion of the CRISPR RNA-guide sequence is involved in self versus non-self discrimination. This self-avoidance mechanism relies on sensing base pairing between the RNA-guide and sequences flanking the target DNA. To determine if the RNA-guide participates in self versus non-self discrimination in the Type I-E system from Escherichia coli we altered base pairing potential between the RNA-guide and the flanks of DNA targets. Here we demonstrate that Type I-E systems discriminate self from non-self through a base pairing-independent mechanism that strictly relies on the recognition of four unchangeable PAM sequences. In addition, this work reveals that the first base pair between the guide RNA and the PAM nucleotide immediately flanking the target sequence can be disrupted without affecting the interference phenotype. Remarkably, this indicates that base pairing at this position is not involved in foreign DNA recognition. Results in this paper reveal that the Type I-E mechanism of avoiding self sequences and preventing autoimmunity is fundamentally different from that employed by Type III-A systems. We propose the exclusive targeting of PAM-flanked sequences to be termed a target versus non-target discrimination mechanism.
Author Summary
CRISPR loci and their associated genes form a diverse set of adaptive immune systems that are widespread among prokaryotes. In these systems, the CRISPR-associated genes (cas) encode for proteins that capture fragments of invading DNA and integrate these sequences between repeat sequences of the host's CRISPR locus. This information is used upon re-infection to degrade invader genomes. Storing invader sequences in host genomes necessitates a mechanism to differentiate between invader sequences on invader genomes and invader sequences on the host genome. CRISPR-Cas of Staphylococcus epidermidis (Type III-A system) is inhibited when invader sequences are flanked by repeat sequences, and this prevents targeting of the CRISPR locus on the host genome. Here we demonstrate that Escherichia coli CRISPR-Cas (Type I-E system) is not inhibited by repeat sequences. Instead, this system is specifically activated by the presence of bona fide Protospacer Adjacent Motifs (PAMs) in the target. PAMs are conserved sequences adjoining invader sequences on the invader genome, and these sequences are never adjacent to invader sequences within host CRISPR loci. PAM recognition is not affected by base pairing potential of the target with the crRNA. As such, the Type I-E system lacks the ability to specifically recognize self DNA.
doi:10.1371/journal.pgen.1003742
PMCID: PMC3764190  PMID: 24039596
4.  Viral Diversity Threshold for Adaptive Immunity in Prokaryotes 
mBio  2012;3(6):e00456-12.
ABSTRACT
Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological sensors (Lamarckian evolution) are predicted.
IMPORTANCE
A remarkable recent discovery in microbiology is that bacteria and archaea possess systems conferring immunological memory and adaptive immunity. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (CRISPR-Cas) are genomic sensors that allow prokaryotes to acquire DNA fragments from invading viruses and plasmids. Providing immunological memory, these stored fragments destroy matching DNA in future viral and plasmid invasions. CRISPR-Cas systems also provide adaptive immunity, keeping up with mutating viruses and plasmids by continually acquiring new DNA fragments. Surprisingly, less than 50% of mesophilic bacteria, in contrast to almost 90% of thermophilic bacteria and Archaea, maintain CRISPR-Cas immunity. Using mathematical modeling, we probe this dichotomy, showing how increased viral mutation rates can explain the reduced prevalence of CRISPR-Cas systems in mesophiles. Rapidly mutating viruses outrun CRISPR-Cas immune systems, likely decreasing their prevalence in bacterial populations. Thus, viral adaptability may select against, rather than for, immune adaptability in prokaryotes.
doi:10.1128/mBio.00456-12
PMCID: PMC3517865  PMID: 23221803
5.  Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs 
Molecular Cell  2012;45(3):292-302.
SUMMARY
Small RNAs target invaders for silencing in the CRISPR-Cas pathways that protect bacteria and archaea from viruses and plasmids. The CRISPR RNAs (crRNAs) contain sequence elements acquired from invaders that guide CRISPR-associated (Cas) proteins back to the complementary invading DNA or RNA. Here, we have analyzed essential features of the crRNAs associated with the Cas RAMP module (Cmr) effector complex, which cleaves targeted RNAs. We show that Cmr crRNAs contain an 8-nucleotide 5’ sequence tag (also found on crRNAs associated with other CRISPR-Cas pathways) that is critical for crRNA function and can be used to engineer crRNAs that direct cleavage of novel targets. We also present data that indicates that the Cmr complex cleaves an endogenous complementary RNA in Pyrococcus furiosus, providing direct in vivo evidence of RNA targeting by the CRISPR-Cas system. Our findings indicate that the CRISPR RNA-Cmr protein pathway may be exploited to cleave RNAs of interest.
doi:10.1016/j.molcel.2011.10.023
PMCID: PMC3278580  PMID: 22227116
6.  Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage 
The CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) found in prokaryotic genomes confer small RNA-mediated protection against viruses and other invaders. CRISPR loci contain iterations of a short repeat sequence alternating with small segments of varying invader-derived sequences. Distinct families of CRISPR-associated Cas proteins function to cleave within the repeat sequence of CRISPR transcripts and produce the individual invader-targeting crRNAs. Here we report the crystal structure of Pyrococcus furiosus Cas6 bound with a repeat RNA at 3.2 Å resolution. In contrast to other Cas families of endonucleases, Cas6 clasps nucleotides 2–9 of the repeat RNA using its two ferredoxin-like domains, and the enzyme-anchored 5’ end tethers the distal cleavage site of the RNA between nucleotides 22 and 23 to the predicted enzyme active site on the opposite side of the ferrodoxin-like domains. Our findings suggest a wrap-around mechanism for CRISPR RNA recognition and cleavage by Cas6 and related processing endonucleases.
doi:10.1016/j.str.2010.11.014
PMCID: PMC3154685  PMID: 21300293
7.  Diverse CRISPRs Evolving in Human Microbiomes 
PLoS Genetics  2012;8(6):e1002441.
