PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (710852)

Clipboard (0)
None

Related Articles

1.  Anti-Onchocerca activity and phytochemical analysis of an essential oil from Cyperus articulatus L 
Background
The lack of a safe and effective adult worm drug and the emergence of resistant animal parasite strains to the only recommended drug, the microfilaricide, ivermectin put many at risk of the devastating effects of the onchocerciasis. The present study was undertaken to investigate the acclaimed anti-Onchocerca activity of the roots/rhizomes of Cyperus articulatus in the traditional treatment of onchocerciasis in North Western Cameroon and to assess the plant as a new source of potential filaricidal lead compounds.
Methods
Crude extracts were prepared from the dried plant parts using hexane, methylene chloride and methanol. The antifilarial activity was evaluated in vitro on microfilariae (Mfs) and adult worms of the bovine derived Onchocerca ochengi, a close relative of Onchocerca volvulus. The viabilities of microfilariae and adult male worms were determined based on motility reduction, while for the adult female worms the viability was based on the standard MTT/formazan assay. Cytotoxicity of the active extract was assessed on monkey kidney epithelial cells in vitro and the selectivity indices (SI) were determined. Acute toxicity of the promising extract was investigated in mice. Chemical composition of the active extract was unraveled by GC/MS analysis.
Results
Only the hexane extract, an essential oil exhibited anti-Onchocerca activity. The oil killed both the microfilariae and adult worms of O. ochengi in a dose manner dependently, with IC50s of 23.4 μg/ml on the Mfs, 23.4 μg/ml on adult male worms and 31.25 μg/ml on the adult female worms. Selectivity indices were 4, 4, and 2.99 for Mfs, adult males and adult females, respectively. At a single limit dose of 2000 mg/kg body weight, none of 6 mice that received the essential oil by gavage died. GC/MS analysis revealed the presence of terpenoids, hydrocarbons and fatty acids or fatty acid derivatives as components of the oil.
Conclusions
The essential oil from the roots/rhizomes of Cyperus articulatus is active against O. ochengi microfilariae and adult worms in vitro in a dose dependent manner, hence may provide a source of new anti-filarial compounds. The results also support the traditional use of C. articulatus in the treatment of human onchocerciasis.
doi:10.1186/1472-6882-14-223
PMCID: PMC4099029  PMID: 24998345
Essential oil; Human onchocerciasis; Cyperus articulatus; Phytochemical analysis
2.  In vitro anti-Onchocerca ochengi activities of extracts and chromatographic fractions of Craterispermum laurinum and Morinda lucida 
Background
Onchocerciasis caused by Onchocerca volvulus is the world’s second leading infectious cause of blindness. There is currently no cure for the disease. Ivermectin, the current drug of choice is only microfilaricidal and suboptimal response to it is increasingly being reported. Thus, in contributing to the search for a cure, crude extracts and chromatographic fractions of Craterispermum laurinum and Morinda lucida were screened in vitro, against the bovine and most popular model of the parasite, Onchocerca ochengi.
Methods
Extracted parasites were cultured in RPMI-1640 based media for 05 days in the presence of control drugs, test drugs or drug diluents only. Microfilarial motility was scored using microscopy while adult worm viability was determined biochemically by MTT/formazan colorimetry. Cytotoxicity and acute toxicity of active fractions were tested on monkey kidney epithelial cells (LLCMK2) and in Balb/c mice, respectively.
Results
Out of the 18 extracts screened, the methanolic extracts of the leaves of both plants recorded the highest activities against both the microfilariae (IC100 of 125 μg/ml for both extracts) and adult worms (IC100 of 250 μg/ml and 500 μg/ml for M. lucida and C. laurinum respectively). The most active chromatographic fraction was obtained from M. lucida and had an IC50 of 7.8 μg/ml and 15.63 μg/ml on microfilariae and adult worms respectively, while the most active fraction from C. laurinum had an IC50 of 15.63 μg/ml and 46.8 μg/ml, respectively on microfilariae and adult worms. The 50% cytotoxic concentration (CC50s) on LLCMK2 cells ranged from 15.625 μg/ml to 125 μg/ml for the active fractions. No acute toxicity was recorded for the extracts from both plants. Phytochemical analysis of the most active fractions revealed the presence of sterols, alkaloids, triterpenes, saponins and flavonoids.
Conclusions
This study validates the use of these plants by traditional health practitioners in managing the disease, and also suggests a new source for isolation of potential lead compounds against Onchocerca volvulus.
doi:10.1186/1472-6882-14-325
PMCID: PMC4162957  PMID: 25179014
Onchocerciasis; Medicinal plants; Toxicity; Phytochemical analysis
3.  UMF-078: A modified flubendazole with potent macrofilaricidal activity against Onchocerca ochengi in African cattle 
Parasites & Vectors  2008;1:18.
Background
Human onchocerciasis or river blindness, caused by the filarial nematode Onchocerca volvulus, is currently controlled using the microfilaricidal drug, ivermectin. However, ivermectin does not kill adult O. volvulus, and in areas with less than 65% ivermectin coverage of the population, there is no effect on transmission. Therefore, there is still a need for a macrofilaricidal drug. Using the bovine filarial nematode O. ochengi (found naturally in African cattle), the macrofilaricidal efficacy of the modified flubendazole, UMF-078, was investigated.
Methods
Groups of 3 cows were treated with one of the following regimens: (a) a single dose of UMF-078 at 150 mg/kg intramuscularly (im), (b) 50 mg/kg im, (c) 150 mg/kg intraabomasally (ia), (d) 50 mg/kg ia, or (e) not treated (controls).
Results
After treatment at 150 mg/kg im, nodule diameter, worm motility and worm viability (as measured by metabolic reduction of tetrazolium to formazan) declined significantly compared with pre-treatment values and concurrent controls. There was abrogation of embryogenesis and death of all adult worms by 24 weeks post-treatment (pt). Animals treated at 50 mg/kg im showed a decline in nodule diameter together with abrogated reproduction, reduced motility, and lower metabolic activity in isolated worms, culminating in approximately 50% worm mortality by 52 weeks pt. Worms removed from animals treated ia were not killed, but exhibited a temporary embryotoxic effect which had waned by 12 weeks pt in the 50 mg/kg ia group and by 24 weeks pt in the 150 mg/kg ia group. These differences could be explained by the different absorption rates and elimination half-lives for each dose and route of administration.
