Search tips
Search criteria

Results 1-25 (796536)

Clipboard (0)

Related Articles

1.  Pooled RNAi Screens - Technical and Biological Aspects 
Current Genomics  2010;11(3):162-167.
RNA interference (RNAi) screens have recently emerged as an exciting new tool for studying gene function in mammalian cells. In order to facilitate those studies, short hairpin RNA (shRNA) expression libraries covering the entire human transcriptome have become commercially available. To make use of the full potential of such large-scale shRNA libraries, microarray-based methods have been developed to analyze complex pooled RNAi screens. In terms of microarray analysis, different strategies have been pursued by different research groups, largely influenced by the employed shRNA library. In this review, we compare the three major shRNA expression libraries with a focus on their suitability for a microarray-based analysis of pooled screens. We analyze and compare approaches previously used to perform pooled RNAi screens and point out their advantages as well as limitations.
PMCID: PMC2878981  PMID: 21037854
Pooled RNAi screen; molecular tag; barcode; shRNA library; microarray; half hairpin.
2.  Cancer Proliferation Gene Discovery Through Functional Genomics 
Science (New York, N.Y.)  2008;319(5863):620-624.
Retroviral short hairpin RNA (shRNA)–mediated genetic screens in mammalian cells are powerful tools for discovering loss-of-function phenotypes. We describe a highly parallel multiplex methodology for screening large pools of shRNAs using half-hairpin barcodes for microarray deconvolution. We carried out dropout screens for shRNAs that affect cell proliferation and viability in cancer cells and normal cells. We identified many shRNAs to be antiproliferative that target core cellular processes, such as the cell cycle and protein translation, in all cells examined. Moreover, we identified genes that are selectively required for proliferation and survival in different cell lines. Our platform enables rapid and cost-effective genome-wide screens to identify cancer proliferation and survival genes for target discovery. Such efforts are complementary to the Cancer Genome Atlas and provide an alternative functional view of cancer cells.
PMCID: PMC2981870  PMID: 18239126
3.  An inducible system for expression and validation of the specificity of short hairpin RNA in mammalian cells 
Nucleic Acids Research  2007;35(4):e22.
RNA interference (RNAi) by means of short hairpin RNA (shRNA) has developed into a powerful tool for loss-of-function analysis in mammalian cells. The principal problem in RNAi experiments is off-target effects, and the most vigorous demonstration of the specificity of shRNA is the rescue of the RNAi effects with a shRNA-resistant target gene. This presents its own problems, including the unpredictable relative expression of shRNA and rescue cDNA in individual cells, and the difficulty in generating stable cell lines. In this report, we evaluated the plausibility of combining the expression of shRNA and rescue cDNA in the same vector. In addition to facilitate the validation of shRNA specificity, this system also considerably simplifies the generation of shRNA-expressing cell lines. Since the compensatory cDNA is under the control of an inducible promoter, stable shRNA-expressing cells can be generated before the knockdown phenotypes are studied by conditionally turning off the rescue protein. Conversely, the rescue protein can be activated after the endogenous protein is completely repressed. This approach is particularly suitable when prolonged expression of either the shRNA or the compensatory cDNA is detrimental to cell growth. This system allows a convenient one-step validation of shRNA and generation of stable shRNA-expressing cells.
PMCID: PMC1851631  PMID: 17234679
4.  SP22 A Lentiviral Vector-Based RNAi Library Screen to Identify Genes that Modulate Cellular Response to Paclitaxel 
The delivery of short hairpin RNA (shRNA) through use of lentiviral vectors is proving to be a powerful means to mediate gene-specific RNA interference in mammalian cells. The RNAi Consortium has created a library of 150,000 shRNA clones designed to target 15,000 human and 15,000 mouse genes. Through the utilization of a recombinant lentivirus delivery system, this library is proving to be useful in targeting cell lines that are not amenable to small interfering RNA transfection, and in facilitating screens and experiments that require long-term knockdown that cannot be achieved by synthetic siRNA. After validation of this library and demonstration of its applicability in a broad array of cell types, we conducted a screen using a panel of shRNAs targeting tumor-suppressor genes. We examined the effect of knocking out each of these tumor suppressors in a non-small-cell lung cancer cell line prior to treatment with paclitaxel. This screen was effective in identification of genes involved in increasing sensitization or resistance to this chemotherapeutic. We believe that these results validate the usefulness of shRNA in one screening process designed to identify potential therapeutic targets and biomarkers.