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, together with cas (CRISPR–associated) genes, form the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived from foreign DNA and direct interference to future infections. The availability of hundreds of shotgun metagenomic datasets from the Human Microbiome Project (HMP) enables us to explore the distribution and diversity of known CRISPRs in human-associated microbial communities and to discover new CRISPRs. We propose a targeted assembly strategy to reconstruct CRISPR arrays, which whole-metagenome assemblies fail to identify. For each known CRISPR type (identified from reference genomes), we use its direct repeat consensus sequence to recruit reads from each HMP dataset and then assemble the recruited reads into CRISPR loci; the unique spacer sequences can then be extracted for analysis. We also identified novel CRISPRs or new CRISPR variants in contigs from whole-metagenome assemblies and used targeted assembly to more comprehensively identify these CRISPRs across samples. We observed that the distributions of CRISPRs (including 64 known and 86 novel ones) are largely body-site specific. We provide detailed analysis of several CRISPR loci, including novel CRISPRs. For example, known streptococcal CRISPRs were identified in most oral microbiomes, totaling ∼8,000 unique spacers: samples resampled from the same individual and oral site shared the most spacers; different oral sites from the same individual shared significantly fewer, while different individuals had almost no common spacers, indicating the impact of subtle niche differences on the evolution of CRISPR defenses. We further demonstrate potential applications of CRISPRs to the tracing of rare species and the virus exposure of individuals. This work indicates the importance of effective identification and characterization of CRISPR loci to the study of the dynamic ecology of microbiomes.
Author Summary
Human bodies are complex ecological systems in which various microbial organisms and viruses interact with each other and with the human host. The Human Microbiome Project (HMP) has resulted in >700 datasets of shotgun metagenomic sequences, from which we can learn about the compositions and functions of human-associated microbial communities. CRISPR/Cas systems are a widespread class of adaptive immune systems in bacteria and archaea, providing acquired immunity against foreign nucleic acids: CRISPR/Cas defense pathways involve integration of viral- or plasmid-derived DNA segments into CRISPR arrays (forming spacers between repeated structural sequences), and expression of short crRNAs from these single repeat-spacer units, to generate interference to future invading foreign genomes. Powered by an effective computational approach (the targeted assembly approach for CRISPR), our analysis of CRISPR arrays in the HMP datasets provides the very first global view of bacterial immunity systems in human-associated microbial communities. The great diversity of CRISPR spacers we observed among different body sites, in different individuals, and in single individuals over time, indicates the impact of subtle niche differences on the evolution of CRISPR defenses and indicates the key role of bacteriophage (and plasmids) in shaping human microbial communities.
doi:10.1371/journal.pgen.1002441
PMCID: PMC3374615  PMID: 22719260
8.  Persisting Viral Sequences Shape Microbial CRISPR-based Immunity 
PLoS Computational Biology  2012;8(4):e1002475.
Well-studied innate immune systems exist throughout bacteria and archaea, but a more recently discovered genomic locus may offer prokaryotes surprising immunological adaptability. Mediated by a cassette-like genomic locus termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), the microbial adaptive immune system differs from its eukaryotic immune analogues by incorporating new immunities unidirectionally. CRISPR thus stores genomically recoverable timelines of virus-host coevolution in natural organisms refractory to laboratory cultivation. Here we combined a population genetic mathematical model of CRISPR-virus coevolution with six years of metagenomic sequencing to link the recoverable genomic dynamics of CRISPR loci to the unknown population dynamics of virus and host in natural communities. Metagenomic reconstructions in an acid-mine drainage system document CRISPR loci conserving ancestral immune elements to the base-pair across thousands of microbial generations. This ‘trailer-end conservation’ occurs despite rapid viral mutation and despite rapid prokaryotic genomic deletion. The trailer-ends of many reconstructed CRISPR loci are also largely identical across a population. ‘Trailer-end clonality’ occurs despite predictions of host immunological diversity due to negative frequency dependent selection (kill the winner dynamics). Statistical clustering and model simulations explain this lack of diversity by capturing rapid selective sweeps by highly immune CRISPR lineages. Potentially explaining ‘trailer-end conservation,’ we record the first example of a viral bloom overwhelming a CRISPR system. The polyclonal viruses bloom even though they share sequences previously targeted by host CRISPR loci. Simulations show how increasing random genomic deletions in CRISPR loci purges immunological controls on long-lived viral sequences, allowing polyclonal viruses to bloom and depressing host fitness. Our results thus link documented patterns of genomic conservation in CRISPR loci to an evolutionary advantage against persistent viruses. By maintaining old immunities, selection may be tuning CRISPR-mediated immunity against viruses reemerging from lysogeny or migration.
