Search tips
Search criteria

Results 1-25 (1363059)

Clipboard (0)

Related Articles

1.  Genetic Polymorphisms in Adaptive Immunity Genes and Childhood Acute Lymphoblastic Leukemia 
Childhood acute lymphoblastic leukemia (ALL) has been hypothesized to have an infection and immune-related etiology. The lack of immune priming in early childhood may result in abnormal immune responses to infections later in life and increase ALL risk.
The current analyses examined the association between childhood ALL and 208 single nucleotide polymorphisms (SNPs) of 29 adaptive immune function genes among 377 ALL cases and 448 healthy controls. Single SNPs were analyzed with a log-additive approach using logistic regression models adjusted for sex, age, Hispanic ethnicity, and race. Sliding window haplotype analyses were performed with haplotypes consisting of 2 to 6 SNPs.
Of the 208 SNPs, only rs583911 of IL12A, which encodes a critical modulator of T-cell development, remained significant after accounting for multiple testing (odds ratio for each copy of the variant G allele = 1.52, 95% confidence interval: 1.25–1.85, p = 2.9 × 10−5). This increased risk was stronger among first-born children of all ethnicities and among non-Hispanic children with less daycare attendance, consistent with the hypothesis regarding the role of early immune modulation in the development of childhood ALL. Haplotype analyses identified additional regions of CD28, FCGR2, GATA3, IL2RA, STAT4, and STAT6 associated with childhood ALL.
Polymorphisms of genes on the adaptive immunity pathway are associated with childhood ALL risk.
Results of this study support an immune-related etiology of childhood ALL. Further confirmation is required to detect functional variants in the significant genomic regions identified in this study, in particular for IL12A.
PMCID: PMC3257312  PMID: 20716621
2.  Variation in innate immunity genes and risk of multiple myeloma 
Hematological oncology  2011;29(1):42-46.
Multiple myeloma (MM) is a B-cell lymphoid malignancy suspected to be associated with immunologic factors. Given recent findings associating single-nucleotide polymorphisms (SNPs) in innate immunity genes with non-Hodgkin lymphoma, we conducted an investigation of innate immune gene variants using specimens from a population-based case-control study of MM conducted in Connecticut women. Tag SNPs (N=1,461) summarizing common variation in 149 gene regions were genotyped in non-Hispanic Caucasian subjects (103 cases, 475 controls). Odds ratios (OR) and 95% confidence intervals (CI) relating SNP associations with MM were computed using unconditional logistic regression, while the MinP test was used to investigate associations with MM at the gene level. We calculated permutation-adjusted P-values and false discovery rates (FDR) to account for the number of comparisons performed in SNP-level and gene-level tests, respectively. Three genes were associated with MM when controlling for a FDR of ≤10%: SERPINE1 (PMinP<0.0001; FDR=0.02), HGF (PMinP=0.0006; FDR=0.06) and CCR7 (PMinP=0.001; FDR=0.08). Two SNPs demonstrated robust associations: SERPINE1 rs2227667 (P=2.1×10−5, Ppermutation=0.03) and HGF rs17501108 (P=5.0×10−5, Ppermutation=0.07). Our findings suggest that genetic variants in SERPINE1 and HGF, and possibly CCR7, are associated with MM risk, and warrant further investigation in other studies.
PMCID: PMC2980579  PMID: 20658475
epidemiology; myeloma; genetics
3.  Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia 
BMC Cancer  2013;13:457.
The MRE11, RAD50, and NBN genes encode proteins of the MRE11-RAD50-NBN (MRN) complex involved in cellular response to DNA damage and the maintenance of genome stability. In our previous study we showed that the germline p.I171V mutation in NBN may be considered as a risk factor in the development of childhood acute lymphoblastic leukemia (ALL) and some specific haplotypes of that gene may be associated with childhood leukemia. These findings raise important questions about the role of mutations in others genes of the MRN complex in childhood leukemia. The aim of this study was to answer the question whether MRE11 and RAD50 alterations may be associated with childhood ALL or AML.