Conclusion
Although we did not observe any signs of mammalian toxicity in this trial with a single dose, other studies have raised concerns regarding neuro- and genotoxicity. Consequently, further evaluation of this compound has been suspended. Nonetheless, these results validate the molecular target of the benzimidazoles as a promising lead for rational design of macrofilaricidal drugs.
doi:10.1186/1756-3305-1-18
PMCID: PMC2464590  PMID: 18570639
4.  Ocular onchocerciasis: current management and future prospects 
This paper reviews the current management of onchocerciasis and its future prospects. Onchocerciasis is a disease affecting millions of people in Africa, South and Central America, and Yemen. It is spread by the blackfly as a vector and caused by the filarial nematode, Onchocerca volvulus. A serious attempt was made by the Onchocerciasis Control Program between 1975 and 2002 to eliminate the vector in eleven of the endemic countries in West Africa, and with remarkable success. Formerly, the treatment was with diethyl carbamazine for the microfilaria and suramin for the adult worm. These drugs are now known to be toxic and unsuitable for mass distribution. In particular, they precipitate optic nerve disease. With the discovery of ivermectin, a much safer microfilaricide, and the decision of Merck to distribute the drug free of charge for as long as needed, the strategy of control switched to mass drug administration through community-directed treatment with ivermectin. So far, millions have received this annual or biannual treatment through the African Program for Onchocerciasis Control and the Onchocerciasis Elimination Program for the Americas. However, the problem with ivermectin is that it is a monotherapy microfilaricide which has limited effect on the adult worm, and thus will need to be continued for the life span of the adult worm, which may last up to 15 years. There are also early reports of resistance. Serious encephalopathy and death may occur when ivermectin is used in subjects heavily infested with loiasis. It seems unlikely that a break in transmission will occur with community-directed treatment with ivermectin in Africa because of population migrations and the highly efficient vector, but in the Americas some countries such as Columbia and the Oaxaca focus in Mexico have reported eradication. Vector control is only now applicable in selected situations, and particularly to control the nuisance value of the blackfly. Trials are ongoing for alternatives to ivermectin. Candidate drugs include moxidectin, a macrofilaricide, doxycycline which targets the Wolbachia endosymbiont, and flubendazole, which shows promise with the newer oral cyclodextrin formulation.
doi:10.2147/OPTH.S8372
PMCID: PMC3206119  PMID: 22069350
onchocerciasis; river blindness; ocular; management
5.  Margaritaria discoidea (Euphorbiaceae) stem bark extract attenuates allergy and Freund's adjuvant-induced arthritis in rodents 
Pharmacognosy Research  2014;6(2):163-171.
Background:
Various parts of Margaritaria discoidea find use in traditional medicine in the treatment of pain and oedema. This study evaluated the anti-allergic, anti-inflammatory and anti-arthritic effects of a 70% (v/v) aqueous ethanol extract of the stem bark of Margaritaria discoidea, MDE in rodents.
Materials and Methods:
Systemic anaphylaxis was induced by the injection of compound 48/80 into mice and their survival rate was monitored to evaluate the anti-allergic action of the extract. The effect of MDE assessed on the maximal and total oedema responses in the mouse carrageenan-induced paw oedema was used to evaluate the anti-inflammatory action of the extract while the Freund's adjuvant-induced arthritis model was employed to study the anti-arthritic effects of MDE.
Results:
MDE dose-dependently increased the time for compound 48/80-induced mortality in mice. MDE suppressed the mean maximal swelling and the total paw swellings induced over 6 h in the carrageenan-induced paw oedema when administered either prophylactically or therapeutically. MDE caused a reduction in serum levels of TNFα and IL-6 and significantly suppressed Freund's adjuvant-induced arthritis.
Conclusion:
Margaritaria discoidea suppresses allergy and exhibits anti-inflammatory activity in mice. In addition it attenuates Freund's adjuvant-induced arthritis through a reduction in serum levels of TNFα and IL-6 in rats.
doi:10.4103/0974-8490.129039
PMCID: PMC3996754  PMID: 24761122
Allergy; anaphylaxis; anti-inflammatory; arthritis; Margaritaria discoidea
6.  A murine macrofilaricide pre-clinical screening model for onchocerciasis and lymphatic filariasis 
Parasites & Vectors  2014;7(1):472.
Background
New drugs effective against adult filariae (macrofilaricides) would accelerate the elimination of lymphatic filariasis and onchocerciasis. Anti-Onchocerca drug development is hampered by the lack of a facile model. We postulated that SCID mice could be developed as a fmacrofilaricide screening model.
Methods
The filaricides: albendazole (ABZ), diethylcarbamazine (DEC), flubendazole (FBZ), ivermectin (IVM) and the anti-Wolbachia macrofilaricide, minocycline (MIN) were tested in Brugia malayi (Bm)-parasitized BALB/c SCID mice vs vehicle control (VC). Responses were compared to BALB/c wild type (WT). Onchocerca ochengi male worms or onchocercomata were surgically implanted into BALB/c SCID, CB.17 SCID, BALB/c WT mice or Meriones gerbils. Survival was evaluated at 7–15 days. BALB/c SCID were tested to evaluate the responsiveness of pre-clinical macrofilaricides FBZ and rifapentine (RIFAP) against male Onchocerca.
Results
WT and SCID responded with >95% efficacy following ABZ or DEC treatments against Bm larvae (P < 0.0001). IVM was partially filaricidal against Bm larvae in WT and SCID (WT; 39.8%, P = 0.0356 and SCID; 56.7%, P = 0.026). SCID responded similarly to WT following IVM treatment of microfilaraemias (WT; 79%, P = 0.0194. SCID; 76%, P = 0.0473). FBZ induced a total macrofilaricidal response against adult Bm in WT and SCID (WT; P = 0.0067, SCID; P = 0.0071). MIN induced a >90% reduction in Bm Wolbachia burdens (P < 0.0001) and a blockade of microfilarial release (P = 0.0215) in SCID. Male Onchocerca survival was significantly higher in SCID vs WT mice, but not gerbils, after +15 days (60% vs 22% vs 39% P = 0.0475). Onchocercoma implants had engrafted into host tissues, with evidence of neovascularisation, after +7 days and yielded viable macro/microfilariae ex vivo. FBZ induced a macrofilaricidal effect in Onchocerca male implanted SCID at +5 weeks (FBZ; 1.67% vs VC; 43.81%, P = 0.0089). Wolbachia loads within male Onchocerca were reduced by 99% in implanted SCID receiving RIFAP for +2 weeks.
Conclusions
We have developed a ‘pan-filarial’ small animal research model that is sufficiently robust, with adequate capacity and throughput, to screen existing and future pre-clinical candidate macrofilaricides. Pilot data suggests a murine onchocercoma xenograft model is achievable.
doi:10.1186/s13071-014-0472-z
PMCID: PMC4212127  PMID: 25338621
Anti-filarial; Lymphatic filariasis; Onchocerciasis; Macrofilaricide; Brugia; Onchocerca; Wolbachia
7.  Cellular antioxidative, cytotoxic, and antileishmanial activities of Homalium letestui 
Objective: Homalium letestui Pellegr (Flacourtiaceae) is used in traditional medicine in parts of Nigeria for the treatment of malaria, ulcer, and inflammatory diseases and as an aphrodisiac. This investigation was aimed to evaluate the cytotoxic, immunomodulatory, and antileishmanial properties of stem extract and fractions of Homalium letestui (H. letestui).
Materials and Methods: Cytotoxic activity against HeLa cells was done using sulphorhodamine (SRB) method and DNA interaction activity using gel electrophoresis. Immunomodulatory activity of the extract in whole blood, neutrophils, and macrophages was also investigated using luminol/lucigenin-based chemiluminescence assay. The extract and fractions were similarly screened for antileishmanial activity against promastigotes of Leishmania major in vitro. The GCMS analysis of the most active fraction against HeLa cells was carried out.
