PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (792801)

Clipboard (0)
None

Related Articles

1.  Sperm Swimming Velocity Predicts Competitive Fertilization Success in the Green Swordtail Xiphophorus helleri 
PLoS ONE  2010;5(8):e12146.
Sperm competition is expected to favour the evolution of traits that influence the performance of sperm when they compete to fertilize a female's eggs. While there is considerable evidence that selection favours increases in sperm numbers, much less is known about how sperm quality contributes towards competitive fertilization success. Here, we determine whether variation in sperm quality influences competitive fertilization success in the green swordtail Xiphophorus helleri, a highly promiscuous livebearing fish. We use artificial insemination as a method of controlled sperm delivery and show that sperm swimming velocity is the primary determinant of fertilization success when ejaculates from two males compete to fertilize a female's eggs. By contrast, we found no evidence that sperm length had any effect on siring success. We also found no evidence that pre- and postcopulatory sexual traits were phenotypically integrated in this species, suggesting that the previous observation that reproductive skew favours males with high mating rates is unlikely to be due to any direct association between sperm quality and male sexual ornamentation.
doi:10.1371/journal.pone.0012146
PMCID: PMC2921332  PMID: 20730092
2.  Long sperm fertilize more eggs in a bird 
Sperm competition, in which the ejaculates of multiple males compete to fertilize a female's ova, results in strong selection on sperm traits. Although sperm size and swimming velocity are known to independently affect fertilization success in certain species, exploring the relationship between sperm length, swimming velocity and fertilization success still remains a challenge. Here, we use the zebra finch (Taeniopygia guttata), where sperm size influences sperm swimming velocity, to determine the effect of sperm total length on fertilization success. Sperm competition experiments, in which pairs of males whose sperm differed only in length and swimming speed, revealed that males producing long sperm were more successful in terms of (i) the number of sperm reaching the ova and (ii) fertilizing those ova. Our results reveal that although sperm length is the main factor determining the outcome of sperm competition, complex interactions between male and female reproductive traits may also be important. The mechanisms underlying these interactions are poorly understood, but we suggest that differences in sperm storage and utilization by females may contribute to the outcome of sperm competition.
doi:10.1098/rspb.2014.1897
PMCID: PMC4286041  PMID: 25621327
sperm length; swimming velocity; fertilization success; sperm competition
3.  Sperm Competition Selects for Sperm Quantity and Quality in the Australian Maluridae 
PLoS ONE  2011;6(1):e15720.
When ejaculates from rival males compete for fertilization, there is strong selection for sperm traits that enhance fertilization success. Sperm quantity is one such trait, and numerous studies have demonstrated a positive association between sperm competition and both testes size and the number of sperm available for copulations. Sperm competition is also thought to favor increases in sperm quality and changes in testicular morphology that lead to increased sperm production. However, in contrast to sperm quantity, these hypotheses have received considerably less empirical support and remain somewhat controversial. In a comparative study using the Australian Maluridae (fairy-wrens, emu-wrens, grasswrens), we tested whether increasing levels of sperm competition were associated with increases in both sperm quantity and quality, as well as an increase in the relative amount of seminiferous tubule tissue contained within the testes. After controlling for phylogeny, we found positive associations between sperm competition and sperm numbers, both in sperm reserves and in ejaculate samples. Additionally, as sperm competition level increased, the proportion of testicular spermatogenic tissue also increased, suggesting that sperm competition selects for greater sperm production per unit of testicular tissue. Finally, we also found that sperm competition level was positively associated with multiple sperm quality traits, including the proportion of motile sperm in ejaculates and the proportion of both viable and morphologically normal sperm in sperm reserves. These results suggest multiple ejaculate traits, as well as aspects of testicular morphology, have evolved in response to sperm competition in the Australian Maluridae. Furthermore, our findings emphasize the importance of post-copulatory sexual selection as an evolutionary force shaping macroevolutionary differences in sperm phenotype.
doi:10.1371/journal.pone.0015720
PMCID: PMC3026798  PMID: 21283577
4.  Sperm Competition, Sperm Numbers and Sperm Quality in Muroid Rodents 
PLoS ONE  2011;6(3):e18173.