We estimated the frequency of constitutional mutations and polymorphisms in selected regions of MRE11, RAD50, and NBN in the group of 220 children diagnosed with childhood leukemias and controls (n=504/2200). The analysis was performed by specific amplification of region of interest by PCR and followed by multi-temperature single-strand conformation polymorphism (PCR-MSSCP) technique. We performed two molecular tests to examine any potential function of the detected the c.551+19G>A SNP in RAD50 gene. To our knowledge, this is the first analysis of the MRE11, RAD50 and NBN genes in childhood leukemia.
The frequency of either the AA genotype or A allele of RAD50_rs17166050 were significantly different in controls compared to leukemia group (ALL+AML) (p<0.0019 and p<0.0019, respectively). The cDNA analysis of AA or GA genotypes carriers has not revealed evidence of splicing abnormality of RAD50 pre-mRNA. We measured the allelic-specific expression of G and A alleles at c.551+19G>A and the statistically significant overexpression of the G allele has been observed. Additionally we confirmed the higher incidence of the p.I171V mutation in the leukemia group (7/220) than among controls (12/2400) (p<0.0001).
The formerly reported sequence variants in the RAD50 and MRE11 gene may not constitute a risk factor of childhood ALL in Polish population. The RAD50_rs17166050 variant allele is linked to decreased ALL risk (p<0.0009, OR=0.6358 (95%CI: 0.4854-0.8327)). Despite the fact that there is no splicing abnormality in carriers of the variant allele but an excess of the G over the A allele was consistently observed. This data demonstrate that some specific alternations of the RAD50 gene may be associated with childhood ALL.
PMCID: PMC3851537  PMID: 24093751
4.  Association of variants in innate immune genes with asthma and eczema 
The innate immune pathway is important in the pathogenesis of asthma and eczema. However, only a few variants in these genes have been associated with either disease. We investigate the association between polymorphisms of genes in the innate immune pathway with childhood asthma and eczema. In addition, we compare individual associations with those discovered using a multivariate approach.
Using a novel method, case control based association testing (C2BAT), 569 single nucleotide polymorphisms (SNPs) in 44 innate immune genes were tested for association with asthma and eczema in children from the Boston Home Allergens and Asthma Study and the Connecticut Childhood Asthma Study. The screening algorithm was used to identify the top SNPs associated with asthma and eczema. We next investigated the interaction of innate immune variants with asthma and eczema risk using Bayesian networks.
After correction for multiple comparisons, 7 SNPs in 6 genes (CARD25, TGFB1, LY96, ACAA1, DEFB1, and IFNG) were associated with asthma (adjusted p-value<0.02), while 5 SNPs in 3 different genes (CD80, STAT4, and IRAKI) were significantly associated with eczema (adjusted p-value < 0.02). None of these SNPs were associated with both asthma and eczema. Bayesian network analysis identified 4 SNPs that were predictive of asthma and 10 SNPs that predicted eczema. Of the genes identified using Bayesian networks, only CD80 was associated with eczema in the single-SNP study. Using novel methodology that allows for screening and replication in the same population, we have identified associations of innate immune genes with asthma and eczema. Bayesian network analysis suggests that additional SNPs influence disease susceptibility via SNP interactions.
Our findings suggest that innate immune genes contribute to the pathogenesis of asthma and eczema, and that these diseases likely have different genetic determinants.
PMCID: PMC3412627  PMID: 22192168
asthma; Bayesian network; genetic association; eczema; innate immunity
5.  Maternal and offspring genetic variants of AKR1C3 and the risk of childhood leukemia 
Carcinogenesis  2008;29(5):984-990.