PMCID: PMC2291874
5.  RNAi-dependent and -independent antiviral phenotypes of chromosomally integrated shRNA clones: Role of VASP in respiratory syncytial virus growth 
Stable RNA interference (RNAi) is commonly achieved by recombinant expression of short hairpin RNA (shRNA). To generate virus-resistant cell lines, we cloned a shRNA cassette against the phosphoprotein gene of respiratory syncytial virus (RSV) into a polIII-driven plasmid vector. Analysis of individual stable transfectants showed a spectrum of RSV resistance correlating with the levels of shRNA expressed from different chromosomal locations. Interestingly, resistance in a minority of clones was due to mono-allelic disruption of the cellular gene for vasodilator-stimulated phosphoprotein (VASP). Thus, pure clones of chromosomally integrated DNA-directed RNAi can exhibit gene disruption phenotypes resembling but unrelated to RNAi.
PMCID: PMC3263383  PMID: 17351763
Chromosomal; Antiviral; RNAi; Plasmid vector; Mutation; Infectious disease
6.  Investigation of transcriptional gene silencing and mechanism induced by shRNAs targeted to RUNX3 in vitro 
AIM: To investigate transcriptional gene silencing induced by short hairpin RNAs (shRNAs) that target gene prompter regions of RUNX3 gene, and whether shRNAs homologous to DNA sequences may serve as initiators for methylation.
METHODS: According to the principle of RNAi design, pSilencer3.1-H1-shRNA/RUNX3 expression vector was constructed, The recombinant plasmid shRNA was transfected into human stomach carcinoma cell line SGC7901 with Lipofectamine 2000. Then, the positive cell clones were screened by G418. The mRNA and protein expression level of RUNX3 in the stable transfected cell line SGC7901 were determined by RT-PCR, Western blotting and immunocytochemistry. Characteristics of the cell lines including SGC7901, pSilencer3.1-H1/SGC7901 and pSilencer3.1-H1-shRNA/RUNX3/SGC7901 were analyzed with growth curves, clone formation rate and cell-cycle distribution. The activated level of RUNX3 was examined after treatment with the different density of 5’-aza-2’-deoxycytidine (5-Aza-CdR) by using semi-quantitative RT-PCR and Western blotting.
RESULTS: In the cell line SGC7901 transfected with pSilencer3.1-H1-shRNA/RUNX3, mRNA and protein expression of the RUNX3 gene was lost identified by RT-PCR, Western blotting and immunocytochemistry assay. The growth of pSilencer3.1-H1-shRNA/ RUNX3/SGC7901 cells without expression of RUNX3 was the fastest (P < 0.05), its rate of clone formation was the highest (P < 0.01), and the cell distribution in G0/G1 and S/M phases was lowest and highest, respectively (P < 0.05), compared with that of the transfected pSilencer3.1-H1 and non-transfected cells. Through RT-PCR and Western blot assay, inactivated RUNX3 could not be reactivated by 5-Aza-CdR.
CONCLUSION: We found that, although shRNAs targeted to gene prompter regions of RUNX3 could effectively induce transcriptional repression with chromatic changes characteristic of inaction promoters, this was independent of DNA methylation, and the presence of RNA-dependent transcriptional silencing showed that RNA-directed DNA methylation might be an existing gene regulatory mechanism relative to the methylated in humans.
PMCID: PMC2712167  PMID: 18494051
RNA interference; Short hairpin RNAs; Promoter; DNA methylation; RUNX3; Stomach carcinoma
7.  RNAi Methodologies for the Functional Study of Signaling Molecules 
PLoS ONE  2009;4(2):e4559.
RNA interference (RNAi) was investigated with the aim of achieving gene silencing with diverse RNAi platforms that include small interfering RNA (siRNA), short hairpin RNA (shRNA) and antisense oligonucleotides (ASO). Different versions of each system were used to silence the expression of specific subunits of the heterotrimeric signal transducing G-proteins, G alpha i2 and G beta 2, in the RAW 264.7 murine macrophage cell line. The specificity of the different RNA interference (RNAi) platforms was assessed by DNA microarray analysis. Reliable RNAi methodologies against the genes of interest were then developed and applied to functional studies of signaling networks. This study demonstrates a successful knockdown of target genes and shows the potential of RNAi for use in functional studies of signaling molecules.