Author Summary
Most microbes appear unculturable in the laboratory, limiting our knowledge of how virus and prokaryotic host evolve in natural systems. However, a genomic locus found in many prokaryotes, CRISPR, may offer cultivation-independent probes of virus-microbe coevolution. Utilizing nearby genes, CRISPR can serially incorporate short viral and plasmid sequences. These sequences bind and cleave cognate regions in subsequent viral and plasmid insertions, conferring adaptive anti-viral and anti-plasmid immunity. By incorporating sequences undirectionally, CRISPR also provides timelines of virus-prokaryote coevolution. Yet, CRISPR only incorporates 30–80 base-pair viral sequences, leaving incomplete coevolutionary recordings. To reconstruct the missing coevolutionary dynamics shaping natural CRISPRs, we combined metagenomic reconstructions with population-scale mathematical modeling. Capturing rare and rapid sweeps of CRISPR diversity by highly immune lines, mathematical modeling explains why naturally reconstructed CRISPR loci are often largely identical across a population. Both model and experiment further document surprising proliferations of old viral sequences against which hosts had preexisting CRISPR immunity. Due to these deadly blooms of ancestral viral elements, CRISPR's conservation of old immune sequences appears to confer a selective advantage. This may explain the striking immunological memory documented in CRISPR loci, which occurs despite rapid viral mutation and despite rapid deletions in prokaryotic genomes.
doi:10.1371/journal.pcbi.1002475
PMCID: PMC3330103  PMID: 22532794
9.  CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus 
Nucleic Acids Research  2014;42(8):5280-5288.
The recently discovered clustered regularly interspaced short palindromic repeat (CRISPR)-mediated virus defense represents an adaptive immune system in many bacteria and archaea. Small CRISPR RNAs cause cleavage of complementary invading nucleic acids in conjunction with an associated protein or a protein complex. Here, we show CRISPR-mediated cleavage of mRNA from an invading virus in the hyperthermophilic archaeon Sulfolobus solfataricus. More than 40% of the targeted mRNA could be cleaved, as demonstrated by quantitative polymerase chain reaction. Cleavage of the mRNA was visualized by northern analyses and cleavage sites were mapped. In vitro, the same substrates were cleaved by the purified CRISPR-associated CMR complex from Sulfolobus solfataricus. The in vivo system was also re-programmed to knock down mRNA of a selected chromosomal gene (β-galactosidase) using an artificial miniCRISPR locus. With a single complementary spacer, ∼50% reduction of the targeted mRNA and of corresponding intracellular protein activity was achieved. Our results demonstrate in vivo cleavage of mRNA in a prokaryote mediated by small RNAs (i.e. analogous to RNA interference in eukaryotes) and the re-programming of the system to silence specific genes of interest.
doi:10.1093/nar/gku161
PMCID: PMC4005642  PMID: 24603867
10.  CRISPR interference: a structural perspective 
Biochemical Journal  2013;453(Pt 2):155-166.
CRISPR (cluster of regularly interspaced palindromic repeats) is a prokaryotic adaptive defence system, providing immunity against mobile genetic elements such as viruses. Genomically encoded crRNA (CRISPR RNA) is used by Cas (CRISPR-associated) proteins to target and subsequently degrade nucleic acids of invading entities in a sequence-dependent manner. The process is known as ‘interference’. In the present review we cover recent progress on the structural biology of the CRISPR/Cas system, focusing on the Cas proteins and complexes that catalyse crRNA biogenesis and interference. Structural studies have helped in the elucidation of key mechanisms, including the recognition and cleavage of crRNA by the Cas6 and Cas5 proteins, where remarkable diversity at the level of both substrate recognition and catalysis has become apparent. The RNA-binding RAMP (repeat-associated mysterious protein) domain is present in the Cas5, Cas6, Cas7 and Cmr3 protein families and RAMP-like domains are found in Cas2 and Cas10. Structural analysis has also revealed an evolutionary link between the small subunits of the type I and type III-B interference complexes. Future studies of the interference complexes and their constituent components will transform our understanding of the system.
doi:10.1042/BJ20130316
PMCID: PMC3727216  PMID: 23805973
antiviral defence; cluster of regularly interspaced palindromic repeats (CRISPR); crystallography; evolution; protein structure; repeat-associated mysterious protein (RAMP); BhCas5c, Bacillus halodurans Cas5c; CRISPR, cluster of regularly interspaced palindromic repeats; Cas, CRISPR-associated; Cascade, CRISPR-associated complex for antiviral defence; crRNA, CRISPR RNA; dsDNA, double-stranded DNA; EcoCas3, Escherichia coli Cas3; EM, electron microscopy; HD, histidine–aspartate; MjaCas3″, Methanocaldococcus jannaschii Cas3″; PaCas6f, Pseudomonas aeruginosa Cas6f; PAM, protospacer adjacent motif; PfuCas, Pyrococcus furiosus Cas; pre-crRNA, precursor crRNA; RAMP, repeat-associated mysterious protein; RRM, RNA recognition motif; ssDNA, single-stranded DNA; SsoCas, Sulfolobus solfataricus Cas; ssRNA, single-stranded RNA; SthCas3, Streptococcus thermophilus Cas3; tracrRNA, trans-activating crRNA; TtCas, Thermus thermophilus Cas
11.  Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands 
PLoS Genetics  2013;9(4):e1003454.