Results: The stem extract exerted prominent cytotoxic activity with the dichloromethane fraction exhibiting the most pronounced effect (GI50 -5.12±1.45 µg/ml, LC50- 57.3±2.33 µg/ml, TGI -12.6±0.87 µg/ml). The crude extract and the fractions did not interact with DNA when investigated using electrophoresis. The extract significantly ((p<0.05 – 0.001) inhibited oxidative burst activity in whole blood (–27.90-66.90%), isolated polymorphonuclear cells (PMNs) (16.50-67.0%), and mononuclear cells (MNCs) (4.31-98.50%) when two different phagocytosis activators (serum opsonizing zymosan-A and PMA) were used. The extract also exhibited moderate antileishmanial activity against promastigotes of Leishmania major in vitro. GCMS analysis of active fraction revealed pharmacologically active compounds.
Conclusion: These results suggest that the stem extract/fractions of H. letestui possess cytotoxic, immunomodulatory, and antileishmanial activities.
PMCID: PMC4075688  PMID: 25050257
Antileishmanial; Antioxidant; Cytotoxic;  Homalium letestui; Immunomodulatory
8.  Immunisation with a Multivalent, Subunit Vaccine Reduces Patent Infection in a Natural Bovine Model of Onchocerciasis during Intense Field Exposure 
Human onchocerciasis, caused by the filarial nematode Onchocerca volvulus, is controlled almost exclusively by the drug ivermectin, which prevents pathology by targeting the microfilariae. However, this reliance on a single control tool has led to interest in vaccination as a potentially complementary strategy. Here, we describe the results of a trial in West Africa to evaluate a multivalent, subunit vaccine for onchocerciasis in the naturally evolved host-parasite relationship of Onchocerca ochengi in cattle. Naïve calves, reared in fly-proof accommodation, were immunised with eight recombinant antigens of O. ochengi, administered separately with either Freund's adjuvant or alum. The selected antigens were orthologues of O. volvulus recombinant proteins that had previously been shown to confer protection against filarial larvae in rodent models and, in some cases, were recognised by serum antibodies from putatively immune humans. The vaccine was highly immunogenic, eliciting a mixed IgG isotype response. Four weeks after the final immunisation, vaccinated and adjuvant-treated control calves were exposed to natural parasite transmission by the blackfly vectors in an area of Cameroon hyperendemic for O. ochengi. After 22 months, all the control animals had patent infections (i.e., microfilaridermia), compared with only 58% of vaccinated cattle (P = 0.015). This study indicates that vaccination to prevent patent infection may be an achievable goal in onchocerciasis, reducing both the pathology and transmissibility of the infection. The cattle model has also demonstrated its utility for preclinical vaccine discovery, although much research will be required to achieve the requisite target product profile of a clinical candidate.
Author Summary
River blindness, or onchocerciasis, is caused by a parasitic worm (Onchocerca volvulus) that is transmitted by blood-feeding blackflies, which breed in fast-flowing rivers. More than 37 million people are infected and may experience visual impairment and/or severe dermatitis. Control of onchocerciasis is largely dependent on a single drug, ivermectin. Whilst this is extremely effective at killing the worms' offspring (microfilariae) and preventing symptoms, ivermectin does not eliminate the long-lived adult parasites or always stop transmission. Consequently, treatments must be repeated for many years, and drug resistance may be emerging. Against this background, a vaccine against onchocerciasis would provide an important additional tool to sustain effective control. In this study, we evaluated eight worm antigens as vaccine components in cattle, which are often parasitized by O. ochengi (the closest relative of O. volvulus) in West Africa. Twelve uninfected animals received all eight antigens and were exposed to natural transmission of O. ochengi alongside 13 unvaccinated cattle. After almost two years, 92% of vaccinated animals had acquired adult worms, but only 58% were positive for microfilariae; whereas 100% of unvaccinated animals harboured both parasite stages. This suggests that a vaccine against microfilariae to prevent development of disease in humans may be achievable.
doi:10.1371/journal.pntd.0000544
PMCID: PMC2770122  PMID: 19901988
9.  Extracts of Euphorbia hirta Linn. (Euphorbiaceae) and Rauvolfia vomitoria Afzel (Apocynaceae) demonstrate activities against Onchocerca volvulus Microfilariae in vitro 
Background
Onchocerciasis transmitted by Onchocerca volvulus is the second major cause of blindness in the world and it impacts negatively on the socio-economic development of the communities affected. Currently, ivermectin, a microfilaricidal drug is the only drug recommended for treating this disease. There have been speculations, of late, concerning O. volvulus resistance to ivermectin. Owing to this, it has become imperative to search for new drugs. World-wide, ethnomedicines including extracts of Euphorbia hirta and Rauvolfia vomitoria are used for treating various diseases, both infectious and non-infectious.
Method
In this study extracts of the two plants were evaluated in vitro in order to determine their effect against O. volvulus microfilariae. The toxicity of the E. hirta extracts on monkey kidney cell (LLCMK2) lines was also determined.
Results
The investigations showed that extracts of both plants immobilised microfilariae at different levels in vitro and, therefore, possess antifilarial properties. It was found that all the E. hirta extracts with the exception of the hexane extracts were more effective than those of R. vomitoria. Among the extracts of E. hirta the ethyl acetate fraction was most effective, and comparable to that of dimethanesulphonate salt but higher than that of Melarsoprol (Mel B). However, the crude ethanolic extract of E. hirta was found to be the least toxic to the LLCMK2 compared to the fractionated forms.
Conclusions
Extracts from both plants possess antifilarial properties; however, the crude extract of E. hirta was found to be least toxic to LLCMK2.
doi:10.1186/1472-6882-13-66
PMCID: PMC3606627  PMID: 23506674
Euphorbia hirta; Rauvolfia vomitoria; Onchocerca volvulus; Microfilariae; In vitro
10.  Phenotypic Evidence of Emerging Ivermectin Resistance in Onchocerca volvulus 
Background
Ivermectin (IVM) has been used in Ghana for over two decades for onchocerciasis control. In recent years there have been reports of persistent microfilaridermias despite multiple treatments. This has necessitated a reexamination of its microfilaricidal and suppressive effects on reproduction in the adult female Onchocerca volvulus. In an initial study, we demonstrated the continued potent microfilaricidal effect of IVM. However, we also found communities in which the skin microfilarial repopulation rates at days 90 and 180 were much higher than expected. In this follow up study we have investigated the reproductive response of female worms to multiple treatments with IVM.
Methods and Findings
The parasitological responses to IVM in two hundred and sixty-eight microfilaridermic subjects from nine communities that had received 10 to 19 annual doses of IVM treatment and one pre-study IVM-naïve community were followed. Skin snips were taken 364 days after the initial IVM treatment during the study to determine the microfilaria (mf) recovery rate. Nodules were excised and skin snips taken 90 days following a second study IVM treatment. Nodule and worm density and the reproductive status of female worms were determined. On the basis of skin mf repopulation and skin mf recovery rates we defined three categories of response—good, intermediate and poor—and also determined that approximately 25% of subjects in the study carried adult female worms that responded suboptimally to IVM. Stratification of the female worms by morphological age and microfilarial content showed that almost 90% of the worms were older or middle aged and that most of the mf were produced by the middle aged and older worms previously exposed to multiple treatments with little contribution from young worms derived from ongoing transmission.
