PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (502712)

Clipboard (0)
None

Related Articles

1.  Distribution of the leptospiral immunoglobulin-like (lig) genes in pathogenic Leptospira species and application of ligB to typing leptospiral isolates 
Journal of Medical Microbiology  2009;58(Pt 9):1173-1181.
The family of leptospiral immunoglobulin-like (lig) genes comprises ligA, ligB and ligC. This study used PCR to demonstrate the presence of lig genes among serovars from a collection of leptospiral strains and clinical isolates. Whilst ligA and ligC appeared to be present in a limited number of pathogenic serovars, the ligB gene was distributed ubiquitously among all pathogenic strains. None of the lig genes were detected among intermediate or saprophytic Leptospira species. It was also shown that, similar to the previously characterized secY gene, a short specific PCR fragment of ligB could be used to correctly identify pathogenic Leptospira species. These findings demonstrate that ligB is widely present among pathogenic strains and may be useful for their reliable identification and classification.
doi:10.1099/jmm.0.009175-0
PMCID: PMC2887549  PMID: 19528180
2.  Differential In Vivo Gene Expression of Major Leptospira Proteins in Resistant or Susceptible Animal Models 
Applied and Environmental Microbiology  2012;78(17):6372-6376.
Transcripts of Leptospira 16S rRNA, FlaB, LigB, LipL21, LipL32, LipL36, LipL41, and OmpL37 were quantified in the blood of susceptible (hamsters) and resistant (mice) animal models of leptospirosis. We first validated adequate reference genes and then evaluated expression patterns in vivo compared to in vitro cultures. LipL32 expression was downregulated in vivo and differentially regulated in resistant and susceptible animals. FlaB expression was also repressed in mice but not in hamsters. In contrast, LigB and OmpL37 were upregulated in vivo. Thus, we demonstrated that a virulent strain of Leptospira differentially adapts its gene expression in the blood of infected animals.
doi:10.1128/AEM.00911-12
PMCID: PMC3416592  PMID: 22729538
3.  A Conserved Region of Leptospiral Immunoglobulin-Like A and B Proteins as a DNA Vaccine Elicits a Prophylactic Immune Response against Leptospirosis 
The leptospiral immunoglobulin-like (Lig) proteins LigA and LigB possess immunoglobulin-like domains with 90-amino-acid repeats and are adhesion molecules involved in pathogenicity. They are conserved in pathogenic Leptospira spp. and thus are of interest for use as serodiagnostic antigens and in recombinant vaccine formulations. The N-terminal amino acid sequences of the LigA and LigB proteins are identical, but the C-terminal sequences vary. In this study, we evaluated the protective potential of five truncated forms of LigA and LigB proteins from Leptospira interrogans serovar Canicola as DNA vaccines using the pTARGET mammalian expression vector. Hamsters immunized with the DNA vaccines were subjected to a heterologous challenge with L. interrogans serovar Copenhageni strain Spool via the intraperitoneal route. Immunization with a DNA vaccine encoding LigBrep resulted in the survival of 5/8 (62.5%) hamsters against lethal infection (P < 0.05). None of the control hamsters or animals immunized with the other vaccine preparations survived. The vaccine induced an IgG antibody response and, additionally, conferred sterilizing immunity in 80% of the surviving animals. Our results indicate that the LigBrep DNA vaccine is a promising candidate for inclusion in a protective leptospiral vaccine.
doi:10.1128/CVI.00601-12
PMCID: PMC3647749  PMID: 23486420
4.  Targeted Mutagenesis in Pathogenic Leptospira Species: Disruption of the LigB Gene Does Not Affect Virulence in Animal Models of Leptospirosis▿  
Infection and Immunity  2008;76(12):5826-5833.
The pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetically manipulating pathogenic Leptospira species. Thus, homologous recombination between introduced DNA and the corresponding chromosomal locus has never been demonstrated for this pathogen. Leptospiral immunoglobulin-like repeat (Lig) proteins were previously identified as putative Leptospira virulence factors. In this study, a ligB mutant was constructed by allelic exchange in L. interrogans; in this mutant a spectinomycin resistance (Spcr) gene replaced a portion of the ligB coding sequence. Gene disruption was confirmed by PCR, immunoblot analysis, and immunofluorescence studies. The ligB mutant did not show decrease virulence compared to the wild-type strain in the hamster model of leptospirosis. In addition, inoculation of rats with the ligB mutant induced persistent colonization of the kidneys. Finally, LigB was not required to mediate bacterial adherence to cultured cells. Taken together, our data provide the first evidence of site-directed homologous recombination in pathogenic Leptospira species. Furthermore, our data suggest that LigB does not play a major role in dissemination of the pathogen in the host and in the development of acute disease manifestations or persistent renal colonization.
doi:10.1128/IAI.00989-08
PMCID: PMC2583567  PMID: 18809657
5.  Cloning and Sequence Analysis of LipL32, a Surface–Exposed Lipoprotein of Pathogenic Leptospira Spp 
Background
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira species. A major challenge of this disease is the application of basic research to improve diagnostic methods and related vaccine development. Outer membrane proteins of Leptospira are potential candidates that may be useful as diagnostic or immunogenic factors in treatment and analysis of the disease.
Objectives
To develop an effective subunit vaccine against prevalent pathogenic Leptospira species, we sequenced and analyzed the LipL32 gene from three different Leptospira interrogans (L.interrogans) vaccinal serovars in Iran.
Materials and Methods
Following DNA extraction from these three serovars, the related LipL32 genes were amplified and cloned in the pTZ57R/T vector. Recombinant clones were confirmed by colony- PCR and DNA sequencing. The related sequences were subjected to homology analysis by comparing them to sequences in the Genbank database.
Results
The LipL32 sequences were >94% homologous among the vaccinal and other pathogenic Leptospira serovars in GenBank. This result indicates the conservation of this gene within the pathogenic Leptospires.
Conclusions
The cloned gene in this study may provide a potentially suitable platform for development of a variety of applications such as serological diagnostic tests or recombinant vaccines against leptospirosis.
doi:10.5812/ircmj.8793
PMCID: PMC3971780  PMID: 24719688
Leptospirosis; Leptospira Interrogans; LipL32
6.  Rapid Leptospira identification by direct sequencing of the diagnostic PCR products in New Caledonia 
BMC Microbiology  2010;10:325.
Background
Most of the current knowledge of leptospirosis epidemiology originates from serological results obtained with the reference Microscopic Agglutination Test (MAT). However, inconsistencies and weaknesses of this diagnostic technique are evident. A growing use of PCR has improved the early diagnosis of leptospirosis but a drawback is that it cannot provide information on the infecting Leptospira strain which provides important epidemiologic data. Our work is aimed at evaluating if the sequence polymorphism of diagnostic PCR products could be used to identify the infecting Leptospira strains in the New Caledonian environment.
Results
Both the lfb1 and secY diagnostic PCR products displayed a sequence polymorphism that could prove useful in presumptively identifying the infecting leptospire. Using both this polymorphism and MLST results with New Caledonian isolates and clinical samples, we confirmed the epidemiological relevance of the sequence-based identification of Leptospira strains. Additionally, we identified one cluster of L. interrogans that contained no reference strain and one cluster of L. borgpetersenii found only in the introduced Rusa deer Cervus timorensis russa that is its probable reservoir.
Conclusions
The sequence polymorphism of diagnostic PCR products proved useful in presumptively identifying the infecting Leptospira strains. This could contribute to a better understanding of leptospirosis epidemiology by providing epidemiological information that cannot be directly attained from the use of PCR as an early diagnostic test for leptospirosis.
doi:10.1186/1471-2180-10-325
PMCID: PMC3022709  PMID: 21176235
7.  Heterologous expression of pathogen-specific genes ligA and ligB in the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin 
BMC Microbiology  2011;11:129.
Background
In comparison to other bacterial pathogens, our knowledge of the molecular basis of the pathogenesis of leptospirosis is extremely limited. An improved understanding of leptospiral pathogenetic mechanisms requires reliable tools for functional genetic analysis. Leptospiral immunoglobulin-like (Lig) proteins are surface proteins found in pathogenic Leptospira, but not in saprophytes. Here, we describe a system for heterologous expression of the Leptospira interrogans genes ligA and ligB in the saprophyte Leptospira biflexa serovar Patoc.