PMCID: PMC2641016  PMID: 19238203
8.  Establishment and Evaluation of Stable Cell Lines Inhibiting Foot-and-Mouth Disease Virus by RNA Interference 
BioMed Research International  2014;2014:109428.
RNA interference (RNAi) has been proved to be a powerful tool for foot-and-mouth disease virus FMDV inhibition in vitro and in vivo. We established five stable baby hamster kidney 21 cell lines (BHK-21) containing five short hairpin RNAs (shRNAs) expression plasmids (p3D1shRNA, p3D2shRNA, p3D3shRNA, p3D4shRNA, and p3D5shRNA) targeting 3D gene of FMDV. Immunofluorescent assay, virus titration, and real-time quantitative reverse transcription polymerase chain reaction (Q-RT-PCR) were conducted to detect the effect of shRNAs on FMDV replication. After challenged with FMDV of O/CHA/99, two cell lines (p3D1shRNA and p3D4shRNA) showed a significant reduction in the synthesis of viral protein and RNA, accompanied by a sharp decrease in viral yield, and the inhibition could last for at least thirty passages. We developed an efficient procedure for the establishment and evaluation of stable cell lines for anti-FMDV research based on RNAi technology, which can be a candidate method for anti-FMDV research.
PMCID: PMC3934452
9.  RNAi Codex: a portal/database for short-hairpin RNA (shRNA) gene-silencing constructs 
Nucleic Acids Research  2005;34(Database issue):D153-D157.
Use of RNA interference (RNAi) in forward genetic screens is proliferating. Currently, short-interfering RNAs (siRNAs) and short-hairpin RNAs (shRNAs) are being used to silence genes to tease out functional information. It is becoming easier to harness RNAi to silence specific genes, owing to the development of libraries of readymade shRNA and siRNA gene-silencing constructs by using a variety of sources. RNAi Codex, which consists of a database of shRNA related information and an associated website, has been developed as a portal for publicly available shRNA resources and is accessible at . RNAi Codex currently holds data from the Hannon–Elledge shRNA library and allows the use of biologist-friendly gene names to access information on shRNA constructs that can silence the gene of interest. It is designed to hold user-contributed annotations and publications for each construct, as and when such data become available. We will describe features of RNAi Codex and explain the use of the tool.
PMCID: PMC1347414  PMID: 16381835
10.  Human Immunodeficiency Virus Type 1 Escape from RNA Interference 
Journal of Virology  2003;77(21):11531-11535.
Sequence-specific degradation of mRNA by short interfering RNA (siRNA) allows the selective inhibition of viral proteins that are critical for human immunodeficiency virus type 1 (HIV-1) replication. The aim of this study was to characterize the potency and durability of virus-specific RNA interference (RNAi) in cell lines that stably express short hairpin RNA (shRNA) targeting the HIV-1 transactivator protein gene tat. We found that the antiviral activity of tat shRNA was abolished due to the emergence of viral quasispecies harboring a point mutation in the shRNA target region. Our results suggest that, in order for RNAi to durably suppress HIV-1 replication, it may be necessary to target highly conserved regions of the viral genome. Alternatively, similar to present antiviral drug therapy paradigms, DNA constructs expressing multiple siRNAs need to be developed that target different regions of the viral genome, thereby reducing the probability of generating escape mutants.
PMCID: PMC229317  PMID: 14557638
11.  Constitutive Expression of Short Hairpin RNA in Vivo Triggers Buildup of Mature Hairpin Molecules 
Human Gene Therapy  2011;22(12):1483-1497.
RNA interference (RNAi) has become the cornerstone technology for studying gene function in mammalian cells. In addition, it is a promising therapeutic treatment for multiple human diseases. Virus-mediated constitutive expression of short hairpin RNA (shRNA) has the potential to provide a permanent source of silencing molecules to tissues, and it is being devised as a strategy for the treatment of liver conditions such as hepatitis B and hepatitis C virus infection. Unintended interaction between silencing molecules and cellular components, leading to toxic effects, has been described in vitro. Despite the enormous interest in using the RNAi technology for in vivo applications, little is known about the safety of constitutively expressing shRNA for multiple weeks. Here we report the effects of in vivo shRNA expression, using helper-dependent adenoviral vectors. We show that gene-specific knockdown is maintained for at least 6 weeks after injection of 1 × 1011 viral particles. Nonetheless, accumulation of mature shRNA molecules was observed up to weeks 3 and 4, and then declined gradually, suggesting the buildup of mature shRNA molecules induced cell death with concomitant loss of viral DNA and shRNA expression. No evidence of well-characterized innate immunity activation (such as interferon production) or saturation of the exportin-5 pathway was observed. Overall, our data suggest constitutive expression of shRNA results in accumulation of mature shRNA molecules, inducing cellular toxicity at late time points, despite the presence of gene silencing.