Sperm competition favors increases in relative testes mass and production efficiency, and changes in sperm phenotype that result in faster swimming speeds. However, little is known about its effects on traits that contribute to determine the quality of a whole ejaculate (i.e., proportion of motile, viable, morphologically normal and acrosome intact sperm) and that are key determinants of fertilization success. Two competing hypotheses lead to alternative predictions: (a) sperm quantity and quality traits co-evolve under sperm competition because they play complementary roles in determining ejaculate's competitive ability, or (b) energetic constraints force trade-offs between traits depending on their relevance in providing a competitive advantage. We examined relationships between sperm competition levels, sperm quantity, and traits that determine ejaculate quality, in a comparative study of 18 rodent species using phylogenetically controlled analyses. Total sperm numbers were positively correlated to proportions of normal sperm, acrosome integrity and motile sperm; the latter three were also significantly related among themselves, suggesting no trade-offs between traits. In addition, testes mass corrected for body mass (i.e., relative testes mass), showed a strong association with sperm numbers, and positive significant associations with all sperm traits that determine ejaculate quality with the exception of live sperm. An “overall sperm quality” parameter obtained by principal component analysis (which explained 85% of the variance) was more strongly associated with relative testes mass than any individual quality trait. Overall sperm quality was as strongly associated with relative testes mass as sperm numbers. Thus, sperm quality traits improve under sperm competition in an integrated manner suggesting that a combination of all traits is what makes ejaculates more competitive. In evolutionary terms this implies that a complex network of genetic and developmental pathways underlying processes of sperm formation, maturation, transport in the female reproductive tract, and preparation for fertilization must all evolve in concert.
doi:10.1371/journal.pone.0018173
PMCID: PMC3064651  PMID: 21464956
5.  Sperm competition and the evolution of gamete morphology in frogs. 
Despite detailed knowledge of the ultrastructure of spermatozoa, there is a paucity of information on the selective pressures that influence sperm form and function. Theoretical models for both internal and external fertilizers predict that sperm competition could favour the evolution of longer sperm. Empirical tests of the external-fertilization model have been restricted to just one group, the fishes, and these tests have proved equivocal. We investigated how sperm competition affects sperm morphology in externally fertilizing myobatrachid frogs. We also examined selection acting on egg size, and covariation between sperm and egg morphology. Species were ranked according to probability of group spawning and hence risk of sperm competition. Body size, testis size and oviposition environment may also influence gamete traits and were included in our analyses. After controlling for phylogenetic relationships between the species examined, we found that an increased risk of sperm competition was associated with increased sperm head and tail lengths. Path analysis showed that sperm competition had its greatest direct effect on sperm tail length, as might be expected under selection resulting from competitive fertilization. Sperm competition did not influence egg size. Oviposition location had a strong influence on egg size and a weak influence on sperm length, with terrestrial spawners having larger gametes than aquatic spawners. Our analysis revealed significant correlated evolution between egg morphology and sperm morphology. These data provide a conclusive demonstration that sperm competition selects for increased sperm length in frogs, and evidence for evolutionary covariance between aspects of male and female gamete morphology.
doi:10.1098/rspb.2003.2433
PMCID: PMC1691467  PMID: 14561298
6.  The relative nature of fertilization success: Implications for the study of post-copulatory sexual selection 
Background
The determination of genetic variation in sperm competitive ability is fundamental to distinguish between post-copulatory sexual selection models based on good-genes vs compatible genes. The sexy-sperm and the good-sperm hypotheses for the evolution of polyandry require additive (intrinsic) effects of genes influencing sperm competitiveness, whereas the genetic incompatibility hypothesis invokes non-additive genetic effects. A male's sperm competitive ability is typically estimated from his fertilization success, a measure that is dependent on the ability of rival sperm competitors to fertilize the ova. It is well known that fertilization success may be conditional to genotypic interactions among males as well as between males and females. However, the consequences of effects arising from the random sampling of sperm competitors upon the estimation of genetic variance in sperm competitiveness have been overlooked. Here I perform simulations of mating trials performed in the context of sibling analysis to investigate whether the ability to detect additive genetic variance underlying the sperm competitiveness phenotype is hindered by the relative nature of fertilization success measurements.
Results
Fertilization success values render biased sperm competitive ability values. Furthermore, asymmetries among males in the errors committed when estimating sperm competitive abilities are likely to exist as long as males exhibit variation in sperm competitiveness. Critically, random effects arising from the relative nature of fertilization success lead to an underestimation of underlying additive genetic variance in sperm competitive ability.