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.
Author Summary
Bacteria have evolved mechanisms that provide protection from continual invasion by viruses and other foreign elements. Resistance systems, known as CRISPR/Cas, were recently discovered and equip bacteria and archaea with an “adaptive immune system.” This adaptive immunity provides a highly evolvable sequence-specific small RNA–based memory of past invasions by viruses and foreign genetic elements. There are many cases where these systems appear to target regions within the bacterial host's own genome (a possible autoimmunity), but the evolutionary rationale for this is unclear. Here, we demonstrate that CRISPR/Cas targeting of the host chromosome is highly toxic but that cells survive through mutations that alleviate the immune mechanism. We have used this phenotype to gain insight into how these systems function and show that large changes in the bacterial genome can occur. For example, targeting of a chromosomal pathogenicity island, important for virulence of the potato pathogen Pectobacterium atrosepticum, resulted in deletion of the island, which constituted ∼2% of the bacterial genome. These results have broad significance for the role of CRISPR/Cas systems and their impact on the evolution of bacterial genomes and virulence. In addition, this study demonstrates their potential as a tool for the targeted deletion of specific regions of bacterial chromosomes.
doi:10.1371/journal.pgen.1003454
PMCID: PMC3630108  PMID: 23637624
12.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes 
PLoS Computational Biology  2005;1(6):e60.
Clustered regularly interspaced short palindromic repeats (CRISPRs) are a family of DNA direct repeats found in many prokaryotic genomes. Repeats of 21–37 bp typically show weak dyad symmetry and are separated by regularly sized, nonrepetitive spacer sequences. Four CRISPR-associated (Cas) protein families, designated Cas1 to Cas4, are strictly associated with CRISPR elements and always occur near a repeat cluster. Some spacers originate from mobile genetic elements and are thought to confer “immunity” against the elements that harbor these sequences. In the present study, we have systematically investigated uncharacterized proteins encoded in the vicinity of these CRISPRs and found many additional protein families that are strictly associated with CRISPR loci across multiple prokaryotic species. Multiple sequence alignments and hidden Markov models have been built for 45 Cas protein families. These models identify family members with high sensitivity and selectivity and classify key regulators of development, DevR and DevS, in Myxococcus xanthus as Cas proteins. These identifications show that CRISPR/cas gene regions can be quite large, with up to 20 different, tandem-arranged cas genes next to a repeat cluster or filling the region between two repeat clusters. Distinctive subsets of the collection of Cas proteins recur in phylogenetically distant species and correlate with characteristic repeat periodicity. The analyses presented here support initial proposals of mobility of these units, along with the likelihood that loci of different subtypes interact with one another as well as with host cell defensive, replicative, and regulatory systems. It is evident from this analysis that CRISPR/cas loci are larger, more complex, and more heterogeneous than previously appreciated.
Synopsis
The family of clustered regularly interspaced short palindromic repeats (CRISPRs) describes a class of DNA repeats found in nearly half of all bacterial and archaeal genomes. These DNA repeat regions have a remarkably regular structure: unique sequences of constant size, called spacers, sit between each pair of repeats. The DNA repeats do not encode proteins, but appear to be transcribed and processed into small RNAs that may have any number of functions, including resistance to any phage (i.e., virus of bacteria) whose sequence matches a spacer; spacers change rapidly as microbial strains evolve. This work describes 41 new CRISPR-associated (cas) gene families, which are always found near these repeats, in addition to the four previously known. It shows that CRISPR systems belong to different classes, with different repeat patterns, sets of genes, and species ranges. Most of these seem to come and go rather rapidly from their host genomes. These possibly beneficial mobile genetic elements may play an important role in driving prokaryotic evolution.
doi:10.1371/journal.pcbi.0010060
PMCID: PMC1282333  PMID: 16292354
13.  Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis 
RNA Biology  2013;10(5):828-840.
CRISPR-Cas systems are RNA-guided immune systems that protect prokaryotes against viruses and other invaders. The CRISPR locus encodes crRNAs that recognize invading nucleic acid sequences and trigger silencing by the associated Cas proteins. There are multiple CRISPR-Cas systems with distinct compositions and mechanistic processes. Thermococcus kodakarensis (Tko) is a hyperthermophilic euryarchaeon that has both a Type I-A Csa and a Type I-B Cst CRISPR-Cas system. We have analyzed the expression and composition of crRNAs from the three CRISPRs in Tko by RNA deep sequencing and northern analysis. Our results indicate that crRNAs associated with these two CRISPR-Cas systems include an 8-nucleotide conserved sequence tag at the 5′ end. We challenged Tko with plasmid invaders containing sequences targeted by endogenous crRNAs and observed active CRISPR-Cas-mediated silencing. Plasmid silencing was dependent on complementarity with a crRNA as well as on a sequence element found immediately adjacent to the crRNA recognition site in the target termed the PAM (protospacer adjacent motif). Silencing occurred independently of the orientation of the target sequence in the plasmid, and appears to occur at the DNA level, presumably via DNA degradation. In addition, we have directed silencing of an invader plasmid by genetically engineering the chromosomal CRISPR locus to express customized crRNAs directed against the plasmid. Our results support CRISPR engineering as a feasible approach to develop prokaryotic strains that are resistant to infection for use in industry.
doi:10.4161/rna.24084
PMCID: PMC3737340  PMID: 23535213
CRISPR; Cas; archaea; Thermococcus; hyperthermophile; immune; RNA; DNA; silencing; interference
14.  Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems 
Biology Direct  2011;6:38.