Ahn and colleagues investigate the safety of constitutively expressing short hairpin RNA (shRNA), using helper-dependent adenovirus vectors for multiple weeks in vivo. Hairpin molecules were effectively processed, and gene-specific knockdown was maintained for at least 6 weeks after injection. However, accumulated mature shRNAs declined gradually after week 4, suggesting induction of cell death with concomitant loss of viral DNA and shRNA expression. No evidence of innate immune activation was observed.
PMCID: PMC3237692  PMID: 21780944
12.  A direct comparison of strategies for combinatorial RNA interference 
BMC Molecular Biology  2010;11:77.
Combinatorial RNA interference (co-RNAi) is a valuable tool for highly effective gene suppression of single and multiple-genes targets, and can be used to prevent the escape of mutation-prone transcripts. There are currently three main approaches used to achieve co-RNAi in animal cells; multiple promoter/shRNA cassettes, long hairpin RNAs (lhRNA) and miRNA-embedded shRNAs, however, the relative effectiveness of each is not known. The current study directly compares the ability of each co-RNAi method to deliver pre-validated siRNA molecules to the same gene targets.
Double-shRNA expression vectors were generated for each co-RNAi platform and their ability to suppress both single and double-gene reporter targets were compared. The most reliable and effective gene silencing was achieved from the multiple promoter/shRNA approach, as this method induced additive suppression of single-gene targets and equally effective knockdown of double-gene targets. Although both lhRNA and microRNA-embedded strategies provided efficient gene knockdown, suppression levels were inconsistent and activity varied greatly for different siRNAs tested. Furthermore, it appeared that not only the position of siRNAs within these multi-shRNA constructs impacted upon silencing activity, but also local properties of each individual molecule. In addition, it was also found that the insertion of up to five promoter/shRNA cassettes into a single construct did not negatively affect the efficacy of each individual shRNA.
By directly comparing the ability of shRNAs delivered from different co-RNA platforms to initiate knockdown of the same gene targets, we found that multiple U6/shRNA cassettes offered the most reliable and predictable suppression of both single and multiple-gene targets. These results highlight some important strengths and pitfalls of the currently used methods for multiple shRNA delivery, and provide valuable insights for the design and application of reliable co-RNAi.
PMCID: PMC2958852  PMID: 20937117
13.  The anti-genomic (negative) strand of Hepatitis C Virus is not targetable by shRNA 
Nucleic Acids Research  2013;41(6):3688-3698.
Hepatitis C Virus (HCV) and other plus-strand RNA viruses typically require the generation of a small number of negative genomes (20–100× lower than the positive genomes) for replication, making the less-abundant antigenome an attractive target for RNA interference(RNAi)-based therapy. Because of the complementarity of duplex short hairpin RNA/small interfering RNA (shRNA/siRNAs) with both genomic and anti-genomic viral RNA strands, and the potential of both shRNA strands to become part of the targeting complexes, preclinical RNAi studies cannot distinguish which viral strand is actually targeted in infected cells. Here, we addressed the question whether the negative HCV genome was bioaccessible to RNAi. We first screened for the most active shRNA molecules against the most conserved regions in the HCV genome, which were then used to generate asymmetric anti-HCV shRNAs that produce biologically active RNAi specifically directed against the genomic or antigenomic HCV sequences. Using this simple but powerful and effective method to screen for shRNA strand selectivity, we demonstrate that the antigenomic strand of HCV is not a viable RNAi target during HCV replication. These findings provide new insights into HCV biology and have important implications for the design of more effective and safer antiviral RNAi strategies seeking to target HCV and other viruses with similar replicative strategies.
PMCID: PMC3616702  PMID: 23396439
14.  A novel reverse transduction adenoviral array for the functional analysis of shRNA libraries 
BMC Genomics  2008;9:441.