Conclusion
The results show that, regardless of the existence of genotypic interactions affecting the output of sperm competition, fertilization success is not a perfect predictor of sperm competitive ability because of the stochasticity of the background used to obtain fertilization success measures. Random effects need to be considered in the debate over the maintenance of genetic variation in sperm competitiveness, and when testing good-genes and compatible-genes processes as explanations of polyandrous behaviour using repeatability/heritability data in sperm competitive ability. These findings support the notion that the genetic incompatibility hypothesis needs to be treated as an alternative hypothesis, rather than a null hypothesis, in studies that fail to detect intrinsic sire effects on the sperm competitiveness phenotype.
doi:10.1186/1471-2148-8-140
PMCID: PMC2408597  PMID: 18474087
7.  Sperm competition experiments between lines of crickets producing different sperm lengths. 
Sperm numbers can be important determinants of fertilization success in sperm competition. However, the importance of variation in sperm size is less well understood. Sperm size varies significantly both between and within species and comparative studies have suggested that some of this variance can be explained by sperm competition. In this study we examine whether variation in sperm length has consequences for fertilization precedence using controlled sperm competition experiments in the field cricket Gryllus bimaculatus. This species is an ideal model for such investigations because the mechanism of sperm competition generates complete mixing of different males' spermatozoa in the female (thereby allowing individual sperm to express their own competitive abilities). We successfully bred lines of crickets, the males of which produced short, medium and long sperm types with narrow and non-overlapping distributions. Males of different lines were then sequentially mated with control females in order to create two-male sperm competitions. The paternity outcomes of these competitions were measured after matings using an irradiated male technique (with a full reciprocal design that controls for natural fertility and any irradiation effects on gamete competitiveness) over a 12 day oviposition period. However, having successfully bred diverging sperm length lines and competing males that differed in sperm length, we found no evidence that a male's sperm size explained any of the variation in their relative fertilization success. Males from lines producing longer sperm showed no fertilization advantage over males producing shorter sperm across 97 double matings. There was also no advantage for males producing a sperm length close to the population mean over those competitors whose sperm length had been selectively diverged across 63 matings.
doi:10.1098/rspb.2001.1807
PMCID: PMC1088877  PMID: 11674877
8.  Experimental evolution of sperm competitiveness in a mammal 
Background
When females mate with multiple partners, sperm from rival males compete to fertilise the ova. Studies of experimental evolution have proven the selective action of sperm competition on male reproductive traits. However, while reproductive traits may evolve in response to sperm competition, this does not necessarily provide evidence that sperm competitive ability responds to selection. Indeed, a study of Drosophila failed to observe divergence in sperm competitive ability of males in lines selected for enhanced sperm offence and defence.
Results
Adopting the naturally polygamous house mouse (Mus domesticus) as our vertebrate model, we performed an experimental evolution study and observed genetic divergence in sperm quality; males from the polygamous selection lines produced ejaculates with increased sperm numbers and greater sperm motility compared to males from the monogamous lines. Here, after 12 generations of experimental evolution, we conducted competitive matings between males from lineages evolving under sperm competition and males from lineages subject to relaxed selection. We reduced variation in paternity arising from embryo mortality by genotyping embryos in utero at 14 days gestation. Our microsatellite data revealed a significant paternity bias toward males that evolved under the selective regime of sperm competition.
Conclusion
We provide evidence that the sperm competitiveness phenotype can respond to selection, and show that improved sperm quality translates to greater competitive fertilisation success in house mice.
doi:10.1186/1471-2148-11-19
PMCID: PMC3031236  PMID: 21251249
9.  Why small males have big sperm: dimorphic squid sperm linked to alternative mating behaviours 
Background
Sperm cells are the target of strong sexual selection that may drive changes in sperm structure and function to maximize fertilisation success. Sperm evolution is regarded to be one of the major consequences of sperm competition in polyandrous species, however it can also be driven by adaptation to the environmental conditions at the site of fertilization. Strong stabilizing selection limits intra-specific variation, and therefore polymorphism, among fertile sperm (eusperm). Here we analyzed reproductive morphology differences among males employing characteristic alternative mating behaviours, and so potentially different conditions of sperm competition and fertilization environment, in the squid Loligo bleekeri.
Results
Large consort males transfer smaller (average total length = 73 μm) sperm to a female's internal sperm storage location, inside the oviduct; whereas small sneaker males transfer larger (99 μm) sperm to an external location around the seminal receptacle near the mouth. No significant difference in swimming speed was observed between consort and sneaker sperm. Furthermore, sperm precedence in the seminal receptacle was not biased toward longer sperm, suggesting no evidence for large sperm being favoured in competition for space in the sperm storage organ among sneaker males.