Conclusions
The results confirm that in some communities adult female worms were non-responsive or resistant to the anti-fecundity effects of multiple treatments with IVM. A scheme of the varied responses of the adult female worm to multiple treatments is proposed.
Author Summary
Onchocerciasis, commonly known as river blindness, is caused by the filarial nematode Onchocerca volvulus and is transmitted by a blackfly vector. Over 37 million people are thought to be infected, with over 90 million at risk. Infection predominantly occurs in sub-Saharan Africa. Foci also exist in the Arabian Peninsula and Central and South America. Ivermectin, the sole pharmaceutical available for mass chemotherapy, has been used on a community basis for annual or semi-annual treatment since 1987. Multiple treatments with ivermectin kill the microfilariae that are responsible for the pathology of onchocerciasis. More importantly, ivermectin suppresses the reproductive activity of the adult female worms, thus delaying or preventing the repopulation of the skin with new microfilariae and thereby reducing transmission. This study extends earlier reports of sub-optimal responses to ivermectin by examining repopulation levels of microfilaria one year after treatment, worm burdens per nodule, the age structure of adult female worms recovered from nodules, and the reproductive status of adult female worms 90 days after ivermectin treatment. In some communities which have shown a pattern of sub-optimal response to treatment, the data is consistent with an emergence of ivermectin non response or resistance manifested by a loss of the effect of ivermectin on the suppression of parasite reproduction.
doi:10.1371/journal.pntd.0000998
PMCID: PMC3066159  PMID: 21468315
11.  Dynamics of Onchocerca volvulus Microfilarial Densities after Ivermectin Treatment in an Ivermectin-naïve and a Multiply Treated Population from Cameroon 
Background/Objective
Ivermectin has been the keystone of onchocerciasis control for the last 25 years. Sub-optimal responses to the drug have been reported in Ghanaian communities under long-term treatment. We assessed, in two Cameroonian foci, whether the microfilaricidal and/or embryostatic effects of ivermectin on Onchocerca volvulus have been altered after several years of drug pressure.
Methods
We compared the dynamics of O. volvulus skin microfilarial densities after ivermectin treatment in two cohorts with contrasting exposure to this drug: one received repeated treatment for 13 years whereas the other had no history of large-scale treatments (referred to as controls). Microfilarial densities were assessed 15, 80 and 180 days after ivermectin in 122 multiply treated and 127 ivermectin-naïve individuals. Comparisons were adjusted for individual factors related to microfilarial density: age and number of nodules.
Findings
Two weeks post ivermectin, microfilarial density dropped equally (98% reduction) in the ivermectin-naïve and multiply treated groups. Between 15 and 180 days post ivermectin, the proportion of individuals with skin microfilariae doubled (from 30.8% to 67.8%) in controls and quadrupled (from 19.8% to 76.9%) in multiply treated individuals but the mean densities remained low in both sites. In fact, between 15 and 80 days, the repopulation rate was significantly higher in the multiply treated individuals than in the controls but no such difference was demonstrated when extending the follow-up to 180 days. The repopulation rate by microfilariae was associated with host factors: negatively with age and positively with the number of nodules.
Conclusion
These observations may indicate that the worms from the multi-treated area recover mf productivity earlier but would be less productive than the worms from the ivermectin-naïve area between 80 and 180 days after ivermectin. Moreover, they do not support the operation of a strong cumulative effect of repeated treatments on the fecundity of female worms as previously described.
Author Summary
Millions of Africans and thousands of Latin Americans are infected with Onchocerca volvulus, the filarial worm responsible for onchocerciasis. Since the mid-1990s, control programs rely on annual or six-monthly community treatments with the only safe drug available, ivermectin. If sustained for another 10–15 years, this strategy could lead to elimination of onchocerciasis. Unfortunately, there have been reports of low response to the drug in Ghanaian communities under long-term treatment. Here, we compared the response of O. volvulus to ivermectin between a Cameroonian population repeatedly treated and an ivermectin-naïve population. Skin parasite density was assessed before and 15, 80 and 180 days after treatment. Parasite density dropped equally in the two groups (∼98% reduction) by 15 days, in accordance with the expected effect of ivermectin at this time point. In the multi-treated subjects, the repopulation rate of the skin by microfilariae was higher than in the controls from 15 to 80 days after treatment but the microfilarial levels reached similar levels six months after treatment in the two groups. Thirteen years of large-scale treatments may have selected worms less sensitive to the drug. In addition, those treatments had little if any cumulative effect on skin parasite repopulation after an additional treatment.
doi:10.1371/journal.pntd.0002084
PMCID: PMC3585010  PMID: 23469307
12.  Macrofilaricidal Activity after Doxycycline Only Treatment of Onchocerca volvulus in an Area of Loa loa Co-Endemicity: A Randomized Controlled Trial 
Background
The risk of severe adverse events following treatment of onchocerciasis with ivermectin in areas co-endemic with loiasis currently compromises the development of control programmes and the treatment of co-infected individuals. We therefore assessed whether doxycycline treatment could be used without subsequent ivermectin administration to effectively deliver sustained effects on Onchocerca volvulus microfilaridermia and adult viability. Furthermore we assessed the safety of doxycycline treatment prior to ivermectin administration in a subset of onchocerciasis individuals co-infected with low to moderate intensities of Loa loa microfilaraemia.
Methods
A double-blind, randomized, field trial was conducted of 6 weeks of doxycycline (200 mg/day) alone, doxycycline in combination with ivermectin (150 µg/kg) at +4 months or placebo matching doxycycline + ivermectin at +4 months in 150 individuals infected with Onchocerca volvulus. A further 22 individuals infected with O. volvulus and low to moderate intensities of Loa loa infection were administered with a course of 6 weeks doxycycline with ivermectin at +4 months. Treatment efficacy was determined at 4, 12 and 21 months after the start of doxycycline treatment together with the frequency and severity of adverse events.
Results
One hundred and four (60.5%) participants completed all treatment allocations and follow up assessments over the 21-month trial period. At 12 months, doxycycline/ivermectin treated individuals had lower levels of microfilaridermia and higher frequency of amicrofilaridermia compared with ivermectin or doxycycline only groups. At 21 months, microfilaridermia in doxycycline/ivermectin and doxycycline only groups was significantly reduced compared to the ivermectin only group. 89% of the doxycycline/ivermectin group and 67% of the doxycycline only group were amicrofilaridermic, compared with 21% in the ivermectin only group. O. volvulus from doxycycline groups were depleted of Wolbachia and all embryonic stages in utero. Notably, the viability of female adult worms was significantly reduced in doxycycline treated groups and the macrofilaricidal and sterilising activity was unaffected by the addition of ivermectin. Treatment with doxycycline was well tolerated and the incidence of adverse event to doxycycline or ivermectin did not significantly deviate between treatment groups.
Conclusions
A six-week course of doxycycline delivers macrofilaricidal and sterilizing activities, which is not dependent upon co-administration of ivermectin. Doxycycline is well tolerated in patients co-infected with moderate intensities of L. loa microfilariae. Therefore, further trials are warranted to assess the safety and efficacy of doxycycline-based interventions to treat onchocerciasis in individuals at risk of serious adverse reactions to standard treatments due to the co-occurrence of high intensities of L. loa parasitaemias. The development of an anti-wolbachial treatment regime compatible with MDA control programmes could offer an alternative to the control of onchocerciasis in areas of co-endemicity with loiasis and at risk of severe adverse reactions to ivermectin.