Background
The CRISPR-Cas adaptive immunity systems that are present in most Archaea and many Bacteria function by incorporating fragments of alien genomes into specific genomic loci, transcribing the inserts and using the transcripts as guide RNAs to destroy the genome of the cognate virus or plasmid. This RNA interference-like immune response is mediated by numerous, diverse and rapidly evolving Cas (CRISPR-associated) proteins, several of which form the Cascade complex involved in the processing of CRISPR transcripts and cleavage of the target DNA. Comparative analysis of the Cas protein sequences and structures led to the classification of the CRISPR-Cas systems into three Types (I, II and III).
Results
A detailed comparison of the available sequences and structures of Cas proteins revealed several unnoticed homologous relationships. The Repeat-Associated Mysterious Proteins (RAMPs) containing a distinct form of the RNA Recognition Motif (RRM) domain, which are major components of the CRISPR-Cas systems, were classified into three large groups, Cas5, Cas6 and Cas7. Each of these groups includes many previously uncharacterized proteins now shown to adopt the RAMP structure. Evidence is presented that large subunits contained in most of the CRISPR-Cas systems could be homologous to Cas10 proteins which contain a polymerase-like Palm domain and are predicted to be enzymatically active in Type III CRISPR-Cas systems but inactivated in Type I systems. These findings, the fact that the CRISPR polymerases, RAMPs and Cas2 all contain core RRM domains, and distinct gene arrangements in the three types of CRISPR-Cas systems together provide for a simple scenario for origin and evolution of the CRISPR-Cas machinery. Under this scenario, the CRISPR-Cas system originated in thermophilic Archaea and subsequently spread horizontally among prokaryotes.
Conclusions
Because of the extreme diversity of CRISPR-Cas systems, in-depth sequence and structure comparison continue to reveal unexpected homologous relationship among Cas proteins. Unification of Cas protein families previously considered unrelated provides for improvement in the classification of CRISPR-Cas systems and a reconstruction of their evolution.
Open peer review
This article was reviewed by Malcolm White (nominated by Purficacion Lopez-Garcia), Frank Eisenhaber and Igor Zhulin. For the full reviews, see the Reviewers' Comments section.
doi:10.1186/1745-6150-6-38
PMCID: PMC3150331  PMID: 21756346
15.  Substrate Generation for Endonucleases of CRISPR/Cas Systems 
The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1)1-3. Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems 4. The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster 5. The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs 6-8. These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence 9. A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity10. Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA 11,12 .
These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases 4.
Here, we present methods to generate crRNAs and precursor-cRNAs for the study of Cas endoribonucleases. Different endonuclease assays require either short repeat sequences that can directly be synthesized as RNA oligonucleotides or longer crRNA and pre-crRNA sequences that are generated via in vitro T7 RNA polymerase run-off transcription. This methodology allows the incorporation of radioactive nucleotides for the generation of internally labeled endonuclease substrates and the creation of synthetic or mutant crRNAs. Cas6 endonuclease activity is utilized to mature pre-crRNAs into crRNAs with 5'-hydroxyl and a 2',3'-cyclic phosphate termini.
doi:10.3791/4277
PMCID: PMC3490271  PMID: 22986408
Molecular biology; Issue 67; CRISPR/Cas; endonuclease;  in vitro transcription; crRNA; Cas6
16.  CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing Pathways Involving at Least Two Cas6 and a Cmr2 Protein 
PLoS ONE  2013;8(2):e56470.
The CRISPR-Cas (Clustered Regularly Interspaced Short Palindrome Repeats – CRISPR associated proteins) system provides adaptive immunity in archaea and bacteria. A hallmark of CRISPR-Cas is the involvement of short crRNAs that guide associated proteins in the destruction of invading DNA or RNA. We present three fundamentally distinct processing pathways in the cyanobacterium Synechocystis sp. PCC6803 for a subtype I-D (CRISPR1), and two type III systems (CRISPR2 and CRISPR3), which are located together on the plasmid pSYSA. Using high-throughput transcriptome analyses and assays of transcript accumulation we found all CRISPR loci to be highly expressed, but the individual crRNAs had profoundly varying abundances despite single transcription start sites for each array. In a computational analysis, CRISPR3 spacers with stable secondary structures displayed a greater ratio of degradation products. These structures might interfere with the loading of the crRNAs into RNP complexes, explaining the varying abundancies. The maturation of CRISPR1 and CRISPR2 transcripts depends on at least two different Cas6 proteins. Mutation of gene sll7090, encoding a Cmr2 protein led to the disappearance of all CRISPR3-derived crRNAs, providing in vivo evidence for a function of Cmr2 in the maturation, regulation of expression, Cmr complex formation or stabilization of CRISPR3 transcripts. Finally, we optimized CRISPR repeat structure prediction and the results indicate that the spacer context can influence individual repeat structures.
doi:10.1371/journal.pone.0056470
PMCID: PMC3575380  PMID: 23441196
17.  A PNPase Dependent CRISPR System in Listeria 
PLoS Genetics  2014;10(1):e1004065.