Conclusions
Here we report the first case, in the squid Loligo bleekeri, where distinctly dimorphic eusperm are produced by different sized males that employ alternative mating behaviours. Our results found no evidence that the distinct sperm dimorphism was driven by between- and within-tactic sperm competition. We propose that presence of alternative fertilization environments with distinct characteristics (i.e. internal or external), whether or not in combination with the effects of sperm competition, can drive the disruptive evolution of sperm size.
doi:10.1186/1471-2148-11-236
PMCID: PMC3176235  PMID: 21831296
10.  Heritable determinants of male fertilization success in the nematode Caenorhabditis elegans 
Background
Sperm competition is a driving force in the evolution of male sperm characteristics in many species. In the nematode Caenorhabditis elegans, larger male sperm evolve under experimentally increased sperm competition and larger male sperm outcompete smaller hermaphrodite sperm for fertilization within the hermaphrodite reproductive tract. To further elucidate the relative importance of sperm-related traits that contribute to differential reproductive success among males, we quantified within- and among-strain variation in sperm traits (size, rate of production, number transferred, competitive ability) for seven male genetic backgrounds known previously to differ with respect to some sperm traits. We also quantified male mating ability in assays for rates of courtship and successful copulation, and then assessed the roles of these pre- and post-mating traits in first- and second-male fertilization success.
Results
We document significant variation in courtship ability, mating ability, sperm size and sperm production rate. Sperm size and production rate were strong indicators of early fertilization success for males that mated second, but male genetic backgrounds conferring faster sperm production make smaller sperm, despite virgin males of all genetic backgrounds transferring indistinguishable numbers of sperm to mating partners.
Conclusions
We have demonstrated that sperm size and the rate of sperm production represent dominant factors in determining male fertilization success and that C. elegans harbors substantial heritable variation for traits contributing to male reproductive success. C. elegans provides a powerful, tractable system for studying sexual selection and for dissecting the genetic basis and evolution of reproduction-related traits.
doi:10.1186/1471-2148-11-99
PMCID: PMC3096603  PMID: 21492473
11.  Fertilization by proxy: rival sperm removal and translocation in a beetle 
Competition between different males' sperm for the fertilization of ova has led to the evolution of a diversity of characters in male reproductive behaviour, physiology and morphology. Males may increase sperm competition success either by enhancing the success of their own sperm or by negating or eliminating the success of rival sperm. Here, we find that in the flour beetle Tribolium castaneum, the second male to mate gains fertilization precedence over previous males' sperm and fertilizes approximately two-thirds of the eggs. It is not known what mechanism underlies this pattern of last-male sperm precedence; however, the elongate tubules of the female sperm storage organ may encourage a 'last-in, first-out' sperm use sequence. Here we present an additional or alternative mechanism of sperm precedence whereby previously deposited sperm are removed from the female tract by the mating male's genitalia. In addition to providing evidence for sperm removal in T. castaneum, we also show that removed, non-self sperm may be translocated back into the reproductive tracts of new, previously unmated females, where the translocated sperm go on to gain significant fertilization success. We found that, in 45 out of 204 crosses, sperm translocation occurred and in these 45 crosses over half of the offspring were sired by spermatozoa which had been translocated between females on the male genitalia. In the natural environment of stored food, reproductively active T. castaneum adults aggregate in dense mating populations where copulation is frequent (we show in three naturally occurring population densities that copula duration and intermating intervals across three subsequent matings average 1 to 2 min). Selection upon males to remove rival sperm may have resulted in counter-selection upon spermatozoa to survive removal and be translocated into new females where they go on to fertilize in significant numbers.
doi:10.1098/rspb.1999.0761
PMCID: PMC1689951
12.  Fertilization Is Not a New Beginning: The Relationship between Sperm Longevity and Offspring Performance 
PLoS ONE  2012;7(11):e49167.
Sperm are the most diverse cell type known: varying not only among- and within- species, but also among- and within-ejaculates of a single male. Recently, the causes and consequences of variability in sperm phenotypes have received much attention, but the importance of within-ejaculate variability remains largely unknown. Correlative evidence suggests that reduced within-ejaculate variation in sperm phenotype increases a male’s fertilization success in competitive conditions; but the transgenerational consequences of within-ejaculate variation in sperm phenotype remain relatively unexplored. Here we examine the relationship between sperm longevity and offspring performance in a marine invertebrate with external fertilization, Styela plicata. Offspring sired by longer-lived sperm had higher performance compared to offspring sired by freshly-extracted sperm of the same ejaculate, both in the laboratory and the field. This indicates that within-ejaculate differences in sperm longevity can influence offspring fitness – a source of variability in offspring phenotypes that has not previously been considered. Links between sperm phenotype and offspring performance may constrain responses to selection on either sperm or offspring traits, with broad ecological and evolutionary implications.
doi:10.1371/journal.pone.0049167
PMCID: PMC3498328  PMID: 23155458
13.  Postcopulatory Sexual Selection Results in Spermatozoa with More Uniform Head and Flagellum Sizes in Rodents 
PLoS ONE  2014;9(9):e108148.