Trial Registration
Controlled-Trials.com ISRCTN48118452
Author Summary
The control of onchocerciasis in Africa relies on the sustained delivery of ivermectin. In certain areas, annual treatments delivered with high population coverage for at least 15–17 years can break transmission. In other endemic settings this strategy alone is thought to be insufficient to eradicate the disease. One of the major limitations occurs in areas that are co-endemic with another filarial infection caused by Loa loa, due to the risk of a rare severe adverse event associated with the rapid killing of L. loa microfilariae in heavily parasitized individuals. There are also concerns over recent evidence of reduced efficacy of ivermectin and the possible development of resistance. An alternative approach is to target the Wolbachia bacterial endosymbionts of Onchocerca volvulus with the antibiotic, doxycycline. In an area of Cameroon co-endemic for onchocerciasis and loiasis we conducted a trial comparing doxycycline with or without ivermectin treatment to ivermectin treatment alone. A six-week course of doxycycline delivers macrofilaricidal and sterilizing activities, which is not dependent upon co-administration of ivermectin. Doxycycline is well tolerated in patients co-infected with moderate intensities of L. loa microfilariae. The trial indicates that anti-wolbachial therapy is a feasible alternative to ivermectin in communities co-endemic for onchocerciasis and loiasis.
doi:10.1371/journal.pntd.0000660
PMCID: PMC2854122  PMID: 20405054
13.  Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia precedes worm death and suggests a dependent relationship. 
Filarial nematodes are important and widespread parasites of animals and humans. We have been using the African bovine parasite Onchocerca ochengi as a chemotherapeutic model for O. volvulus, the causal organism of 'river blindness' in humans, for which there is no safe and effective drug lethal to adult worms. Here we report that the antibiotic, oxytetracycline is macrofilaricidal against O. ochengi. In a controlled trial in Cameroon, all adult worms (as well as microfilariae) were killed, and O. ochengi intradermal nodules resolved, by nine months' post-treatment in cattle treated intermittently for six months. Adult worms removed from concurrent controls remained fully viable and reproductively active. By serial electron-microscopic examination, the macrofilaricidal effects were related to the elimination of intracellular micro-organisms, initially abundant. Analysis of a fragment of the 16S rRNA gene from the O. ochengi micro-organisms confirmed them to be Wolbachia organisms of the order Rickettsiales, and showed that the sequence differed in only one nucleotide in 858 from the homologous sequence of the Wolbachia organisms of O. volvulus. These data are, to our knowledge, the first to show that antibiotic therapy can be lethal to adult filariae. They suggest that tetracycline therapy is likely to be macrofilaricidal against O. volvulus infections in humans and, since similar Wolbachia organisms occur in a number of other filarial nematodes, against those infections too. In that the elimination of Wolbachia preceded the resolution of the filarial infections, they suggest that in O. ochengi at least, the Wolbachia organisms play an essential role in the biology and metabolism of the filarial worm.
PMCID: PMC1690645  PMID: 10885510
14.  Reproductive Status of Onchocerca volvulus after Ivermectin Treatment in an Ivermectin-Naïve and a Frequently Treated Population from Cameroon 
Background
For two decades, onchocerciasis control has been based on mass treatment with ivermectin (IVM), repeated annually or six-monthly. This drug kills Onchocerca volvulus microfilariae (mf) present in the skin and the eyes (microfilaricidal effect) and prevents for 3–4 months the release of new mf by adult female worms (embryostatic effect). In some Ghanaian communities, the long-term use of IVM was associated with a more rapid than expected skin repopulation by mf after treatment. Here, we assessed whether the embryostatic effect of IVM on O. volvulus has been altered following frequent treatment in Cameroonian patients.
Methodology
Onchocercal nodules were surgically removed just before (D0) and 80 days (D80) after a standard dose of IVM in two cohorts with different treatment histories: a group who had received repeated doses of IVM over 13 years, and a control group with no history of large-scale treatments. Excised nodules were digested with collagenase to isolate adult worms. Embryograms were prepared with females for the evaluation of their reproductive capacities.
Principal Findings
Oocyte production was not affected by IVM. The mean number of intermediate embryos (morulae and coiled mf) decreased similarly in the two groups between D0 and D80. In contrast, an accumulation of stretched mf, either viable or degenerating, was observed at D80. However, it was observed that the increase in number of degenerating mf between D0 and D80 was much lower in the frequently treated group than in the control one (Incidence Rate Ratio: 0.25; 95% CI: 0.10–0.63; p = 0.003), which may indicate a reduced sequestration of mf in the worms from the frequently treated group.
Conclusion/Significance
IVM still had an embryostatic effect on O. volvulus, but the effect was reduced in the frequently treated cohort compared with the control population.
Author Summary
Onchocerciasis, also known as river blindness, is a parasitic disease due to the filarial nematode Onchocerca volvulus. It affects more than 37 million people worldwide, most of them (99%) living in Africa. The control of river blindness is, up to now, based on annual or six-monthly mass treatment with ivermectin. This drug kills O. volvulus microfilariae (mf) present in the skin and the eyes and prevents for 3–4 months the release of new mf by female worms (embryostatic effect). In Ghana, after 10–19 years of repeated treatments, the emergence of adult parasite populations not responding as expected to ivermectin was postulated. In this study, the reproductive status of female worms was compared, just before and 80 days after ivermectin treatment, between frequently treated and ivermectin-naïve cohorts from Cameroon. In both groups, embryogenesis of O. volvulus was not affected by ivermectin. However, the accumulation of microfilariae (mf) in the females uteri expected after ivermectin was less marked in the frequently treated population, suggesting that the temporary sequestration of mf following treatment may have been weakened in this group. After 13 years of repeated annual treatments, the embryostatic effect of ivermectin on O. volvulus still occurs but the present findings, associated with observations of higher rates of skin repopulation by mf in the same individuals, suggest that this effect has been decreased.
doi:10.1371/journal.pntd.0002824
PMCID: PMC3998936  PMID: 24762816
15.  Extracellular Onchocerca-derived small RNAs in host nodules and blood 
Parasites & Vectors  2015;8:58.
Background
microRNAs (miRNAs), a class of short, non-coding RNA can be found in a highly stable, cell-free form in mammalian body fluids. Specific miRNAs are secreted by parasitic nematodes in exosomes and have been detected in the serum of murine and dog hosts infected with the filarial nematodes Litomosoides sigmodontis and Dirofilaria immitis, respectively. Here we identify extracellular, parasite-derived small RNAs associated with Onchocerca species infecting cattle and humans.
Methods
Small RNA libraries were prepared from total RNA extracted from the nodule fluid of cattle infected with Onchocerca ochengi as well as serum and plasma from humans infected with Onchocerca volvulus in Cameroon and Ghana. Parasite-derived miRNAs were identified based on the criteria that sequences unambiguously map to hairpin structures in Onchocerca genomes, do not align to the human genome and are not present in European control serum.