The aldo-keto reductase 1C3 (AKR1C3) gene located on chromosome 10p15-p14, a regulator of myeloid cell proliferation and differentiation, represents an important candidate gene for studying human carcinogenesis. In a prospectively enrolled population-based case–control study of Han Chinese conducted in Kaohsiung in southern Taiwan, a total of 114 leukemia cases and 221 controls <20 years old were recruited between November 1997 and December 2005. The present study set out to evaluate the association between childhood leukemia and both maternal and offspring's genotypes. To do so, we conducted a systematic assessment of common single-nucleotide polymorphisms (SNPs) at the 5′ flanking 10 kb to 3′ UTR of AKR1C3 gene. Gln5His and three tagSNPs (rs2245191, rs10508293 and rs3209896) and one multimarker (rs2245191, rs10508293 and rs3209896) were selected with average 90% coverage of untagged SNPs by using the HapMap II data set. Odds ratios and 95% confidence intervals were adjusted for age and gender. After correcting for multiple comparisons, we observed that risk of developing childhood leukemia is significantly associated with rs10508293 polymorphism on intron 4 of the AKR1C3 gene in both offspring alone and in the combined maternal and offspring genotypes (nominal P < 0.0001, permutation P < 0.005). The maternal methylenetetrahydrofolate reductase A1298C polymorphism was found to be an effect modifier of the maternal intron 4 polymorphism of the AKR1C3 gene (rs10508293) and the childhood leukemia risk. In conclusion, this study suggests that AKR1C3 polymorphisms may be important predictive markers for childhood leukemia susceptibility.
PMCID: PMC2902386  PMID: 18339682
6.  Polymorphisms in Toll-Like Receptors 2, 4, and 9 Are Highly Associated with Hearing Loss in Survivors of Bacterial Meningitis 
PLoS ONE  2012;7(5):e35837.
Genetic variation in innate immune response genes contributes to inter-individual differences in disease manifestation and degree of complications upon infection. We recently described an association of single nucleotide polymorphisms (SNPs) in TLR9 with susceptibility to meningococcal meningitis (MM). In this study, we investigate the association of SNPs in multiple pathogen recognition and immune response genes with clinical features that determine severity and outcome (especially hearing loss) of childhood MM and pneumococcal meningitis (PM). Eleven SNPs in seven genes (TLR2, TLR4, TLR9, NOD1, NOD2, CASP1, and TRAIL) were genotyped in 393 survivors of childhood bacterial meningitis (BM) (327 MM patients and 66 PM patients). Genotype distributions of single SNPs and combination of SNPs were compared between thirteen clinical characteristics associated with severity of BM. After correction for multiple testing, TLR4+896 mutant alleles were highly associated with post-meningitis hearing loss, especially MM (p  = 0.001, OR 4.0 for BM, p  = 0.0004, OR 6.2 for MM). In a multigene analysis, combined carriership of the TLR2+2477 wild type (WT) with TLR4+896 mutant alleles increases the risk of hearing loss (p<0.0001, OR 5.7 in BM and p  = 0.0001, OR 7.6 in MM). Carriage of one or both mutant alleles in TLR4+896 and TLR9 -1237 increases the risk for hearing loss (p  = 0.0006, OR 4.1 in BM). SNPs in immune response genes contribute to differences in clinical severity and outcome of BM. The TLR system seems to play an important role in the immune response to BM and subsequent neuronal damage as well as in cochlear inflammation. Genetic markers may be used for identification of high-risk patients by creating prediction rules for post-meningitis hearing loss and other sequelae, and provide more insight in the complex immune response in the CNS possibly resulting in new therapeutic interventions.