Interspecific comparative studies have shown that, in most taxa, postcopulatory sexual selection (PCSS) in the form of sperm competition drives the evolution of longer and faster swimming sperm. Work on passserine birds has revealed that PCSS also reduces variation in sperm size between males at the intraspecific level. However, the influence of PCSS upon intra-male sperm size diversity is poorly understood, since the few studies carried out to date in birds have yielded contradictory results. In mammals, PCSS increases sperm size but there is little information on the effects of this selective force on variations in sperm size and shape. Here, we test whether sperm competition associates with a reduction in the degree of variation of sperm dimensions in rodents. We found that as sperm competition levels increase males produce sperm that are more similar in both the size of the head and the size of the flagellum. On the other hand, whereas with increasing levels of sperm competition there is less variation in head length in relation to head width (ratio CV head length/CV head width), there is no relation between variation in head and flagellum sizes (ratio CV head length/CV flagellum length). Thus, it appears that, in addition to a selection for longer sperm, sperm competition may select more uniform sperm heads and flagella, which together may enhance swimming velocity. Overall, sperm competition seems to drive sperm components towards an optimum design that may affect sperm performance which, in turn, will be crucial for successful fertilization.
doi:10.1371/journal.pone.0108148
PMCID: PMC4171531  PMID: 25243923
14.  Structural evolution of CatSper1 in rodents is influenced by sperm competition, with effects on sperm swimming velocity 
Background
Competition between spermatozoa from rival males for success in fertilization (i.e., sperm competition) is an important selective force driving the evolution of male reproductive traits and promoting positive selection in genes related to reproductive function. Positive selection has been identified in reproductive proteins showing rapid divergence at nucleotide level. Other mutations, such as insertions and deletions (indels), also occur in protein-coding sequences. These structural changes, which exist in reproductive genes and result in length variation in coded proteins, could also be subjected to positive selection and be under the influence of sperm competition. Catsper1 is one such reproductive gene coding for a germ-line specific voltage-gated calcium channel essential for sperm motility and fertilization. Positive selection appears to promote fixation of indels in the N-terminal region of CatSper1 in mammalian species. However, it is not known which selective forces underlie these changes and their implications for sperm function.
Results
We tested if length variation in the N-terminal region of CatSper1 is influenced by sperm competition intensity in a group of closely related rodent species of the subfamily Murinae. Our results revealed a negative correlation between sequence length of CatSper1 and relative testes mass, a very good proxy of sperm competition levels. Since CatSper1 is important for sperm flagellar motility, we examined if length variation in the N-terminus of CatSper1 is linked to changes in sperm swimming velocity. We found a negative correlation between CatSper1 length and several sperm velocity parameters.
Conclusions
Altogether, our results suggest that sperm competition selects for a shortening of the intracellular region of CatSper1 which, in turn, enhances sperm swimming velocity, an essential and adaptive trait for fertilization success.
doi:10.1186/1471-2148-14-106
PMCID: PMC4041144  PMID: 24884901
CatSper1; Sperm competition; Indels; Positive selection; Sperm velocity; Rodents
15.  Sperm competition: linking form to function 
Background
Using information from physics, biomechanics and evolutionary biology, we explore the implications of physical constraints on sperm performance, and review empirical evidence for links between sperm length and sperm competition (where two or more males compete to fertilise a female's eggs). A common theme in the literature on sperm competition is that selection for increased sperm performance in polyandrous species will favour the evolution of longer, and therefore faster swimming, sperm. This argument is based on the common assumption that sperm swimming velocity is directly related to sperm length, due to the increased thrust produced by longer flagella.
Results
We critically evaluate the evidence for links between sperm morphology and swimming speed, and draw on cross-disciplinary studies to show that the assumption that velocity is directly related to sperm length will rarely be satisfied in the microscopic world in which sperm operate.
Conclusion
We show that increased sperm length is unlikely to be driven by selection for increased swimming speed, and that the relative lengths of a sperm's constituent parts, rather than their absolute lengths, are likely to be the target of selection. All else being equal, we suggest that a simple measure of the ratio of head to tail length should be used to assess the possible link between morphology and speed. However, this is most likely to be the case for external fertilizers in which females have relatively limited opportunity to influence a sperm's motility.
doi:10.1186/1471-2148-8-319
PMCID: PMC2632676  PMID: 19032741
16.  Slow fertilization of stickleback eggs: the result of sexual conflict? 
BMC Ecology  2006;6:7.