Results
The genes encoding LigA and LigB under the control of a constitutive spirochaetal promoter were inserted into the L. biflexa replicative plasmid. We were able to demonstrate expression and surface localization of LigA and LigB in L. biflexa. We found that the expression of the lig genes significantly enhanced the ability of transformed L. biflexa to adhere in vitro to extracellular matrix components and cultured cells, suggesting the involvement of Lig proteins in cell adhesion.
Conclusions
This work reports a complete description of the system we have developed for heterologous expression of pathogen-specific proteins in the saprophytic L. biflexa. We show that expression of LigA and LigB proteins from the pathogen confers a virulence-associated phenotype on L. biflexa, namely adhesion to eukaryotic cells and fibronectin in vitro. This study indicates that L. biflexa can serve as a surrogate host to characterize the role of key virulence factors of the causative agent of leptospirosis.
doi:10.1186/1471-2180-11-129
PMCID: PMC3133549  PMID: 21658265
8.  Leptospira Immunoglobulin-Like Proteins as a Serodiagnostic Marker for Acute Leptospirosis▿  
Journal of Clinical Microbiology  2007;45(5):1528-1534.
There is an urgent need for improved diagnosis of leptospirosis, an emerging infectious disease which imparts a large disease burden in developing countries. We evaluated the use of Leptospira immunoglobulin (Ig)-like (Lig) proteins as a serodiagnostic marker for leptospirosis. Lig proteins have bacterial immunoglobulin-like (Big) tandem repeat domains, a moiety found in virulence factors in other pathogens. Sera from patients identified during urban outbreaks in Brazil reacted strongly with immunoblots of a recombinant fragment comprised of the second to sixth Big domains of LigB from L. interrogans serovar Copenhageni, the principal agent for transmission in this setting. Furthermore, the sera recognized an analogous LigB fragment derived from L. kirschneri serovar Grippotyphosa, a pathogenic serovar which is not endemic to the study area. The immunoblot assay detected anti-LigB IgM antibodies in sera from 92% (95% confidence interval, 85 to 96%) of patients during acute-phase leptospirosis. The assay had a sensitivity of 81% for sera from patients with less than 7 days of illness. Anti-LigB antibodies were found in sera from 57% of the patients who did not have detectable anti-whole-Leptospira responses as detected by IgM enzyme-linked immunosorbent assay and microagglutination test. The specificities of the assay were 93 to 100% and 90 to 97% among sera from healthy individuals and patients with diseases that have clinical presentations that overlap with those of leptospirosis, respectively. These findings indicate that the antibody response to this putative virulence determinant is a sensitive and specific marker for acute infection. The use of this marker may aid the prompt and timely diagnosis required to reduce the high mortality associated with severe forms of the disease.
doi:10.1128/JCM.02344-06
PMCID: PMC1865864  PMID: 17360842
9.  Osmolarity, a Key Environmental Signal Controlling Expression of Leptospiral Proteins LigA and LigB and the Extracellular Release of LigA  
Infection and Immunity  2005;73(1):70-78.
The high-molecular-weight leptospiral immunoglobulin-like repeat (Lig) proteins are expressed only by virulent low-passage forms of pathogenic Leptospira species. We examined the effects of growth phase and environmental signals on the expression, surface exposure, and extracellular release of LigA and LigB. LigA was lost from stationary-phase cells, while LigB expression was maintained. The loss of cell-associated LigA correlated with selective release of a lower-molecular-weight form of LigA into the culture supernatant, while LigB and the outer membrane lipoprotein LipL41 remained associated with cells. Addition of tissue culture medium to leptospiral culture medium induced LigA and LigB expression and caused a substantial increase in released LigA. The sodium chloride component of tissue culture medium was primarily responsible for the enhanced release of LigA. Addition of sodium chloride, potassium chloride, or sodium sulfate to leptospiral medium to physiological osmolarity caused the induction of both cell-associated LigA and LigB, indicating that osmolarity regulates the expression of Lig proteins. Osmotic induction of Lig expression also resulted in enhanced release of LigA and increased surface exposure of LigB, as determined by surface immunofluorescence. Osmolarity appears to be a key environmental signal that controls the expression of LigA and LigB.
doi:10.1128/IAI.73.1.70-78.2005
PMCID: PMC538979  PMID: 15618142
10.  Comparison of Real-Time PCR Assays for Detection of Pathogenic Leptospira spp. in Blood and Identification of Variations in Target Sequences▿† 
Journal of Clinical Microbiology  2011;49(6):2154-2160.