The identification of novel drug targets by assessing gene functions is most conveniently achieved by high-throughput loss-of-function RNA interference screening. There is a growing need to employ primary cells in such screenings, since they reflect the physiological situation more closely than transformed cell lines do. Highly miniaturized and parallelized approaches as exemplified by reverse transfection or transduction arrays meet these requirements, hence we verified the applicability of an adenoviral microarray for the elucidation of gene functions in primary cells.
Here, we present microarrays of infectious adenoviruses encoding short hairpin RNA (shRNA) as a new tool for gene function analysis. As an example to demonstrate its application, we chose shRNAs directed against seven selected human protein kinases, and we have performed quantitative analysis of phenotypical responses in primary human umbilical vein cells (HUVEC). These microarrays enabled us to infect the target cells in a parallelized and miniaturized procedure without significant cross-contamination: Viruses were reversibly immobilized in spots in such a way that the seeded cells were confined to the area of the viral spots, thus simplifying the subsequent addressing of genetically modified cells for analysis. Computer-assisted image analysis of fluorescence images was applied to analyze the cellular response after shRNA expression. Both the expression level of knock-down target proteins as well as the functional output as measured by caspase 3 activity and DNA fractionation (TUNEL) were quantified.
We have developed an adenoviral microarray technique suitable for miniaturized and parallelized analysis of gene function. The practicability of this technique was demonstrated by the analysis of several kinases involved in the activation of programmed cell death, both in tumor cells and in primary cells.
PMCID: PMC2559852  PMID: 18816379
15.  Co-expression of Argonaute2 Enhances Short Hairpin RNA-induced RNA Interference in Xenopus CNS Neurons In Vivo 
RNA interference (RNAi) is an evolutionarily conserved mechanism for sequence-specific gene silencing. Recent advances in our understanding of RNAi machinery make it possible to reduce protein expression by introducing short hairpin RNA (shRNA) into cells of many systems, however, the efficacy of RNAi-mediated protein knockdown can be quite variable, especially in intact animals, and this limits its application. We built adaptable molecular tools, pSilencer (pSi) and pReporter (pRe) constructs, to evaluate the impact of different promoters, shRNA structures and overexpression of Ago2, the key enzyme in the RNA-induced silencing complex, on the efficiency of RNAi. The magnitude of RNAi knockdown was evaluated in cultured cells and intact animals by comparing fluorescence intensity levels of GFP, the RNAi target, relative to mCherry, which was not targeted. Co-expression of human Ago2 with shRNA significantly enhanced efficiency of GFP knockdown in cell lines and in neurons of intact Xenopus tadpoles. Human H1- and U6-promotors alone or the U6-promotor with an enhancer element were equally effective at driving GFP knockdown. shRNA derived from the microRNA-30 design (shRNAmir30) enhanced the efficiency of GFP knockdown. Expressing pSi containing Ago2 with shRNA increased knockdown efficiency of an endogenous neuronal protein, the GluR2 subunit of the AMPA receptor, functionally accessed by recording AMPA receptor-mediated spontaneous synaptic currents in Xenopus CNS neurons. Our data suggest that co-expression of Ago2 and shRNA is a simple method to enhance RNAi in intact animals. While morpholino antisense knockdown is effective in Xenopus and Zebrafish, a principle advantage of the RNAi method is the possibility of spatial and temporal control of protein knockdown by use of cell type specific and regulatable pol II promoters to drive shRNA and Ago2. This should extend the application of RNAi to study gene function of intact brain circuits.
PMCID: PMC2858607  PMID: 20582287
shRNA; RNAi; knockdown; Pol III promoter; Ago2; AMPA receptor; Xenopus
16.  Introduction of Mismatches in a Random shRNA-Encoding Library Improves Potency for Phenotypic Selection 
PLoS ONE  2014;9(2):e87390.
RNA interference (RNAi) is a mechanism for interfering with gene expression through the action of small, non-coding RNAs. We previously constructed a short-hairpin-loop RNA (shRNA) encoding library that is random at the nucleotide level [1]. In this library, the stems of the hairpin are completely complementary. To improve the potency of initial hits, and therefore signal-to-noise ratios in library screening, as well as to simplify hit-sequence retrieval by PCR, we constructed a second-generation library in which we introduced random mismatches between the two halves of the stem of each hairpin, on a random template background. In a screen for shRNAs that protect an interleukin-3 (IL3) dependent cell line from IL3 withdrawal, our second-generation library yielded hit sequences with significantly higher potencies than those from the first-generation library in the same screen. Our method of random mutagenesis was effective for a random template and is likely suitable, therefore, for any DNA template of interest. The improved potency of our second-generation library expands the range of possible unbiased screens for small-RNA therapeutics and biologic tools.