PMCID: PMC3360733  PMID: 22662111
7.  Risk of Meningioma and Common Variation in Genes related to Innate Immunity 
The etiology of meningioma, the second-most common type of adult brain tumor in the United States, is largely unknown. Prior studies indicate that history of immune-related conditions may affect the risk of meningioma. To identify genetic markers for meningioma in genes involved with innate immunity, we conducted an exploratory association study of 101 meningioma cases and 330 frequency-matched controls of European ancestry using subjects from a hospital-based study conducted by the National Cancer Institute. We genotyped 1407 “tag” single nucleotide polymorphisms (SNPs) in 148 genetic regions chosen on the basis of an r2> 0.8 and minor allele frequency > 5% in Caucasians in HapMap1. Risk of meningioma was estimated by odds ratios and 95% confidence intervals. Seventeen SNPs distributed across twelve genetic regions (NFKB1 (3), FCER1G (3), CCR6 (2), VCAM1, CD14, TNFRSF18, RAC2, XDH, C1D, TLR1/TLR10/TLR6, NOS1, DEFA5) were associated with risk of meningioma with p<0.01. Although individual SNP tests were not significant after controlling for multiple comparisons, gene region-based tests were statistically significant (p<0.05) for TNFRSF18, NFKB1, FCER1G, CD14, C1D, CCR6, and VCAM1. Our results indicate that common genetic polymorphisms in innate immunity genes may be associated with risk of meningioma. Given the small sample size, replication of these results in a larger study of meningioma is needed.
PMCID: PMC3169167  PMID: 20406964
Meningioma; polymorphism; genetic region; innate immunity; brain; tumor; neoplasm; case-control
8.  SNP Association Mapping across the Extended Major Histocompatibility Complex and Risk of B-Cell Precursor Acute Lymphoblastic Leukemia in Children 
PLoS ONE  2013;8(8):e72557.
The extended major histocompatibility complex (xMHC) is the most gene-dense region of the genome and harbors a disproportionately large number of genes involved in immune function. The postulated role of infection in the causation of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) suggests that the xMHC may make an important contribution to the risk of this disease. We conducted association mapping across an approximately 4 megabase region of the xMHC using a validated panel of single nucleotide polymorphisms (SNPs) in childhood BCP-ALL cases (n=567) enrolled in the Northern California Childhood Leukemia Study (NCCLS) compared with population controls (n=892). Logistic regression analyses of 1,145 SNPs, adjusted for age, sex, and Hispanic ethnicity indicated potential associations between several SNPs and childhood BCP-ALL. After accounting for multiple comparisons, one of these included a statistically significant increased risk associated with rs9296068 (OR=1.40, 95% CI=1.19-1.66, corrected p=0.036), located in proximity to HLA-DOA. Sliding window haplotype analysis identified an additional locus located in the extended class I region in proximity to TRIM27 tagged by a haplotype comprising rs1237485, rs3118361, and rs2032502 (corrected global p=0.046). Our findings suggest that susceptibility to childhood BCP-ALL is influenced by genetic variation within the xMHC and indicate at least two important regions for future evaluation.
PMCID: PMC3749982  PMID: 23991122
9.  Effects of endotoxin exposure on childhood asthma risk are modified by a genetic polymorphism in ACAA1 
BMC Medical Genetics  2011;12:158.
Polymorphisms in the endotoxin-mediated TLR4 pathway genes have been associated with asthma and atopy. We aimed to examine how genetic polymorphisms in innate immunity pathways interact with endotoxin to influence asthma risk in children.
In a previous analysis of 372 children from the Boston Home Allergens and the Connecticut Childhood Asthma studies, 7 SNPs in 6 genes (CARD15, TGFB1, LY96, ACAA1, DEFB1 and IFNG) involved in innate immune pathways were associated with asthma, and 5 SNPs in 3 genes (CD80, STAT4, IRAK2) were associated with eczema. We tested these SNPs for interaction with early life endotoxin exposure (n = 291), in models for asthma and eczema by age 6.
We found a significant interaction between endotoxin and a SNP (rs156265) in ACAA1 (p = 0.0013 for interaction). Increased endotoxin exposure (by quartile) showed protective effects for asthma in individuals with at least one copy of the minor allele (OR = 0.39 per quartile increase in endotoxin, 95% CI 0.15 to 1.01). Endotoxin exposure did not reduce the risk of asthma in children homozygous for the major allele.
Our findings suggest that protective effects of endotoxin exposure on asthma may vary depending upon the presence or absence of a polymorphism in ACAA1.
PMCID: PMC3252252  PMID: 22151743
10.  Haplotypes of DNA repair and cell cycle control genes, X-ray exposure, and risk of childhood acute lymphoblastic leukemia 
Cancer Causes & Control  2011;22(12):1721-1730.