Leptospirosis is considered an underdiagnosed disease. Although several PCR-based methods are currently in use, there is little information on their comparability. In this study, four quantitative real-time PCR (qPCR) assays (SYBR green and TaqMan chemistries) targeting the secY, lfb1, and lipL32 genes were evaluated as diagnostic assays. In our hands, these assays can detect between 102 and 103 bacteria/ml of pure culture, whole-blood, plasma, and serum samples. In three independent experiments, we found a slightly higher sensitivity of the PCR assays in plasma than in whole blood and serum. We also evaluated the specificity of the PCR assays on reference Leptospira strains, including newly described Leptospira species, and clinical isolates. No amplification was detected for DNA obtained from saprophytic or intermediate Leptospira species. However, among the pathogens, we identified sequence polymorphisms in target genes that result in primer and probe mismatches and affect qPCR assay performance. In conclusion, most of these assays are sensitive and specific tools for routine diagnosis of leptospirosis. However, it is important to continually evaluate and, if necessary, modify the primers and/or probes used to ensure effective detection of the circulating Leptospira isolates.
doi:10.1128/JCM.02452-10
PMCID: PMC3122738  PMID: 21471336
11.  Identification of Variable-Number Tandem-Repeat Loci in Leptospira interrogans Sensu Stricto 
Journal of Clinical Microbiology  2005;43(2):539-545.
Leptospira interrogans sensu stricto is responsible for the most frequent and severe cases of human leptospirosis. The epidemiology and clinical features of leptospirosis are usually associated with the serovars and serogroups of Leptospira. Because of the difficulties associated with serological identification of Leptospira strains, we evaluated a novel PCR-based method for typing L. interrogans serovars. Based upon the genome sequence of L. interrogans serovar Lai type strain 5660, 44 loci were analyzed by PCR for their variability in size due to the presence of variable-number tandem repeats (VNTR). Seven VNTR loci were found to be powerful markers for serovar identification, epidemiology, and phylogenetic studies of L. interrogans. This rapid and easy method should greatly contribute to a better knowledge of the epidemiology of Leptospira.
doi:10.1128/JCM.43.2.539-545.2005
PMCID: PMC548069  PMID: 15695642
12.  Application of Multilocus Variable-Number Tandem-Repeat Analysis for Molecular Typing of the Agent of Leptospirosis 
Journal of Clinical Microbiology  2006;44(11):3954-3962.
Leptospirosis is a worldwide-distributed zoonosis, endemic in tropical areas. Epidemiologic investigations of leptospirosis still rely on tedious serological identification tests. Recently, molecular typing systems based on variable-number tandem-repeat (VNTR) analysis have been described and have been used to identify Leptospira interrogans strains. Although L. interrogans is the most common Leptospira species encountered in human infections around the world, other pathogenic species, such as Leptospira kirschneri and Leptospira borgpetersenii, are also frequently associated with human leptospirosis. In this study, we aimed to extend multilocus VNTR analysis (MLVA) identification of strains to species other than L. interrogans. We designed primers for VNTR loci found in L. interrogans, L. kirschneri, and L. borgpetersenii. The discriminatory power of the redefined primers was evaluated on collection strains and then on clinical strains. We also carried out a retrospective study on 156 strains isolated from patients and animals from New Caledonia, an area of high endemicity in the South Pacific. Our results show that this simple PCR-based MLVA typing technique is a powerful methodology for the epidemiology of leptospirosis.