Background
The fertilization success in sperm competition in externally fertilizing fish depends on number and quality of sperm. The time delay between sequential ejaculations may further influence the outcome of sperm competition. Such a time interval can load the raffle over fertilization if fertilization takes place very fast. Short fertilization times are generally assumed for externally fertilizing fish such as the three-spined stickleback (Gasterosteus aculeatus). In this pair-spawning fish, territorial males often try to steal fertilizations in nests of neighbouring males. This sneaking behaviour causes sperm competition. Sneakers will only get a share of paternity when eggs are not fertilized immediately after sperm release. Contrary to males, females may be interested in multiple paternity of their clutch of eggs. There thus may be a sexual conflict over the speed of fertilization.
Results
In this study we used two different in vitro fertilization experiments to assess how fast eggs are fertilized in sticklebacks. We show that complete fertilization takes more than 5 min which is atypically long for externally fertilizing fishes.
Conclusion
This result suggests that the time difference does not imply high costs to the second stickleback male to ejaculate. Slow fertilization (and concomitant prolonged longevity of sperm) may be the result of sexual conflict in which females aimed at complete fertilization and/or multiple paternity.
doi:10.1186/1472-6785-6-7
PMCID: PMC1481549  PMID: 16712724
17.  Sperm selection and genetic incompatibility: does relatedness of mates affect male success in sperm competition? 
Sperm selection may be said to occur if females influence the relative success of ejaculates competing to fertilize their ova. Most evidence that female animals or their ova are capable of sperm selection relates to male genetic incompatibility, although relatively few studies focus on competition between conspecific males. Here I look for evidence of sperm selection with respect to relatedness of mates. Reduced fitness or inbreeding effects in offspring resulting from copulations between close relatives are well documented. If females are capable of sperm selection, they might therefore be expected to discriminate against the sperm of sibling males during sperm competition. I describe an experimental protocol designed to test for evidence of sperm selection while controlling for inbreeding effects. Using decorated field crickets (Gryllodes supplicans), I found that sibling males achieved lower fertilization success in competition with a male unrelated to the female than in competition with another sibling more frequently than expected by chance, although the mean paternity values did not differ significantly between treatments. The tendancy for sibling males to achieve relatively lower fertilization success in competition with males unrelated to the female could not be explained by the effects of increased ejaculate allocation, female control of sperm transfer or inbreeding. This study therefore provides some evidence in support of the idea that female insects (or their ova) may be capable of selection against sperm on the basis of genetic similarity of conspecific males.
doi:10.1098/rspb.1999.0829
PMCID: PMC1690189
18.  Tactic-specific differences in seminal fluid influence sperm performance 
Seminal fluid often makes up a large part of an ejaculate, yet most empirical and theoretical studies on sperm competition have focused on how sperm characteristics (number and quality) affect fertilization success. However, seminal fluid influences own sperm performance and may potentially influence the outcome of sperm competition, by also affecting that of rivals. As a consequence males may be expected to allocate their investment in both sperm and seminal fluid in relation to the potential level of competition. Grass goby (Zosterisessor ophiocephalus) is an external fertilizer with guard-sneaker mating tactics, where sperm competition risk varies according to the tactic adopted. Here, we experimentally manipulated grass goby ejaculates by separately combining sperm and seminal fluid from territorial and sneaker males. While sperm of sneaker and territorial males did not differ in their performance when they interacted with their own seminal fluid only, sperm of sneakers increased their velocity and fertilization rate in the presence of territorial males' seminal fluid. By contrast, sneaker males' seminal fluid had a detrimental effect on the performance of territorial males' sperm. Sperm velocity was unaffected by the seminal fluid of males employing the same tactic, suggesting that seminal fluid's effect on rival-tactic sperm is not based on a self/non-self recognition mechanism. Our findings show that cross interactions of sperm and seminal fluid may influence the fertilization success of competing ejaculates with males investing in both sperm and seminal fluid in response to sperm competition risk.