PMCID: PMC3911983  PMID: 24498319
17.  Adenovirus VA1 Noncoding RNA Can Inhibit Small Interfering RNA and MicroRNA Biogenesis 
Journal of Virology  2004;78(23):12868-12876.
Although inhibition of RNA interference (RNAi) by plant virus proteins has been shown to enhance viral replication and pathogenesis in plants, no viral gene product has as yet been shown to inhibit RNAi in vertebrate cells. Here, we present evidence demonstrating that the highly structured ∼160-nucleotide adenoviral VA1 noncoding RNA can inhibit RNAi at physiological levels of expression. VA1, which is expressed at very high levels in adenovirus-infected cells, potently inhibited RNAi induced by short hairpin RNAs (shRNAs) or human microRNA precursors but did not affect RNAi induced by artificial short interfering RNA duplexes. Inhibition appeared to be due both to inhibition of nuclear export of shRNA or premicro-RNA precursors, competition for the Exportin 5 nuclear export factor, and inhibition of Dicer function by direct binding of Dicer. Together, these data argue that adenovirus infection can result in inhibition of RNAi and identify VA1 RNA as the first viral gene product able to inhibit RNAi in human cells.
PMCID: PMC524998  PMID: 15542639
18.  Shortcomings of short hairpin RNA-based transgenic RNA interference in mouse oocytes 
RNA interference (RNAi) is a powerful approach to study a gene function. Transgenic RNAi is an adaptation of this approach where suppression of a specific gene is achieved by expression of an RNA hairpin from a transgene. In somatic cells, where a long double-stranded RNA (dsRNA) longer than 30 base-pairs can induce a sequence-independent interferon response, short hairpin RNA (shRNA) expression is used to induce RNAi. In contrast, transgenic RNAi in the oocyte routinely employs a long RNA hairpin. Transgenic RNAi based on long hairpin RNA, although robust and successful, is restricted to a few cell types, where long double-stranded RNA does not induce sequence-independent responses. Transgenic RNAi in mouse oocytes based on a shRNA offers several potential advantages, including simple cloning of the transgenic vector and an ability to use the same targeting construct in any cell type.
Here we report our experience with shRNA-based transgenic RNAi in mouse oocytes. Despite optimal starting conditions for this experiment, we experienced several setbacks, which outweigh potential benefits of the shRNA system. First, obtaining an efficient shRNA is potentially a time-consuming and expensive task. Second, we observed that our transgene, which was based on a common commercial vector, was readily silenced in transgenic animals.
We conclude that, the long RNA hairpin-based RNAi is more reliable and cost-effective and we recommend it as a method-of-choice when a gene is studied selectively in the oocyte.
PMCID: PMC2964603  PMID: 20939886
19.  A streamlined sub-cloning procedure to transfer shRNA from a pSM2 vector to a pGIPZ lentiviral vector 
RNA interference (RNAi) is a widely used molecular biology technique to investigate the importance of specific genes in molecular pathways. Since mammalian cells are equipped with endogenous RNAi processing machinery, it has become common practice to transfect constructs that encode for short hairpin RNAs that are then cleaved to form the active RNAi sequences that bind to target mRNAs. Given the profit potential of this research approach, companies have developed retroviral libraries of shRNA constructs targeting the majority of the human genes. Recent technologic advances have allowed the rapid improvement of the vectors carrying the shRNA constructs while the silencing sequences remain the same. Therefore, sub-cloning of shRNA sequences from more obsolete vectors to newer vectors is a straightforward way to take advantage of newer delivery technologies. We describe here a streamlined procedure to transfer shRNA sequences from the pSM2 retroviral vector to a newer pGIPZ vector that is more stable, contains a GFP cassette and allows the preparation of high titer viral particles for transduction of cells and in vivo use. We demonstrate that our protocol provides a cost-effective and fast method to successfully sub-clone shRNA from a pSM2 retroviral vector to a pGIPZ lentiviral vector making it a useful tool for the investigators that have purchased pSM2 vectors in the past and wish now to upgrade their constructs by inserting them in more versatile vectors.