Acute leukemias of childhood are a heterogeneous group of malignancies characterized by cytogenetic abnormalities, such as translocations and changes in ploidy. These abnormalities may be influenced by altered DNA repair and cell cycle control processes.
We examined the association between childhood acute lymphoblastic leukemia (ALL) and 32 genes in DNA repair and cell cycle pathways using a haplotype-based approach, among 377 childhood ALL cases and 448 controls enrolled during 1995–2002.
We found that haplotypes in APEX1, BRCA2, ERCC2, and RAD51 were significantly associated with total ALL, while haplotypes in NBN and XRCC4, and CDKN2A were associated with structural and numerical change subtypes, respectively. In addition, we observed statistically significant interaction between exposure to 3 or more diagnostic X-rays and haplotypes of XRCC4 on risk of structural abnormality-positive childhood ALL.
These results support a role of altered DNA repair and cell cycle processes in the risk of childhood ALL, and show that this genetic susceptibility can differ by cytogenetic subtype and may be modified by exposure to ionizing radiation. To our knowledge, our study is the first to broadly examine the DNA repair and cell cycle pathways using a haplotype approach in conjunction with X-ray exposures in childhood ALL risk. If confirmed, future studies are needed to identify specific functional SNPs in the regions of interest identified in this analysis.
Electronic supplementary material
The online version of this article (doi:10.1007/s10552-011-9848-y) contains supplementary material, which is available to authorized users.
PMCID: PMC3206192  PMID: 21987080
Leukemia; Childhood cancer; DNA repair; Genetic susceptibility
11.  Polymorphisms in microRNA target sites modulate risk of lymphoblastic and myeloid leukemias and affect microRNA binding 
MicroRNA dysregulation is a common event in leukemia. Polymorphisms in microRNA-binding sites (miRSNPs) in target genes may alter the strength of microRNA interaction with target transcripts thereby affecting protein levels. In this study we aimed at identifying miRSNPs associated with leukemia risk and assessing impact of these miRSNPs on miRNA binding to target transcripts.
We analyzed with specialized algorithms the 3′ untranslated regions of 137 leukemia-associated genes and identified 111 putative miRSNPs, of which 10 were chosen for further investigation. We genotyped patients with acute myeloid leukemia (AML, n = 87), chronic myeloid leukemia (CML, n = 140), childhood acute lymphoblastic leukemia (ALL, n = 101) and healthy controls (n = 471). Association between SNPs and leukemia risk was calculated by estimating odds ratios in the multivariate logistic regression analysis. For miRSNPs that were associated with leukemia risk we performed luciferase reporter assays to examine whether they influence miRNA binding.
Here we show that variant alleles of TLX1_rs2742038 and ETV6_rs1573613 were associated with increased risk of childhood ALL (OR (95% CI) = 3.97 (1.43-11.02) and 1.9 (1.16-3.11), respectively), while PML_rs9479 was associated with decreased ALL risk (OR = 0.55 (0.36-0.86). In adult myeloid leukemias we found significant associations between the variant allele of PML_rs9479 and decreased AML risk (OR = 0.61 (0.38-0.97), and between variant alleles of IRF8_ rs10514611 and ARHGAP26_rs187729 and increased CML risk (OR = 2.4 (1.12-5.15) and 1.63 (1.07-2.47), respectively). Moreover, we observed a significant trend for an increasing ALL and CML risk with the growing number of risk genotypes with OR = 13.91 (4.38-44.11) for carriers of ≥3 risk genotypes in ALL and OR = 4.9 (1.27-18.85) for carriers of 2 risk genotypes in CML. Luciferase reporter assays revealed that the C allele of ARHGAP26_rs187729 creates an illegitimate binding site for miR-18a-3p, while the A allele of PML_rs9479 enhances binding of miR-510-5p and the C allele of ETV6_rs1573613 weakens binding of miR-34c-5p and miR-449b-5p.