Results
A total of 62 mature miRNAs from 52 distinct pre-miRNA candidates were identified in nodule fluid from cattle infected with O. ochengi of which 59 are identical in the genome of the human parasite O. volvulus. Six of the extracellular miRNAs were also identified in sequencing analyses of serum and plasma from humans infected with O. volvulus. Based on sequencing analysis the abundance levels of the parasite miRNAs in serum or plasma range from 5 to 127 reads/per million total host miRNA reads identified, comparable to our previous analyses of Schistosoma mansoni and L. sigmodontis miRNAs in serum. All six of the O. volvulus miRNAs identified have orthologs in other filarial nematodes and four were identified in the serum of mice infected with L. sigmodontis.
Conclusions
We have identified parasite-derived miRNAs associated with onchocerciasis in cattle and humans. Our results confirm the conserved nature of RNA secretion by diverse nematodes. Additional species-specific small RNAs from O. volvulus may be present in serum based on the novel miRNA sequences identified in the nodule fluid. In our analyses comparison to European control serum illuminates the scope for false-positives, warranting caution in criteria that should be applied to identification of biomarkers of infection.
Electronic supplementary material
The online version of this article (doi:10.1186/s13071-015-0656-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s13071-015-0656-1
PMCID: PMC4316651  PMID: 25623184
microRNAs; Extracellular RNA; Filarial nematode; Onchocerciasis; Host-pathogen
16.  Onchocerca armillata contains the endosymbiotic bacterium Wolbachia and elicits a limited inflammatory response 
Veterinary Parasitology  2010;174(3-4):267-276.
Human onchocerciasis, also known as River Blindness, is a debilitating disease caused by the filarial nematode Onchocerca volvulus. Many, but not all, filarial nematodes carry within their tissues endosymbiotic, Rickettsia-like bacteria of the genus Wolbachia. Onchocerca spp. infections in cattle offer the most relevant, analogous host–parasite model system. West African cattle are commonly co-infected with four Onchocerca spp.; two of these are Wolbachia-positive (Onchocerca gutturosa and Onchocerca ochengi), and the remainder are of unknown Wolbachia status (Onchocerca dukei and Onchocerca armillata). Previous studies have suggested that worm survival is dependent on this bacterium. O. armillata, an abundant parasite of African cattle that has received little attention, is a primitive species that may lack Wolbachia. The objectives of this study were to determine if O. armillata carries Wolbachia and to provide preliminary descriptions of the host inflammatory cell environment around the adult worms. The findings may support or refute the hypothesis that a prime contribution of Wolbachia is to permit long-term survival and reproduction of certain Onchocerca spp. (including O. volvulus in humans). O. armillata adult worms were found in the aorta of 90.7% of cattle (n = 54) slaughtered at an abattoir in Ngaoundéré, Adamawa Region, Cameroon. The presence of Wolbachia in O. armillata was confirmed by a specific anti-Wolbachia surface protein antibody detected using a peroxidase conjugate (immunohistochemistry) and PCR for detection of Wolbachia-specific sequences within DNA extracts from frozen worms. Tissue sections stained with haematoxylin and eosin showed the host cell response to be dominated by macrophages and fibroblasts. This is unusual compared with nodule-dwelling Wolbachia-positive Onchocerca spp., where the host response is typically characterised by granulocytes, and suggests that the mechanisms for worm survival employed by this species (which is probably motile) may differ.
doi:10.1016/j.vetpar.2010.08.031
PMCID: PMC3038270  PMID: 20850932
Bovine; Onchocerca armillata; Wolbachia; Filariasis; Onchocerciasis
17.  Repeated high doses of avermectins cause prolonged sterilisation, but do not kill, Onchocerca ochengi adult worms in African cattle 
Filaria Journal  2005;4:8.
Background
Ivermectin (Mectizan™, Merck and CO. Inc.) is being widely used in the control of human onchocerciasis (Onchoverca volvulus) because of its potent effect on microfilariae. Human studies have suggested that, at the standard dose of 150 μg/kg an annual treatment schedule of ivermectin reversibly interferes with female worm fertility but is not macrofilaricidal. Because of the importance of determining whether ivermectin could be macrofilaricidal, the efficacy of high and prolonged doses of ivermectin and a related avermectin, doramectin, were investigated in cattle infected with O. ochengi.
Methods
Drugs with potential macrofilaricidal activity, were screened for the treatment of human onchocerciasis, using natural infections of O. ochengi in African cattle. Three groups of 3 cows were either treated at monthly intervals (7 treatments) with ivermectin (Ivomec®, Merck and Co. Inc.) at 500 μg/kg or doramectin (Dectamax®, Pfizer) at 500 μg/kg or not treated as controls. Intradermal nodules were removed at 6 monthly intervals and adult worms were examined for signs of drug activity.
Results
There was no significant decline in nodule diameter, the motility of male and female worms, nor in male and female viability as determined by the ability to reduce tetrazolium, compared with controls, at any time up to 24 months from the start of treatments (mpt). Embryogenesis, however, was abrogated by treatment, which was seen as an accumulation of dead and dying intra-uterine microfilariae (mf) persisting for up to 18 mpt. Skin mf densities in treated animals had fallen to zero by <3 mpt, but by 18 mpt small numbers of mf were found in the skin of some treated animals and a few female worms were starting to produce multi-cellular embryonic stages. Follow-up of the doramectin treated group at 36 mpt showed that mf densities had still only regained a small proportion of their pre-treatment levels.
Conclusion
These results have important implications for onchocerciasis control in the field. They suggest that ivermectin given at repeated high does may sterilise O. volvulus female worms for prolonged periods but is unlikely to kill them. This supports the view that control programmes may need to continue treatments with ivermectin for a period of decades and highlights the need to urgently identify new marcofiliaricidal compounds.
doi:10.1186/1475-2883-4-8
PMCID: PMC1200428  PMID: 16086838
18.  Genetic Selection of Low Fertile Onchocerca volvulus by Ivermectin Treatment 
Background
Onchocerca volvulus is the causative agent of onchocerciasis, or “river blindness”. Ivermectin has been used for mass treatment of onchocerciasis for up to 18 years, and recently there have been reports of poor parasitological responses to the drug. Should ivermectin resistance be developing, it would have a genetic basis. We monitored genetic changes in parasites obtained from the same patients before use of ivermectin and following different levels of ivermectin exposure.
Methods and Findings
O. volvulus adult worms were obtained from 73 patients before exposure to ivermectin and in the same patients following three years of annual or three-monthly treatment at 150 µg/kg or 800 µg/kg. Genotype frequencies were determined in β-tubulin, a gene previously found to be linked to ivermectin selection and resistance in parasitic nematodes. Such frequencies were also determined in two other genes, heat shock protein 60 and acidic ribosomal protein, not known to be linked to ivermectin effects. In addition, we investigated the relationship between β-tubulin genotype and female parasite fertility. We found a significant selection for β-tubulin heterozygotes in female worms. There was no significant selection for the two other genes. Quarterly ivermectin treatment over three years reduced the frequency of the β-tubulin “aa” homozygotes from 68.6% to 25.6%, while the “ab” heterozygotes increased from 20.9% to 69.2% in the female parasites. The female worms that were homozygous at the β-tubulin locus were more fertile than the heterozygous female worms before treatment (67% versus 37%; p = 0.003) and twelve months after the last dose of ivermectin in the groups treated annually (60% versus 17%; p<0.001). Differences in fertility between heterozygous and homozygous worms were less apparent three months after the last treatment in the groups treated three-monthly.