The human bacterial pathogen Listeria monocytogenes is emerging as a model organism to study RNA-mediated regulation in pathogenic bacteria. A class of non-coding RNAs called CRISPRs (clustered regularly interspaced short palindromic repeats) has been described to confer bacterial resistance against invading bacteriophages and conjugative plasmids. CRISPR function relies on the activity of CRISPR associated (cas) genes that encode a large family of proteins with nuclease or helicase activities and DNA and RNA binding domains. Here, we characterized a CRISPR element (RliB) that is expressed and processed in the L. monocytogenes strain EGD-e, which is completely devoid of cas genes. Structural probing revealed that RliB has an unexpected secondary structure comprising basepair interactions between the repeats and the adjacent spacers in place of canonical hairpins formed by the palindromic repeats. Moreover, in contrast to other CRISPR-Cas systems identified in Listeria, RliB-CRISPR is ubiquitously present among Listeria genomes at the same genomic locus and is never associated with the cas genes. We showed that RliB-CRISPR is a substrate for the endogenously encoded polynucleotide phosphorylase (PNPase) enzyme. The spacers of the different Listeria RliB-CRISPRs share many sequences with temperate and virulent phages. Furthermore, we show that a cas-less RliB-CRISPR lowers the acquisition frequency of a plasmid carrying the matching protospacer, provided that trans encoded cas genes of a second CRISPR-Cas system are present in the genome. Importantly, we show that PNPase is required for RliB-CRISPR mediated DNA interference. Altogether, our data reveal a yet undescribed CRISPR system whose both processing and activity depend on PNPase, highlighting a new and unexpected function for PNPase in “CRISPRology”.
Author Summary
CRISPR-Cas systems confer to bacteria and archaea an adaptive immunity that protects them against invading bacteriophages and plasmids. In this study, we characterize a CRISPR (RliB-CRISPR) that is present in all L. monocytogenes strains at the same genomic locus but is never associated with a cas operon. It is an unusual CRISPR that, as we demonstrate, has a secondary structure consisting of basepair interactions between the repeat sequence and the adjacent spacer. We show that the RliB-CRISPR is processed by the endogenously encoded polynucleotide phosphorylase enzyme (PNPase). In addition, we show that the RliB-CRISPR system requires PNPase and presence of trans encoded cas genes of a second CRISPR-Cas system, to mediate DNA interference directed against a plasmid carrying a matching protospacer. Altogether, our data reveal a novel type of CRISPR system in bacteria that requires endogenously encoded PNPase enzyme for its processing and interference activity.
doi:10.1371/journal.pgen.1004065
PMCID: PMC3886909  PMID: 24415952
18.  A Complex of Cas Proteins 5, 6, and 7 Is Required for the Biogenesis and Stability of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii* 
The Journal of Biological Chemistry  2014;289(10):7164-7177.
Background: The Cas6 protein is required for generating crRNAs in CRISPR-Cas I and III systems.
Results: The Cas6 protein is necessary for crRNA production but not sufficient for crRNA maintenance in Haloferax.
Conclusion: A Cascade-like complex is required in the type I-B system for a stable crRNA population.
Significance: The CRISPR-Cas system I-B has a similar Cascade complex like types I-A and I-E.
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1–8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.
doi:10.1074/jbc.M113.508184
PMCID: PMC3945376  PMID: 24459147
Archaea; Microbiology; Molecular Biology; Molecular Genetics; Protein Complexes; CRISPR/Cas; Cas6; Haloferax volcanii; crRNA; Type I-B
19.  Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity 
Molecular cell  2012;45(3):303-313.
Summary
The prokaryotic Clusters of Regularly Interspaced Palindromic Repeats (CRISPR) system utilizes genomically-encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse “payload” of targeting crRNA. The crystal structure of Cmr7 and low resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endonucleolytic reaction at UA dinucleotides. This activity is dependent on the 8-nucleotide repeat-derived 5′ sequence in the crRNA, but not on the presence of a proto-spacer associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.
doi:10.1016/j.molcel.2011.12.013
PMCID: PMC3381847  PMID: 22227115
20.  Self vs. non-self discrimination during CRISPR RNA-directed immunity 
Nature  2010;463(7280):568-571.