doi:10.1098/rspb.2012.2891
PMCID: PMC3574395  PMID: 23363633
sperm competition; alternative reproductive tactics; seminal fluid; fertilization success
19.  Delineating the roles of males and females in sperm competition 
Disentangling the relative roles of males, females and their interactive effects on competitive fertilization success remains a challenge in sperm competition. In this study, we apply a novel experimental framework to an ideally suited externally fertilizing model system in order to delineate these roles. We focus on the chinook salmon, Oncorhynchus tshawytscha, a species in which ovarian fluid (OF) has been implicated as a potential arbiter of cryptic female choice for genetically compatible mates. We evaluated this predicted sexually selected function of OF using a series of factorial competitive fertilization trials. Our design involved a series of 10 factorial crosses, each involving two ‘focal’ rival males whose sperm competed against those from a single ‘standardized’ (non-focal) rival for a genetically uniform set of eggs in the presence of OF from two focal females. This design enabled us to attribute variation in competitive fertilization success among focal males, females (OF) and their interacting effects, while controlling for variation attributable to differences in the sperm competitive ability of rival males, and male-by-female genotypic interactions. Using this experimental framework, we found that variation in sperm competitiveness could be attributed exclusively to differences in the sperm competitive ability of focal males, a conclusion supported by subsequent analyses revealing that variation in sperm swimming velocity predicts paternity success. Together, these findings provide evidence that variation in paternity success can be attributed to intrinsic differences in the sperm competitive ability of rival males, and reveal that sperm swimming velocity is a key target of sexual selection.
doi:10.1098/rspb.2013.2047
PMCID: PMC3813331  PMID: 24266039
genetic compatibility; interacting phenotypes; polyandry; multiple mating; cryptic female choice
20.  Female Choice for Males with Greater Fertilization Success in the Swedish Moor Frog, Rana arvalis 
PLoS ONE  2010;5(10):e13634.
Background
Studies of mate choice in anuran amphibians have shown female preference for a wide range of male traits despite females gaining no direct resources from males (i.e. non-resource based mating system). Nevertheless, theoretical and empirical studies have shown that females may still gain indirect genetic benefits from choosing males of higher genetic quality and thereby increase their reproductive success.
Methodology/Principal Findings
We investigated two components of sexual selection in the Moor frog (Rana arvalis), pre-copulatory female choice between two males of different size (‘large’ vs. ‘small’), and their fertilization success in sperm competition and in isolation. Females' showed no significant preference for male size (13 small and six large male preferences) but associated preferentially with the male that subsequently was the most successful at fertilizing her eggs in isolation. Siring success of males in competitive fertilizations was unrelated to genetic similarity with the female and we detected no effect of sperm viability on fertilization success. There was, however, a strong positive association between a male's innate fertilization ability with a female and his siring success in sperm competition. We also detected a strong negative effect of a male's thumb length on his competitive siring success.
Conclusions/Significance
Our results show that females show no preference for male size but are still able to choose males which have greater fertilization success. Genetic similarity and differences in the proportion of viable sperm within a males ejaculate do not appear to affect siring success. These results could be explained through pre- and/or postcopulatory choice for genetic benefits and suggest that females are able to perceive the genetic quality of males, possibly basing their choice on multiple phenotypic male traits.
doi:10.1371/journal.pone.0013634
PMCID: PMC2964304  PMID: 21049015
21.  Sperm velocity and longevity trade off each other and influence fertilization in the sea urchin Lytechinus variegatus. 
The theoretical prediction that fast sperm should be more effective at fertilizing eggs has never been documented empirically. Interspecific comparisons suggest an inverse relationship between sperm velocity and sperm longevity but this trade-off has never been demonstrated within a species. Here I investigate how sperm velocity and sperm longevity influence the patterns of fertilization in the sea urchin Lytechinus variegatus. In the laboratory I examined 11 male female pairs of sea urchins for variation in sperm velocity and sperm longevity, and determined the correlations of these traits with the percentage of eggs fertilized with serially diluted sperm. Males with faster sperm had higher rates of fertilization than males with slower sperm. Within individual males, as sperm aged they slowed down and showed a reduced percentage activity and lower rates of fertilization. Across males, the average velocity of freshly spawned sperm was inversely related to sperm longevity. These results establish the possibility that sperm traits are adapted for varying conditions along a continuum from sperm limitation to sperm competition.
PMCID: PMC1690568  PMID: 10787153
22.  Polyandry in the medfly - shifts in paternity mediated by sperm stratification and mixing 
BMC Genetics  2014;15(Suppl 2):S10.
Background
In the Mediterranean fruit fly (medfly), Ceratitis capitata, a highly invasive agricultural pest species, polyandry, associated with sperm precedence, is a recurrent behaviour in the wild. The absence of tools for the unambiguous discrimination between competing sperm from different males in the complex female reproductive tract has strongly limited the understanding of mechanisms controlling sperm dynamics and use.
Results
Here we use transgenic medfly lines expressing green or red fluorescent proteins in the spermatozoa, which can be easily observed and unambiguously differentiated within the female fertilization chamber. In twice-mated females, one day after the second mating, sperm from the first male appeared to be homogenously distributed all over the distal portion of each alveolus within the fertilization chamber, whereas sperm from the second male were clearly concentrated in the central portion of each alveolus. This distinct stratified sperm distribution was not maintained over time, as green and red sperm appeared homogeneously mixed seven days after the second mating. This dynamic sperm storage pattern is mirrored by the paternal contribution in the progeny of twice-mated females.