Our study implicates that microRNA-binding site polymorphisms modulate leukemia risk by interfering with the miRNA-mediated regulation. Our findings underscore the significance of variability in 3′ untranslated regions in leukemia.
PMCID: PMC4059877  PMID: 24886876
microRNA-binding site polymorphisms; ALL; AML; CML; ARHGAP26; ETV6; IRF8; PML; TLX1
12.  Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia 
Cancer causes & control : CCC  2011;22(9):1243-1258.
Folate is involved in the one-carbon metabolism that plays an essential role in the synthesis, repair and methylation of DNA. We examined whether child’s germline genetic variation in the folate pathway is associated with childhood acute lymphoblastic leukemia (ALL), and whether periconception maternal folate and alcohol intake modify the risk.
Seventy-six single nucleotide polymorphisms (SNPs), including 66 haplotype-tagging SNPs in 10 genes (CBS, DHFR, FOLH1, MTHFD1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, and TYMS) were genotyped in 377 ALL cases and 448 controls. Log-additive associations between genotypes and ALL risk were adjusted for age, sex, Hispanic ethnicity (when appropriate), and maternal race.
Single and haplotype SNPs analyses showed statistically significant associations between SNPs located in (or adjacent to) CBS, MTRR, TYMS/ENOFS and childhood ALL. Many regions of CBS were associated with childhood ALL in Hispanics and non-Hispanics (P <0.01). Levels of maternal folate intake modified associations with SNPs in CBS, MTRR, and TYMS.
Our data suggest the importance of genetic variability in the folate pathway and childhood ALL risk.
PMCID: PMC3744066  PMID: 21748308
Case-control study; Children; DNA methylation; Folate; Genetic polymorphisms; Leukemia
13.  The Role of Interleukin-15 Polymorphisms in Adult Acute Lymphoblastic Leukemia 
PLoS ONE  2010;5(10):e13626.
Interleukin-15 (IL-15) plays important roles in the immune system and in the development of hematopoietic cells. Previous studies revealed that five SNPs in IL-15, rs10519612, rs10519613, rs35964658, rs17007695 and rs17015014, were significantly associated with childhood Acute Lymphoblastic Leukemia (ALL) treatment response. In adult ALL, the expression of IL-15 was also correlated with the immunophenotypes of ALL. Therefore, we hypothesize that SNPs of IL-15 might also be associated with adult ALL.
Methods and Findings
We genotyped the above five SNPs of IL-15 gene by PCR-RFLP assays in adult ALL case-control studies. The current study included 121 adult ALL patients and 263 healthy controls. IL-15 genotypes and haplotypes were determined and the associations with the risk of ALL were analyzed by logistic regression. SNPs rs10519612 and rs17007695 were significantly associated with ALL (P = 0.013 and P = 0.001). We observed a 2-fold and 2.4-fold excess risk of developing ALL for the rs10519612 CC and rs17007695 TC genotype carriers compared with non-carriers, respectively. Haplotype analysis revealed that haplotypes ACAC, CAGT and CCAT were significantly associated with adult B-ALL, while haplotype CCAT conferred susceptibility to T-ALL.
These findings suggest that IL-15 gene polymorphisms are significantly associated with ALL in adult Chinese population.
PMCID: PMC2963612  PMID: 21049047
14.  Association of Inherited Variation in Toll-Like Receptor Genes with Malignant Melanoma Susceptibility and Survival 
PLoS ONE  2011;6(9):e24370.