doi:10.1128/JCM.00336-06
PMCID: PMC1698352  PMID: 17088367
13.  Genetic diversity of the Leptospiral immunoglobulin-like (Lig) genes in pathogenic Leptospira spp. 
Recent serologic, immunoprotection, and pathogenesis studies identified the Lig proteins as key virulence determinants in interactions of leptospiral pathogens with the mammalian host. We examined the sequence variation and recombination patterns of ligA, ligB, and ligC among 10 pathogenic strains from five Leptospira species. All strains were found to have intact ligB genes and genetic drift accounting for most of the ligB genetic diversity observed. The ligA gene was found exclusively in L. interrogans and L. kirschneri strains, and was created from ligB by a two-step partial gene duplication process. The aminoterminal domain of LigB and the LigA paralog were essentially identical (98.5 ± 0.8% mean identity) in strains with both genes. Like ligB, ligC gene variation also followed phylogenetic patterns, suggesting an early gene duplication event. However, ligC is a pseudogene in several strains, suggesting that LigC is not essential for virulence. Two ligB genes and one ligC gene had mosaic compositions and evidence for recombination events between related Leptospira species was also found for some ligA genes. In conclusion, the results presented here indicate that Lig diversity has important ramifications for the selection of Lig polypeptides for use in diagnosis and as vaccine candidates. This sequence information will aid the identification of highly conserved regions within the Lig proteins and improve upon the performance characteristics of the Lig proteins in diagnostic assays and in subunit vaccine formulations with the potential to confer heterologous protection.
doi:10.1016/j.meegid.2008.10.012
PMCID: PMC2812920  PMID: 19028604
Leptospirosis; Lig; Pathogenesis; Molecular evolution; Sequence analysis
14.  Development and Validation of a Real-Time PCR for Detection of Pathogenic Leptospira Species in Clinical Materials 
PLoS ONE  2009;4(9):e7093.
Available serological diagnostics do not allow the confirmation of clinically suspected leptospirosis at the early acute phase of illness. Several conventional and real-time PCRs for the early diagnosis of leptospirosis have been described but these have been incompletely evaluated. We developed a SYBR Green-based real-time PCR targeting secY and validated it according to international guidelines. To determine the analytical specificity, DNA from 56 Leptospira strains belonging to pathogenic, non-pathogenic and intermediate Leptospira spp. as well as 46 other micro-organisms was included in this study. All the pathogenic Leptospira gave a positive reaction. We found no cross-reaction with saprophytic Leptospira and other micro-organisms, implying a high analytical specificity. The analytical sensitivity of the PCR was one copy per reaction from cultured homologous strain M 20 and 1.2 and 1.5 copy for heterologous strains 1342 K and Sarmin, respectively. In spiked serum & blood and kidney tissue the sensitivity was 10 and 20 copies for M 20, 15 and 30 copies for 1342 K and 30 and 50 copies for Sarmin. To determine the diagnostic sensitivity (DSe) and specificity (DSp), clinical blood samples from 26 laboratory-confirmed and 107 negative patients suspected of leptospirosis were enrolled as a prospective consecutive cohort. Based on culture as the gold standard, we found a DSe and DSp of 100% and 93%, respectively. All eight PCR positive samples that had a negative culture seroconverted later on, implying a higher actual DSp. When using culture and serology as the gold standard, the DSe was lower (89%) while the DSp was higher (100%). DSe was 100% in samples collected within the first – for treatment important - 4 days after onset of the illness. Reproducibility and repeatability of the assay, determined by blind testing kidney samples from 20 confirmed positive and 20 negative rodents both appeared 100%. In conclusion we have described for the first time the development of a robust SYBR Green real-time PCR for the detection of pathogenic Leptospira combined with a detailed assessment of its clinical accuracy, thus providing a method for the early diagnosis of leptospirosis with a well-defined satisfactory performance.
doi:10.1371/journal.pone.0007093
PMCID: PMC2740861  PMID: 19763264
15.  Characterization of a virulent Leptospira interrogans strain isolated from an abandoned swimming pool 
Brazilian Journal of Microbiology  2013;44(1):165-170.
Pathogenic Leptospira spp. are the etiological agents of leptospirosis, an important disease of both humans and animals. In urban settings, L. interrogans serovars are the predominant cause of disease in humans. The purpose of this study was to characterize a novel Leptospira isolate recovered from an abandoned swimming pool. Molecular characterization through sequencing of the rpoB gene revealed 100% identity with L. interrogans and variable-number tandem-repeat (VNTR) analysis resulted in a banding pattern identical to L. interrogans serogroup Icterohaemorrhagiae, serovar Copenhageni or Icterohaemorrhagiae. The virulence of the strain was determined in a hamster model of lethal leptospirosis. The lethal dose 50% (LD50) was calculated to be two leptospires in female hamsters and a histopathological examination of infected animals found typical lesions associated with severe leptospirosis, including renal epithelium degeneration, hepatic karyomegaly, liver-plate disarray and lymphocyte infiltration. This highly virulent strain is now available for use in further studies, especially evaluation of vaccine candidates.
doi:10.1590/S1517-83822013005000029
PMCID: PMC3804194  PMID: 24159300
Leptospira; Leptospirosis; Virulent; VNTR; rpoB
16.  The Multifunctional LigB Adhesin Binds Homeostatic Proteins with Potential Roles in Cutaneous Infection by Pathogenic Leptospira interrogans 
PLoS ONE  2011;6(2):e16879.
Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9–11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react with the LigB domain, suggesting applications in diagnosis and vaccines that are currently limited by the strain-specific leptospiral lipopolysaccharide coats.
doi:10.1371/journal.pone.0016879
PMCID: PMC3036719  PMID: 21347378
17.  In Vitro Identification of Novel Plasminogen-Binding Receptors of the Pathogen Leptospira interrogans 
PLoS ONE  2010;5(6):e11259.
Background
Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin.
Methodology/Principal Findings
We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin.
Conclusions/Significance
PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.
doi:10.1371/journal.pone.0011259
PMCID: PMC2889836  PMID: 20582320
18.  Immunoprotection of Recombinant Leptospiral Immunoglobulin-Like Protein A against Leptospira interrogans Serovar Pomona Infection  
Infection and Immunity  2006;74(3):1745-1750.
We previously reported the cloning and characterization of leptospiral immunoglobulin-like proteins LigA and LigB of Leptospira interrogans. LigA and LigB are conserved at the amino-terminal region but are variable at the carboxyl-terminal region. Here, we evaluate the potential of recombinant LigA (rLigA) as a vaccine candidate against infection by L. interrogans serovar Pomona in a hamster model. rLigA was truncated into conserved (rLigAcon) and variable (rLigAvar) regions and expressed in Escherichia coli as a fusion protein with glutathione-S-transferase (rLigA). Golden Syrian hamsters were immunized at 3 and 6 weeks of age with rLigA (rLigAcon and rLigAvar) with aluminum hydroxide as an adjuvant. Hamsters given recombinant glutathione-S-transferase (rGST)-adjuvant and phosphate-buffered saline-adjuvant served as nonvaccinated controls. Three weeks after the last vaccination, all animals were challenged intraperitoneally with 108 L. interrogans serovar Pomona bacteria (NVSL 1427-35-093002). All hamsters immunized with recombinant LigA survived after challenge and had no significant histopathological changes. In contrast, nonimmunized and rGST-immunized hamsters were subjected to lethal doses, and the hamsters that survived showed severe tubulointerstitial nephritis. All vaccinated animals showed a rise in antibody titers against rLigA. Results from this study indicate that rLigA is a potential vaccine candidate against L. interrogans serovar Pomona infection.
doi:10.1128/IAI.74.3.1745-1750.2006
PMCID: PMC1418682  PMID: 16495547
19.  Human Leptospira Isolates Circulating in Mayotte (Indian Ocean) Have Unique Serological and Molecular Features 
Journal of Clinical Microbiology  2012;50(2):307-311.
Leptospirosis is one of the most widespread zoonoses in the world. However, there is a lack of information on circulating Leptospira strains in remote parts of the world. We describe the serological and molecular features of leptospires isolated from 94 leptospirosis patients in Mayotte, a French department located in the Comoros archipelago, between 2007 and 2010. Multilocus sequence typing identified these isolates as Leptospira interrogans, L. kirschneri, L. borgpetersenii, and members of a previously undefined phylogenetic group. This group, consisting of 15 strains, could represent a novel species. Serological typing revealed that 70% of the isolates belonged to the serogroup complex Mini/Sejroe/Hebdomadis, followed by the serogroups Pyrogenes, Grippotyphosa, and Pomona. However, unambiguous typing at the serovar level was not possible for most of the strains because the isolate could belong to more than one serovar or because serovar and species did not match the original classification. Our results indicate that the serovar and genotype distribution in Mayotte differs from what is observed in other regions, thus suggesting a high degree of diversity of circulating isolates worldwide. These results are essential for the improvement of current diagnostic tools and provide a starting point for a better understanding of the epidemiology of leptospirosis in this area of endemicity.
doi:10.1128/JCM.05931-11
PMCID: PMC3264139  PMID: 22162544
20.  Development of a Multiple-Locus Variable number of tandem repeat Analysis (MLVA) for Leptospira interrogans and its application to Leptospira interrogans serovar Australis isolates from Far North Queensland, Australia 
Background
Leptospirosis is a zoonotic disease caused by the genus, Leptospira. Leptospira interrogans is the most common genomospecies implicated in the disease. Epidemiological investigations are needed to distinguish outbreak situations or to trace reservoirs of the organisms. Current methodologies used for typing Leptospira have significant drawbacks. The development of an easy to perform yet high resolution method is needed for this organism.