All immune systems must distinguish self from non-self to repel invaders without inducing autoimmunity. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci protect bacteria and archaea from invasion by phage and plasmid DNA through a genetic interference pathway1–9. CRISPR loci are present in ~ 40% and ~90% of sequenced bacterial and archaeal genomes respectively10 and evolve rapidly, acquiring new spacer sequences to adapt to highly dynamic viral populations1, 11–13. Immunity requires a sequence match between the invasive DNA and the spacers that lie between CRISPR repeats1–9. Each cluster is genetically linked to a subset of the cas (CRISPR-associated) genes14–16 that collectively encode >40 families of proteins involved in adaptation and interference. CRISPR loci encode small CRISPR RNAs (crRNAs) that contain a full spacer flanked by partial repeat sequences2, 17–19. CrRNA spacers are thought to identify targets by direct Watson-Crick pairing with invasive “protospacer” DNA2, 3, but how they avoid targeting the spacer DNA within the encoding CRISPR locus itself is unknown. Here we have defined the mechanism of CRISPR self/non-self discrimination. In Staphylococcus epidermidis, target/crRNA mismatches at specific positions outside of the spacer sequence license foreign DNA for interference, whereas extended pairing between crRNA and CRISPR DNA repeats prevents autoimmunity. Hence, this CRISPR system uses the base-pairing potential of crRNAs not only to specify a target but also to spare the bacterial chromosome from interference. Differential complementarity outside of the spacer sequence is a built-in feature of all CRISPR systems, suggesting that this mechanism is a broadly applicable solution to the self/non-self dilemma that confronts all immune pathways.
doi:10.1038/nature08703
PMCID: PMC2813891  PMID: 20072129
21.  Characterization of CRISPR RNA Biogenesis and Cas6 Cleavage-Mediated Inhibition of a Provirus in the Haloarchaeon Haloferax mediterranei 
Journal of Bacteriology  2013;195(4):867-875.
The adaptive immune system comprising CRISPR (clustered regularly interspaced short palindromic repeats) arrays and cas (CRISPR-associated) genes has been discovered in a wide range of bacteria and archaea and has recently attracted comprehensive investigations. However, the subtype I-B CRISPR-Cas system in haloarchaea has been less characterized. Here, we investigated Cas6-mediated RNA processing in Haloferax mediterranei. The Cas6 cleavage site, as well as the CRISPR transcription start site, was experimentally determined, and processing of CRISPR transcripts was detected with a progressively increasing pattern from early log to stationary phase. With genetic approaches, we discovered that the lack of Cas1, Cas3, or Cas4 unexpectedly resulted in a decrease of CRISPR transcripts, while Cas5, Cas6, and Cas7 were found to be essential in stabilizing mature CRISPR RNA (crRNA). Intriguingly, we observed a CRISPR- and Cas3-independent inhibition of a defective provirus, in which the putative Cascade (CRISPR-associated complex for antiviral defense) proteins (Cas5, Cas6, Cas7, and Cas8b) were indispensably required. A sequence carried by a proviral transcript was found to be homologous to the CRISPR repeat RNA and vulnerable to Cas6-mediated cleavage, implying a distinct interference mechanism that may account for this unusual inhibition. These results provide fundamental information for the subtype I-B CRISPR-Cas system in halophilic archaea and suggest diversified mechanisms and multiple physiological functions for the CRISPR-Cas system.
doi:10.1128/JB.01688-12
PMCID: PMC3562093  PMID: 23243301
22.  CRISPR Interference Directs Strand Specific Spacer Acquisition 
PLoS ONE  2012;7(4):e35888.
Background
CRISPR/Cas is a widespread adaptive immune system in prokaryotes. This system integrates short stretches of DNA derived from invading nucleic acids into genomic CRISPR loci, which function as memory of previously encountered invaders. In Escherichia coli, transcripts of these loci are cleaved into small RNAs and utilized by the Cascade complex to bind invader DNA, which is then likely degraded by Cas3 during CRISPR interference.
Results
We describe how a CRISPR-activated E. coli K12 is cured from a high copy number plasmid under non-selective conditions in a CRISPR-mediated way. Cured clones integrated at least one up to five anti-plasmid spacers in genomic CRISPR loci. New spacers are integrated directly downstream of the leader sequence. The spacers are non-randomly selected to target protospacers with an AAG protospacer adjacent motif, which is located directly upstream of the protospacer. A co-occurrence of PAM deviations and CRISPR repeat mutations was observed, indicating that one nucleotide from the PAM is incorporated as the last nucleotide of the repeat during integration of a new spacer. When multiple spacers were integrated in a single clone, all spacer targeted the same strand of the plasmid, implying that CRISPR interference caused by the first integrated spacer directs subsequent spacer acquisition events in a strand specific manner.
Conclusions
The E. coli Type I-E CRISPR/Cas system provides resistance against bacteriophage infection, but also enables removal of residing plasmids. We established that there is a positive feedback loop between active spacers in a cluster – in our case the first acquired spacer - and spacers acquired thereafter, possibly through the use of specific DNA degradation products of the CRISPR interference machinery by the CRISPR adaptation machinery. This loop enables a rapid expansion of the spacer repertoire against an actively present DNA element that is already targeted, amplifying the CRISPR interference effect.
doi:10.1371/journal.pone.0035888
PMCID: PMC3338789  PMID: 22558257
23.  Structure of an RNA Silencing Complex of the CRISPR-Cas immune system 
Molecular cell  2013;52(1):10.1016/j.molcel.2013.09.008.