Conclusions
The results indicate that ivermectin is causing genetic selection on O. volvulus. This genetic selection is associated with a lower reproductive rate in the female parasites. We hypothesize that this genetic selection indicates that a population of O. volvulus, which is more tolerant to ivermectin, is being selected. This selection could have implications for the development of ivermectin resistance in O. volvulus and for the ongoing onchocerciasis control programmes.
Author Summary
Onchocerca volvulus is the causative agent of onchocerciasis, or “river blindness”. Ivermectin has been used for mass treatment of onchocerciasis for up to 18 years, and recently there have been reports of poor parasitological responses to the drug and evidence of drug resistance. Drug resistance has a genetic basis. In this study, genetic changes in β-tubulin, a gene associated with ivermectin resistance in nematodes, were seen in parasites obtained from the patients exposed to repeated ivermectin treatment compared with parasites obtained from the same patients before any exposure to ivermectin. Furthermore, the extent of the genetic changes was dependent on the level of ivermectin treatment exposure. This genetic selection was associated with a lower reproductive rate in the female parasites. The data indicates that this genetic selection is for a population of O. volvulus that is more tolerant to ivermectin. This selection could have implications for the development of ivermectin resistance in O. volvulus and for the ongoing onchocerciasis control programmes. Monitoring for the possible development and spread of ivermectin resistance, as part of the control programmes, should be implemented so that any foci of resistant parasites can be treated by alternative control measures.
doi:10.1371/journal.pntd.0000072
PMCID: PMC2041821  PMID: 17989786
19.  Immunoregulation in onchocerciasis. Functional and phenotypic abnormalities of lymphocyte subsets and changes with therapy. 
Journal of Clinical Investigation  1991;88(1):231-238.
To help define the immunoregulatory defects in patients with onchocerciasis, flow cytometric analysis of circulating lymphocyte subpopulations was performed in parallel with functional assays. No significant differences in CD4/CD8 ratios were seen when microfilariae-positive individuals from Guatemala were compared with Guatemalan controls. However, the infected individuals had significantly increased numbers of circulating CD4+CD45RA+ lymphocytes (mean 38.3%) when compared with controls (mean 16.0%). Coexpression of the activation marker HLA-DR was significantly increased on CD4+ cells from infected individuals. In contrast, no up-regulation of HLA-DR was seen on CD8+ or CD19+ cells. At 1 year after initiation of treatment with semiannual doses of the microfilaricide ivermectin, there were significant increases (P less than 0.05) in the percentage of CD4+CD45RA- cells, the percentage of CD4+HLA-DR+ cells, and mitogen-induced lymphokine production (IL-2, IL-4). Despite these changes, parasite-specific IL-2 and IL-4 production which had been undetectable before treatment did not manifest itself even by the 2-yr follow-up. Defects in the T-cell activation pathway in Onchocerca volvulus-infected individuals may thus exist at several independent points; a state of parasite antigen-specific tolerance appears to remain even after the relative reversal of other generalized immunoregulatory defects.
PMCID: PMC296024  PMID: 1829096
20.  Human autoantibody to defensin: disease association with hyperreactive onchocerciasis (sowda) 
Chronic hyperreactive onchodermatitis (sowda) is a severe form of onchocerciasis observed in a subset of individuals infected with the filarial nematode Onchocerca volvulus. SDS-PAGE and immunoblot analyses of O. volvulus adult worm extracts were used to characterize the antigens of the marked antibody response of sowda patients. One 2.5-kD antigen was recognized by sera from all 35(100%) sowda patients that were studied. In comparison, only 7 of 44 (16%) patients with generalized onchocerciasis and 11 of 21 (52%) of exposed individuals with no microfilariae in skin snips and no signs of disease showed reactivity to this antigen. Microfilaricidal treatment of sowda patients with improvement of the clinical status was associated with a decrease or disappearance of antibodies to the 2.5-kD antigen. Amino acid sequencing of the antigen indicated identity to human defensins 1- 3 of neutrophils. Defensin was demonstrated by immunohistochemical staining in onchocercal nodules on the surface of adult filariae and in the surrounding tissue. A similar staining pattern was observed for other proteins present in neutrophils such as myeloperoxidase, elastase, and the L-1 protein complex (MRP 8/MRP 14), indicating that neutrophils, macrophages, and their proteins predominate in the environment adjacent to the worms. These results demonstrate an association between the presence of autoantibodies to defensins and an infectious disease of known etiology. The association with a particular form of onchocerciasis, sowda, suggests a link between formation of autoantibodies to defensin and enhanced immune reactivity towards the parasite.
PMCID: PMC2192081  PMID: 7790822
21.  Anti-onchocerca Metabolites from Cyperus articulatus: Isolation, In Vitro Activity and In Silico ‘Drug-Likeness’ 
The aims of this investigation were to isolate active ingredients from the roots/rhizomes of Cyperus articulatus used as herbal medicine in Cameroon for the treatment of human onchocerciasis and to assess the efficacy of the metabolites on the Onchocerca worm. The antifilarial activity was evaluated in vitro on microfilariae (Mfs) and adult worms of the bovine derived Onchocerca ochengi, a close relative of Onchocerca volvulus. Cytotoxicity was assessed in vitro on monkey kidney epithelial cells. The structures of the active compounds were determined using spectroscopic methods and their drug-likeness evaluated using Lipinski parameters. Two secondary metabolites, AMJ1 [containing mustakone (1) as the major component] and linoleic acid or (9Z,12Z)-octadeca-9,12-dienoic acid (2) were isolated. Both compounds were found to kill both the microfilariae and adult worms of O. ochengi in a dose dependent manner. The IC50s for AMJ1 were 15.7 µg/mL for Mfs, 17.4 µg/mL for adult males and 21.9 µg/mL for adult female worms while for linoleic acid the values were, 15.7 µg/mL for Mfs, 31.0 µg/mL for adult males and 44.2 µg/mL for adult females. The present report provides the first ever evidence of the anti-Onchocerca efficacy of AMJ1 and linoleic acid. Thus, these secondary metabolites may provide a lead for design and development of new antifilarial agents.
Electronic supplementary material
The online version of this article (doi:10.1007/s13659-014-0023-5) contains supplementary material, which is available to authorized users.
doi:10.1007/s13659-014-0023-5
PMCID: PMC4111868  PMID: 25089243
Cyperus articulates; Linoleic acid; Microfilariae; Mustakone; Onchocerca ochengi; Onchocerca volvulus
22.  Anti-onchocerca Metabolites from Cyperus articulatus: Isolation, In Vitro Activity and In Silico ‘Drug-Likeness’ 
The aims of this investigation were to isolate active ingredients from the roots/rhizomes of Cyperus articulatus used as herbal medicine in Cameroon for the treatment of human onchocerciasis and to assess the efficacy of the metabolites on the Onchocerca worm. The antifilarial activity was evaluated in vitro on microfilariae (Mfs) and adult worms of the bovine derived Onchocerca ochengi, a close relative of Onchocerca volvulus. Cytotoxicity was assessed in vitro on monkey kidney epithelial cells. The structures of the active compounds were determined using spectroscopic methods and their drug-likeness evaluated using Lipinski parameters. Two secondary metabolites, AMJ1 [containing mustakone (1) as the major component] and linoleic acid or (9Z,12Z)-octadeca-9,12-dienoic acid (2) were isolated. Both compounds were found to kill both the microfilariae and adult worms of O. ochengi in a dose dependent manner. The IC50s for AMJ1 were 15.7 µg/mL for Mfs, 17.4 µg/mL for adult males and 21.9 µg/mL for adult female worms while for linoleic acid the values were, 15.7 µg/mL for Mfs, 31.0 µg/mL for adult males and 44.2 µg/mL for adult females. The present report provides the first ever evidence of the anti-Onchocerca efficacy of AMJ1 and linoleic acid. Thus, these secondary metabolites may provide a lead for design and development of new antifilarial agents.