Methods
In this study we have searched the available genomic sequence of L. interrogans serovar Copenhageni strain Fiocruz L1-130 for the presence of tandem repeats [1]. These repeats were evaluated against reference strains for diversity. Six loci were selected to create a Multiple Locus Variable Number of Tandem Repeats (VNTR) Analysis (MLVA) to explore the genetic diversity within L. interrogans serovar Australis clinical isolates from Far North Queensland.
Results
The 39 reference strains used for the development of the method displayed 39 distinct patterns. Diversity Indexes for the loci varied between 0.80 and 0.93 and the number of repeat units at each locus varied between less than one to 52 repeats. When the MLVA was applied to serovar Australis isolates three large clusters were distinguishable, each comprising various hosts including Rattus species, human and canines.
Conclusion
The MLVA described in this report, was easy to perform, analyse and was reproducible. The loci selected had high diversity allowing discrimination between serovars and also between strains within a serovar. This method provides a starting point on which improvements to the method and comparisons to other techniques can be made.
doi:10.1186/1476-0711-4-10
PMCID: PMC1185519  PMID: 15987533
21.  A novel fibronectin type III module binding motif identified on C-terminus of Leptospira immunoglobulin-like protein, LigB 
Infection by pathogenic strains of Leptospira hinges on the pathogen’s ability to adhere to host cells via extracellular matrix such as fibronectin (Fn). Previously, the immunoglobulin-like domains of Leptospira Lig proteins were recognized as adhesins binding to N-terminal domain (NTD) and gelatin binding domain (GBD) of Fn. In this study, we identified another Fn-binding motif on the C-terminus of the Leptospira adhesin LigB (LigBCtv), residues 1708–1712 containing sequence LIPAD with a β-strand and nascent helical structure. This motif binds to 15th type III modules (15F3) (KD = 10.70 μM), and association (kon = 600 M−1 s−1) and dissociation (koff = 0.0129 s−1) rate constants represents a slow binding kinetics in this interaction. Moreover, pretreatment of MDCK cells with LigB1706–1716 blocked the binding of Leptospira by 39%, demonstrating a significant role of LigB1706–1716 in cellular adhesion. These data indicate that the LIPAD residues (LigB1708–1712) of the Leptospira interrogans LigB protein bind 15F3 of Fn at a novel binding site, and this interaction contributes to adhesion to host cells.
doi:10.1016/j.bbrc.2009.08.089
PMCID: PMC2804977  PMID: 19699715
Leptospira interrogans; Fibronectin; Type III modules; LigB
22.  Evaluation of Immunoprotective Activity of Six Leptospiral Proteins in the Hamster Model of Leptospirosis 
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of L. interrogans serovar Copenhageni together with bioinformatics tools represent a great opportunity to search for novel antigen candidates that could be used as subunit vaccine against leptospirosis. We focused on six genes encoding for conserved hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from Leptospira interrogans genomic DNA and were cloned and expressed in Escherichia coli. The recombinant proteins tagged with N-terminal hexahistidine were purified by metal-charged chromatography. The immunization of hamsters followed by challenge with lethal dose of virulent strain of Leptospira showed that the recombinant proteins Lsa21, Lsa66 and rLIC11030 elicited partial protection to animals. These proteins could be used combined or in a mixture with novel adjuvants in order to improve their effectiveness.
doi:10.2174/1874285801206010079
PMCID: PMC3502890  PMID: 23173023
Leptospira interrogans; leptospirosis; recombinant protein; vaccine.
23.  The Terminal Immunoglobulin-Like Repeats of LigA and LigB of Leptospira Enhance Their Binding to Gelatin Binding Domain of Fibronectin and Host Cells 
PLoS ONE  2010;5(6):e11301.