The family of Toll-like receptors (TLRs) is critical in linking innate and acquired immunity. Polymorphisms in the genes encoding TLRs have been associated with autoimmune diseases and cancer. We investigated the genetic variation of TLR genes and its potential impact on melanoma susceptibility and patient survival. The study included 763 cutaneous melanoma cases recruited in Germany and 736 matched controls that were genotyped for 47 single nucleotide polymorphisms (SNPs) in 8 TLR genes. The relationship between genotype, disease status and survival was investigated taking into account patient and tumor characteristics, and melanoma treatment. Analysis of 7 SNPs in TLR2, 7 SNPs in TLR3 and 8 SNPs in TLR4 showed statistically significant differences in distribution of inferred haplotypes between cases and controls. No individual polymorphism was associated with disease susceptibility except for the observed tendency for TLR2-rs3804099 (odds ratio OR  = 1.15, 95% CI 0.99–1.34, p = 0.07) and TLR4-rs2149356 (OR = 0.85, 95% CI 0.73–1.00, p = 0.06). Both polymorphisms were part of the haplotypes associated with risk modulation. An improved overall survival (Hazard ratio HR 0.53, 95% CI 0.32–0.88) and survival following metastasis (HR 0.55, 95% CI 0.34–0.91) were observed in carriers of the variant allele (D299G) of TLR4-rs4986790. In addition various TLR2, TLR4 and TLR5 haplotypes were associated with increased overall survival. Our results point to a novel association between TLR gene variants and haplotypes with melanoma survival. Our data suggest a role for the D299G polymorphism in the TLR4 gene in overall survival and a potential link with systemic treatment at stage IV of the disease. The polymorphic amino acid residue, located in the ectodomain of TLR4, can have functional consequences.
PMCID: PMC3170315  PMID: 21931695
15.  In Vivo Response to Methotrexate Forecasts Outcome of Acute Lymphoblastic Leukemia and Has a Distinct Gene Expression Profile 
PLoS Medicine  2008;5(4):e83.
Childhood acute lymphoblastic leukemia (ALL) is the most common cancer in children, and can now be cured in approximately 80% of patients. Nevertheless, drug resistance is the major cause of treatment failure in children with ALL. The drug methotrexate (MTX), which is widely used to treat many human cancers, is used in essentially all treatment protocols worldwide for newly diagnosed ALL. Although MTX has been extensively studied for many years, relatively little is known about mechanisms of de novo resistance in primary cancer cells, including leukemia cells. This lack of knowledge is due in part to the fact that existing in vitro methods are not sufficiently reliable to permit assessment of MTX resistance in primary ALL cells. Therefore, we measured the in vivo antileukemic effects of MTX and identified genes whose expression differed significantly in patients with a good versus poor response to MTX.
Methods and Findings
We utilized measures of decreased circulating leukemia cells of 293 newly diagnosed children after initial “up-front” in vivo MTX treatment (1 g/m2) to elucidate interpatient differences in the antileukemic effects of MTX. To identify genomic determinants of these effects, we performed a genome-wide assessment of gene expression in primary ALL cells from 161 of these newly diagnosed children (1–18 y). We identified 48 genes and two cDNA clones whose expression was significantly related to the reduction of circulating leukemia cells after initial in vivo treatment with MTX. This finding was validated in an independent cohort of children with ALL. Furthermore, this measure of initial MTX in vivo response and the associated gene expression pattern were predictive of long-term disease-free survival (p < 0.001, p = 0.02).
Together, these data provide new insights into the genomic basis of MTX resistance and interpatient differences in MTX response, pointing to new strategies to overcome MTX resistance in childhood ALL.
Trial registrations: Total XV, Therapy for Newly Diagnosed Patients With Acute Lymphoblastic Leukemia, (NCT00137111); Total XIIIBH, Phase III Randomized Study of Antimetabolite-Based Induction plus High-Dose MTX Consolidation for Newly Diagnosed Pediatric Acute Lymphocytic Leukemia at Intermediate or High Risk of Treatment Failure (NCI-T93-0101D); Total XIIIBL, Phase III Randomized Study of Antimetabolite-Based Induction plus High-Dose MTX Consolidation for Newly Diagnosed Pediatric Acute Lymphocytic Leukemia at Lower Risk of Treatment Failure (NCI-T93-0103D).
William Evans and colleagues investigate the genomic determinants of methotrexate resistance and interpatient differences in methotrexate response in patients newly diagnosed with childhood acute lymphoblastic leukemia.