PMCID: PMC2995545  PMID: 21139985
Sub-cloning; shRNA; RNA interference; lentivirus; retrovirus; pSM2; pGIPZ; pTRIPZ
20.  Decoding pooled RNAi screens by means of barcode tiling arrays 
BMC Genomics  2010;11:7.
RNAi screens via pooled short hairpin RNAs (shRNAs) have recently become a powerful tool for the identification of essential genes in mammalian cells. In the past years, several pooled large-scale shRNA screens have identified a variety of genes involved in cancer cell proliferation. All of those studies employed microarray analysis, utilizing either the shRNA's half hairpin sequence or an additional shRNA-associated 60 nt barcode sequence as a molecular tag. Here we describe a novel method to decode pooled RNAi screens, namely barcode tiling array analysis, and demonstrate how this approach can be used to precisely quantify the abundance of individual shRNAs from a pool.
We synthesized DNA microarrays with six overlapping 25 nt long tiling probes complementary to each unique 60 nt molecular barcode sequence associated with every shRNA expression construct. By analyzing dilution series of expression constructs we show how our approach allows quantification of shRNA abundance from a pool and how it clearly outperforms the commonly used analysis via the shRNA's half hairpin sequences. We further demonstrate how barcode tiling arrays can be used to predict anti-proliferative effects of individual shRNAs from pooled negative selection screens. Out of a pool of 305 shRNAs, we identified 28 candidate shRNAs to fully or partially impair the viability of the breast carcinoma cell line MDA-MB-231. Individual validation of a subset of eleven shRNA expression constructs with potential inhibitory, as well as non-inhibitory, effects on the cell line proliferation provides further evidence for the accuracy of the barcode tiling approach.
In summary, we present an improved method for the rapid, quantitative and statistically robust analysis of pooled RNAi screens. Our experimental approach, coupled with commercially available lentiviral vector shRNA libraries, has the potential to greatly facilitate the discovery of putative targets for cancer therapy as well as sensitizers of drug toxicity.
PMCID: PMC2824726  PMID: 20051122
21.  A primer on using pooled shRNA libraries for functional genomic screens 
The discovery of RNA interference (RNAi) has revolutionized genetic analysis in mammalian cells. Loss-of-function RNAi screens enable rapid, functional annotation of the genome. Of the various RNAi approaches, pooled shRNA libraries have received considerable attention because of their versatility. A number of genome-wide shRNA libraries have been constructed against the human and mouse genomes, and these libraries can be readily applied to a variety of screens to interrogate the function of human and mouse genes in an unbiased fashion. We provide an introduction to the technical aspects of using pooled shRNA libraries for genetic screens.
PMCID: PMC3263926  PMID: 22271906
shRNA library; pooled screen; RNAi
22.  Suppression of Mamu-AG by RNA interference 
The role of placental MHC class I molecules in pregnancy is not well understood. Mamu-AG, the rhesus monkey homology of HLA-G expressed in the human placenta, was targeted for degradation by RNA interference (RNAi), a powerful tool to aid in determining gene function, to determine the effect that this knockdown has on NK cell function.
Method of Study
A series of potential target short hairpin RNA (shRNA) sequences to suppress Mamu-AG expression was screened, which identified an optimal sequence to use in transfection experiments. Knockdown in two different Mamu-AG-expressing cell lines was measured by flow cytometry. Cytotoxicity assays were performed to correlate Mamu-AG expression with NK cell cytotoxicity.
Decreased expression of Mamu-AG by short interfering RNA (siRNA) (70-80%) in cell types tested was associated with increased lysis of Mamu-AG target cells.
Target sequences have been identified that knocked down Mamu-AG expression by RNAi and increased lysis by NK cells. This supports the concept that NK cell receptors recognize this placental nonclassical MHC class I molecule.
PMCID: PMC2889004  PMID: 19392979
maternal-fetal immune tolerance; natural killer cells; nonhuman primates
23.  An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi 
Nucleic Acids Research  2005;33(6):e62.