Leptospira spp. are pathogenic spirochetes that cause the zoonotic disease leptospirosis. Leptospiral immunoglobulin (Ig)-like protein B (LigB) contributes to the binding of Leptospira to extracellular matrix proteins such as fibronectin, fibrinogen, laminin, elastin, tropoelastin and collagen. A high-affinity Fn-binding region of LigB has been localized to LigBCen2, which contains the partial 11th and full 12th Ig-like repeats (LigBCen2R) and 47 amino acids of the non-repeat region (LigBCen2NR) of LigB. In this study, the gelatin binding domain of fibronectin was shown to interact with LigBCen2R (KD = 1.91±0.40 µM). Not only LigBCen2R but also other Ig-like domains of Lig proteins including LigAVar7'-8, LigAVar10, LigAVar11, LigAVar12, LigAVar13, LigBCen7'-8, and LigBCen9 bind to GBD. Interestingly, a large gain in affinity was achieved through an avidity effect, with the terminal domains, 13th (LigA) or 12th (LigB) Ig-like repeat of Lig protein (LigAVar7'-13 and LigBCen7'-12) enhancing binding affinity approximately 51 and 28 fold, respectively, compared to recombinant proteins without this terminal repeat. In addition, the inhibited effect on MDCKs cells can also be promoted by Lig proteins with terminal domains, but these two domains are not required for gelatin binding domain binding and cell adhesion. Interestingly, Lig proteins with the terminal domains could form compact structures with a round shape mediated by multidomain interaction. This is the first report about the interaction of gelatin binding domain of Fn and Lig proteins and provides an example of Lig-gelatin binding domain binding mediating bacterial-host interaction.
doi:10.1371/journal.pone.0011301
PMCID: PMC2892007  PMID: 20585579
24.  Protection against Leptospira interrogans Sensu Lato Challenge by DNA Immunization with the Gene Encoding Hemolysin-Associated Protein 1  
Infection and Immunity  2005;73(7):4062-4069.
The use of DNA constructs encoding leptospiral proteins is a promising new approach for vaccination against leptospirosis. In previous work we determined that immunization with hemolysis-associated protein 1 (Hap1) (LipL32) expressed by adenovirus induced significant protection against a virulent Leptospira challenge in gerbils. To avoid the use of the adenovirus vector, we checked for clinical protection against lethal challenge by DNA vaccination. A DNA vaccine expressing Hap1 was designed to enhance the direct gene transfer of this protein into gerbils. A challenge was performed 3 weeks after the last immunization with a virulent strain of serovar canicola. Our results show that the cross-protective effect with pathogenic strains of Leptospira, shared by Hap1, could be mediated by the DNA plasmid vector. This finding should facilitate the design and development of a new generation of vaccines against bacteria, particularly Leptospira interrogans sensu lato.
doi:10.1128/IAI.73.7.4062-4069.2005
PMCID: PMC1168576  PMID: 15972494
25.  Identification of Immunodominant B- and T-Cell Combined Epitopes in Outer Membrane Lipoproteins LipL32 and LipL21 of Leptospira interrogans▿  
Leptospirosis is a serious infectious disease caused by pathogenic Leptospira. B- and T-cell-mediated immune responses contribute to the mechanisms of Leptospira interrogans infection and immune intervention. LipL32 and LipL21 are the conserved outer membrane lipoproteins of L. interrogans and are considered vaccine candidates. In this study, we identified B- and T-cell combined epitopes within LipL32 and LipL21 to further develop a novel vaccine. By using a computer prediction algorithm, two B- and T-cell combined epitopes of LipL21 and four of LipL32 were predicted. All of the predicted epitopes were expressed in a phage display system. Four epitopes, LipL21 residues 97 to 112 and 176 to 184 (LipL2197-112 and LipL21176-184, respectively) and LipL32133-160 and LipL32221-247 of LipL32 were selected as antigens by Western blotting and enzyme-linked immunosorbent assay. These selected epitopes were also recognized by CD4+ T lymphocytes derived from LipL21- or LipL32-immunized BALB/c (H-2d) mice and mainly polarized the immune response toward a Th1 phenotype. The identification of epitopes that have both B- and T-cell immune reactivities is of value for studying the immune mechanisms in response to leptospiral infection and for designing an effective vaccine for leptospirosis.
doi:10.1128/CVI.00405-09
PMCID: PMC2863375  PMID: 20237196

Results 1-25 (502712)