Summary
Bacterial and archaeal CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) loci capture virus and plasmid sequences and use them to recognize and eliminate these invaders. CRISPR (cr)RNAs containing the acquired sequences are incorporated into effector complexes that destroy matching invader nucleic acids. The multi-component Cmr effector complex cleaves RNA targets complementary to the crRNAs. Here we report cryo-electron microscopy reconstruction of a functional Cmr complex bound with a target RNA at ∼12Å. Pairs of the Cmr4 and Cmr5 proteins form a helical core that is asymmetrically capped on each end by distinct pairs of the four remaining subunits – Cmr2 and Cmr3 at the conserved 5′ crRNA tag sequence and Cmr1 and Cmr6 near the 3′ end of the crRNA. The shape and organization of the RNA-targeting Cmr complex is strikingly similar to the DNA-targeting Cascade complex. Our results reveal a remarkably conserved architecture among very distantly related CRISPR-Cas complexes.
doi:10.1016/j.molcel.2013.09.008
PMCID: PMC3864027  PMID: 24119404
24.  CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli 
RNA Biology  2013;10(5):792-802.
Prokaryotes immunize themselves against transmissible genetic elements by the integration (acquisition) in clustered regularly interspaced short palindromic repeats (CRISPR) loci of spacers homologous to invader nucleic acids, defined as protospacers. Following acquisition, mono-spacer CRISPR RNAs (termed crRNAs) guide CRISPR-associated (Cas) proteins to degrade (interference) protospacers flanked by an adjacent motif in extrachomosomal DNA. During acquisition, selection of spacer-precursors adjoining the protospacer motif and proper orientation of the integrated fragment with respect to the leader (sequence leading transcription of the flanking CRISPR array) grant efficient interference by at least some CRISPR-Cas systems. This adaptive stage of the CRISPR action is poorly characterized, mainly due to the lack of appropriate genetic strategies to address its study and, at least in Escherichia coli, the need of Cas overproduction for insertion detection. In this work, we describe the development and application in Escherichia coli strains of an interference-independent assay based on engineered selectable CRISPR-spacer integration reporter plasmids. By using this tool without the constraint of interference or cas overexpression, we confirmed fundamental aspects of this process such as the critical requirement of Cas1 and Cas2 and the identity of the CTT protospacer motif for the E. coli K12 system. In addition, we defined the CWT motif for a non-K12 CRISPR-Cas variant, and obtained data supporting the implication of the leader in spacer orientation, the preferred acquisition from plasmids harboring cas genes and the occurrence of a sequential cleavage at the insertion site by a ruler mechanism.
doi:10.4161/rna.24023
PMCID: PMC3737337  PMID: 23445770
CRISPR-spacer acquisition; Cascade; Escherichia coli K12; O157:H7; RNA-guided immunity; cas genes; protospacer adjacent motif; reporter plasmids; ruler mechanism; spacer orientation
25.  CRISPR transcript processing: a mechanism for generating a large number of small interfering RNAs 
Biology Direct  2012;7:24.
Background
CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated sequences) is a recently discovered prokaryotic defense system against foreign DNA, including viruses and plasmids. CRISPR cassette is transcribed as a continuous transcript (pre-crRNA), which is processed by Cas proteins into small RNA molecules (crRNAs) that are responsible for defense against invading viruses. Experiments in E. coli report that overexpression of cas genes generates a large number of crRNAs, from only few pre-crRNAs.
Results
We here develop a minimal model of CRISPR processing, which we parameterize based on available experimental data. From the model, we show that the system can generate a large amount of crRNAs, based on only a small decrease in the amount of pre-crRNAs. The relationship between the decrease of pre-crRNAs and the increase of crRNAs corresponds to strong linear amplification. Interestingly, this strong amplification crucially depends on fast non-specific degradation of pre-crRNA by an unidentified nuclease. We show that overexpression of cas genes above a certain level does not result in further increase of crRNA, but that this saturation can be relieved if the rate of CRISPR transcription is increased. We furthermore show that a small increase of CRISPR transcription rate can substantially decrease the extent of cas gene activation necessary to achieve a desired amount of crRNA.
Conclusions
The simple mathematical model developed here is able to explain existing experimental observations on CRISPR transcript processing in Escherichia coli. The model shows that a competition between specific pre-crRNA processing and non-specific degradation determines the steady-state levels of crRNA and is responsible for strong linear amplification of crRNAs when cas genes are overexpressed. The model further shows how disappearance of only a few pre-crRNA molecules normally present in the cell can lead to a large (two orders of magnitude) increase of crRNAs upon cas overexpression. A crucial ingredient of this large increase is fast non-specific degradation by an unspecified nuclease, which suggests that a yet unidentified nuclease(s) is a major control element of CRISPR response. Transcriptional regulation may be another important control mechanism, as it can either increase the amount of generated pre-crRNA, or alter the level of cas gene activity.
Reviewers
This article was reviewed by Mikhail Gelfand, Eugene Koonin and L Aravind.
doi:10.1186/1745-6150-7-24
PMCID: PMC3537551  PMID: 22849651
CRISPR/Cas; Transcript processing; Small RNA; CRISPR expression regulation; CRISPR/Cas response

Results 1-25 (1386401)