Electronic supplementary material
The online version of this article (doi:10.1007/s13659-014-0023-5) contains supplementary material, which is available to authorized users.
doi:10.1007/s13659-014-0023-5
PMCID: PMC4111868  PMID: 25089243
Cyperus articulates; Linoleic acid; Microfilariae; Mustakone; Onchocerca ochengi; Onchocerca volvulus
23.  Ocular findings in a double-blind study of ivermectin versus diethylcarbamazine versus placebo in the treatment of onchocerciasis. 
The effect of ivermectin, a new microfilaricide, was assessed in a double blind trial against diethylcarbamazine citrate (DEC) and placebo. Fifty-nine adult males with moderate to heavy infection with Onchocerca volvulus and with eye involvement were recruited from an area under Onchocerciasis Control Programme (OCP) vector control in Northern Ghana. They were randomly assigned to an eight-day treatment with ivermectin as a single dose of 12 mg on day 1 followed by placebo for the remaining seven days, or DEC, total dose 1.3 g, or placebo, and ophthalmological review was undertaken over a period of one year. DEC acted quickly to eliminate microfilariae from the eye and was associated with reactive ocular changes and in a few cases functional deficit. Ivermectin eliminated microfilariae slowly from the anterior chamber of the eye over a period of six months. The ocular inflammatory reaction was minimal and no functional deficit occurred. It is postulated that the observed slow action of ivermectin on the eye may be attributed in part to its instability to cross the blood-aqueous humour barrier because of its molecular size as a macrocyclic lactone causing microfilariae to leave the eye gradually along a newly created gradient. Ivermectin is an effective microfilaricide with minimal ocular adverse effect and could therefore be suitable for widespread application without strict supervision.
PMCID: PMC1041095  PMID: 3548811
24.  In vitro determination of the anti-aging potential of four southern African medicinal plants 
Background
Aging is an inevitable process for all living organisms. During this process reactive oxygen species generation is increased which leads to the activation of hyaluronidase, collagenase and elastase, which can further contribute to skin aging. Four southern African medicinal plants; Clerodendrum glabrum, Schotia brachypetala, Psychotria capensis and Peltophorum africanum, were investigated to assess their anti-aging properties.
Methods
Anti-elastase, anti-collagenase and anti-hyaluronidase activities of twenty-eight samples, consisting of methanol and ethyl acetate extracts of the four plants, were determined using spectrophotometric methods. Radical scavenging activity was determined by the ability of the plant extracts to scavenge the ABTS•+ radical.
Results
The majority of the samples in the anti-elastase assay and nine in the anti-collagenase assay showed more than 80% inhibition. The ethyl acetate extract of S. brachypetala bark and leaves of P. capensis inhibited elastase activity by more than 90%. The methanol extract of S. brachypetala bark contained the highest anti-hyaluronidase activity (75.13 ± 7.49%) whilst the ethyl acetate extract of P. africanum bark exhibited the highest antioxidant activity (IC50: 1.99 ± 0.23 μg/ml).
Conclusion
The free radical scavenging activity and enzyme inhibitory activity of the plant extracts investigated suggests that they can help restore skin elasticity and thereby slow the wrinkling process. P. africanum was the plant with the most promising activity and will be subjected to further testing and isolation of the active compound/s.
doi:10.1186/1472-6882-13-304
PMCID: PMC4228251  PMID: 24188320
Anti-aging; Anti-collagenase; Anti-elastase; Anti-hyaluronidase; Anti-oxidant; Medicinal plants
25.  Onchocerca parasites and Wolbachia endosymbionts: evaluation of a spectrum of antibiotic types for activity against Onchocerca gutturosa in vitro 
Filaria Journal  2006;5:4.
Background
The filarial parasites of major importance in humans contain the symbiotic bacterium Wolbachia and recent studies have shown that targeting of these bacteria with antibiotics results in a reduction in worm viability, development, embryogenesis, and survival. Doxycycline has been effective in human trials, but there is a need to develop drugs that can be given for shorter periods and to pregnant women and children. The World Health Organisation-approved assay to screen for anti-filarial activity in vitro uses male Onchocerca gutturosa, with effects being determined by worm motility and viability as measured by reduction of MTT to MTT formazan. Here we have used this system to screen antibiotics for anti-filarial activity. In addition we have determined the contribution of Wolbachia depletion to the MTT reduction assay.
Methods
Adult male O. gutturosa were cultured on a monkey kidney cell (LLCMK 2) feeder layer in 24-well plates with antibiotics and antibiotic combinations (6 to 10 worms per group). The macrofilaricide CGP 6140 (Amocarzine) was used as a positive control. Worm viability was assessed by two methods, (i) motility levels and (ii) MTT/formazan colorimetry. Worm motility was scored on a scale of 0 (immotile) to 10 (maximum) every 5 days up to 40 days. On day 40 worm viability was evaluated by MTT/formazan colorimetry, and results were expressed as a mean percentage reduction compared with untreated control values at day 40. To determine the contribution of Wolbachia to the MTT assay, the MTT formazan formation of an insect cell-line (C6/36) with or without insect Wolbachia infection and treated or untreated with tetracycline was compared.
Results
Antibiotics with known anti-Wolbachia activity were efficacious in this system. Rifampicin (5 × 10-5M) was the most effective anti-mycobacterial agent; clofazimine (1.25 × 10-5M and 3.13 × 10-6M) produced a gradual reduction in motility and by 40 days had reduced worm viability. The other anti-mycobacterial drugs tested had limited or no activity. Doxycycline (5 × 10-5M) was filaricidal, but minocycline was more effective and at a lower concentration (5 × 10-5M and 1.25 × 10-5M). Inactive compounds included erythromycin, oxytetracycline, trimethoprim and sulphamethoxazole. The MTT assay on the insect cell-line showed that Wolbachia made a significant contribution to the metabolic activity within the cells, which could be reduced when they were exposed to tetracycline.
Conclusion
The O. gutturosa adult male screen for anti-filarial drug activity is also valid for the screening of antibiotics for anti-Wolbachia activity. In agreement with previous findings, rifampicin and doxycycline were effective; however, the most active antibiotic was minocycline. Wolbachia contributed to the formation of MTT formazan in the MTT assay of viability and is therefore not exclusively a measure of worm viability and indicates that Wolbachia contributes directly to the metabolic activity of the nematode.
doi:10.1186/1475-2883-5-4
PMCID: PMC1471782  PMID: 16563157

Results 1-25 (710852)