RNA interference (RNAi) mediates gene silencing in many eukaryotes and has been widely used to investigate gene functions. A common method to induce sustained RNAi is introducing plasmids that synthesize short hairpin RNAs (shRNAs) using Pol III promoters. While these promoters synthesize shRNAs and elicit RNAi efficiently, they lack cell specificity. Monitoring shRNA expression levels in individual cells by Pol III promoters is also difficult. An alternative way to deliver RNAi is to use Pol II-directed synthesis of shRNA. Previous efforts in developing a Pol II system have been sparse and the results were conflicting, and the usefulness of those Pol II vectors has been limited due to low efficacy. Here we demonstrate a new Pol II system that directs efficient shRNA synthesis and mediates strong RNAi at levels that are comparable with the commonly used Pol III systems. In addition, this system synthesizes a marker protein under control of the same promoter as the shRNA, thus providing an unequivocal indicator, not only to the cells that express the shRNA, but also to the levels of the shRNA expression. This system may be adapted for in vivo shRNA expression and gene silencing.
PMCID: PMC1074311  PMID: 15805121
24.  Lentiviral miR30-based RNA Interference against Heparanase Suppresses Melanoma Metastasis with Lower Liver and Lung Toxicity 
Aim: To construct short hairpin RNAs (shRNAs) and miR30-based shRNAs against heparanase (HPSE) to compare their safety and their effects on HPSE down-modulation in vitro and in vivo to develop a more ideal therapeutic RNA interference (RNAi) vector targeting HPSE.
Methods: First, we constructed shRNAs and miR30-based shRNAs against HPSE (HPSE-shRNAs and HPSE-miRNAs) and packed them into lentiviral vectors. Next, we observed the effects of the shRNAs on knockdown for HPSE expression, adhesion, migration and invasion abilities in human malignant melanoma A375 cells in vitro. Furthermore, we compared the effects of the shRNAs on melanoma growth, metastasis and safety in xenograft models.
Results: Our data showed that these artificial miRNAs targeting HPSE could be effective RNAi agents mediated by Pol II promoters in vitro and in vivo, although these miRNAs were not more potent than the HPSE-shRNAs. It was noted that obvious lung injuries, rarely revealed previously, as well as hepatotoxicity could be caused by lentivirus-mediated shRNAs (LV shRNAs) rather than lentivirus-mediated miRNAs (LV miRNAs) in vivo. Furthermore, enhanced expression of pro-inflammatory cytokines IL-6 and TGF-β1 and endogenous mmu-miR-21a-5p were detected in lung tissues of shRNAs groups, whereas the expression of mmu-let-7a-5p, mmu-let-7b-5p and mmu-let-7c-5p were down-regulated.
Conclusion: These findings suggest that artificial miRNAs display an improved safety profile of lowered lung injury or hepatotoxicity relative to shRNAs in vivo. The mechanism of lung injuries caused by shRNAs may be correlated with changes of endogenous miRNAs in the lung. Our data here increase the flexibility of a miRNA-based RNAi system for functional genomic and gene therapy applications.
PMCID: PMC3708037  PMID: 23847439
RNA interference; microRNA(miRNA); heparanase; metastasis; safety
25.  Efficient Delivery of RNAi Effectors via In Vitro-Packaged SV40 Pseudovirions 
Human gene therapy  2005;16(9):1110-1115.
Previously we have shown that SV40 pseudovirions packaged in vitro (IVPs) are an efficient delivery system for super-coiled DNA plasmids of up to 17.7 kb, with or without SV40 sequences. RNA interference (RNAi) is a naturally occurring gene silencing mechanism mediated by small double-stranded RNA molecules (small interfering RNAs, siRNAs). This study demonstrates the first use of SV40 pseudovirions to deliver into human cells both principal types of RNAi effector molecules, plasmid expressed short hairpin RNAs (shRNAs) and synthetic siRNAs. We first established the ability of human lymphoblastoid cells to support RNAi using sequential transduction of .45 cells with packaged plasmid DNA expressing the green fluorescent protein (IVP-GFP), and an shRNA corresponding to the GFP (IVP-shGFP). SV40 mediates DNA transfer of nucleic acid to the cytoplasm, where RNAi-associated cleavage of mRNA principally occurs. Using SV40 pseudovirions, siRNA-mediated RNAi was observed in both .45 cells, following sequential transduction of IVP-GFP and IVP packaged siRNAs corresponding to GFP (IVP-siGFP), and in HeLa cells stably expressing a GFP transduced with IVP-siGFP. Our findings indicate that SV40 pseudovirions may be a useful addition to the delivery systems currently being used for the transfer of RNAi effector molecules.
PMCID: PMC1618762  PMID: 16149909

Results 1-25 (796536)