Conclusions
Polyandrous medfly females, unlike Drosophila, conserve sperm from two different mates to fertilize their eggs. From an evolutionary point of view, the storage of sperm in a stratified pattern by medfly females may initially favour the fresher ejaculate from the second male. However, as the second male's sperm gradually becomes depleted, the sperm from the first male becomes increasingly available for fertilization. The accumulation of sperm from different males will increase the overall genetic variability of the offspring and will ultimately affect the effective population size. From an applicative point of view, the dynamics of sperm storage and their temporal use by a polyandrous female may have an impact on the Sterile Insect Technique (SIT). Indeed, even if the female's last mate is sterile, an increasing proportion of sperm from a previous mating with a fertile male may contribute to sire viable progeny.
doi:10.1186/1471-2156-15-S2-S10
PMCID: PMC4255777  PMID: 25470981
Medfly; polyandry; sperm stratification; transgenic sperm; fertilization chamber
23.  Competition drives cooperation among closely-related sperm of deer mice 
Nature  2010;463(7282):801-803.
Among the extraordinary adaptations driven by sperm competition is the cooperative behaviour of spermatozoa1. By forming cooperative groups, sperm can increase their swimming velocity and thereby gain an advantage in intermale sperm competition1,2. Accordingly, selection should favour cooperation of the most closely related sperm to maximize fitness3. Here we show that sperm of deer mice (genus Peromyscus) form motile aggregations, then we use this system test predictions of sperm cooperation. We first show that sperm aggregate more often with conspecific than heterospecific sperm, suggesting that individual sperm can discriminate based on genetic relatedness. Next, we provide evidence that the cooperative behaviour of closely-related sperm is driven by sperm competition. In a monogamous species lacking sperm competition, P. polionotus, sperm indiscriminately group with unrelated conspecific sperm. In contrast, in the highly promiscuous deer mouse, P. maniculatus, sperm are significantly more likely to aggregate with those obtained from the same male than sperm from an unrelated conspecific donor. Even when we test sperm from sibling males, we continue to see preferential aggregations of related sperm in P. maniculatus. These results suggest that sperm from promiscuous deer mice discriminate among relatives and thereby cooperate with the most closely-related sperm, an adaptation likely driven by sperm competition.
doi:10.1038/nature08736
PMCID: PMC2824558  PMID: 20090679
24.  No Evidence of Conpopulation Sperm Precedence between Allopatric Populations of House Mice 
PLoS ONE  2014;9(10):e107472.
Investigations into the evolution of reproductive barriers have traditionally focused on closely related species, and the prevalence of conspecific sperm precedence. The effectiveness of conspecific sperm precedence at limiting gene exchange between species suggests that gametic isolation is an important component of reproductive isolation. However, there is a paucity of tests for evidence of sperm precedence during the earlier stages of divergence, for example among isolated populations. Here, we sourced individuals from two allopatric populations of house mice (Mus domesticus) and performed competitive in vitro fertilisation assays to test for conpopulation sperm precedence specifically at the gametic level. We found that ova population origin did not influence the outcome of the sperm competitions, and thus provide no evidence of conpopulation or heteropopulation sperm precedence. Instead, we found that males from a population that had evolved under a high level of postcopulatory sexual selection consistently outcompeted males from a population that had evolved under a relatively lower level of postcopulatory sexual selection. We standardised the number of motile sperm of each competitor across the replicate assays. Our data therefore show that competitive fertilizing success was directly attributable to differences in sperm fertilizing competence.
doi:10.1371/journal.pone.0107472
PMCID: PMC4189782  PMID: 25295521
25.  Variability in sperm form and function in the context of sperm competition risk in two Tupinambis lizards 
Ecology and Evolution  2014;4(21):4080-4092.
In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success. We aim at elucidating the variability of sperm morphometric traits and velocity in two Tupinambis lizards in the context of sperm competition risk. Sperm traits showed substantial variation at all levels examined: between species, among males within species, and within the ejaculate of individual males. Sperm velocity was found to be positively correlated with flagellum: midpiece ratio, with relatively longer flagella associated with faster sperm. Our results document high variability in sperm form and function in lizards.
doi:10.1002/ece3.1262
PMCID: PMC4242561  PMID: 25505535
Postcopulatory sexual selection; sperm evolution; sperm morphometry; sperm velocity; Squamata

Results 1-25 (792801)