Editors' Summary
Every year about 10,000 children develop cancer in the US. Acute lymphoblastic leukemia (ALL), a rapidly progressing blood cancer, accounts for a quarter of these childhood cancers. Normally, cells in the bone marrow (the spongy material inside bones) develop into lymphocytes (white blood cells that fight infections), red blood cells (which carry oxygen round the body), platelets (which prevent excessive bleeding), and granulocytes (another type of white blood cell). However, in ALL, genetic changes in immature lymphocytes (lymphoblasts) mean that these cells divide uncontrollably and fail to mature. Eventually, the bone marrow fills up with these abnormal cells and can no longer make healthy blood cells. As a result, children with ALL cannot fight infections. They also bruise and bleed easily and, because they do not have enough red blood cells, they often complain of tiredness and weakness. With modern chemotherapy protocols (combinations of drugs that kill the fast-dividing cancer cells but leave the normal, nondividing cells in the body largely unscathed), more than 80% of children with ALL live for at least 5 years.
Why Was This Study Done?
Although this survival rate is good, some patients still die because their cancer cells are resistant to one or more chemotherapy drugs. For some drugs, the genetic characteristics of the ALL cells that make them resistant are known. Unfortunately, little is known about why some ALL cells are resistant to methotrexate, a component of most treatment protocols for newly diagnosed ALL. Methotrexate kills dividing cells by interfering with DNA synthesis and repair. Cancer cells can be resistant to methotrexate for many reasons—they may have acquired genetic changes that stop the drug from entering them, for example. These resistance mechanisms need to be understood better before new strategies can be developed for the treatment of methotrexate-resistant ALL. In this study, the researchers have determined the response of newly diagnosed patients to methotrexate and have investigated the gene expression patterns in ALL cells that correlate with good and bad responses to methotrexate.
What Did the Researchers Do and Find?
The researchers measured the reduction in circulating leukemia cells that followed the first treatment with methotrexate of nearly 300 patients with newly diagnosed ALL. They also used “microarray” analysis to investigate the gene expression patterns in lymphoblast samples taken from the bone marrow of 161 patients before treatment. They found that the expression of 50 genes was significantly related to the reduction in circulating leukemia cells after methotrexate treatment (a result confirmed in an independent group of patients). Of these genes, the expression of 29 was higher in patients who responded poorly to methotrexate than in patients who responded well. A “global analysis test,” which examined the gene expression profile of different cellular pathways in relation to the methotrexate response, found a significant association between the nucleotide biosynthesis pathway (which is needed for DNA synthesis and cellular proliferation) and the methotrexate response. Finally, patients with the best methotrexate response and the 50-gene expression profile indicative of a good response were more likely to be alive after 5 years than patients with the worst methotrexate response and the poor-response gene expression profile.
What Do These Findings Mean?
These findings provide important new insights into the genetic basis of methotrexate resistance in newly diagnosed childhood ALL and begin to explain why some patients fail to respond to this drug. They also show that the reduction in circulating leukemic cells shortly after the first methotrexate dose and a specific gene expression profile both predict the long-term survival of patients. These findings also suggest new ways to modulate sensitivity to methotrexate. Down-regulation of the expression of the genes that are expressed more highly in poor responders than in good responders might improve patient responses to methotrexate. Alternatively, it might be possible to find ways to increase the expression of the genes that are underexpressed in methotrexate poor responders and so improve the outlook for at least some of the children with ALL who fail to respond to current chemotherapy protocols.
Additional Information.
Please access these Web sites via the online version of this summary at
• The US National Cancer Institute provides a fact sheet for patients and caregivers about ALL in children and information about its treatment(in English and Spanish)
• The UK charity Cancerbackup provides information for patients and caregivers on ALL in children and on methotrexate
• The US Leukemia and Lymphoma Society also provides information for patients and caregivers about ALL
• The Children's Cancer and Leukaemia Group (a UK charity) provides information for children with cancer and their families
• MedlinePlus provides additional information about methotrexate (in English and Spanish)
PMCID: PMC2292747  PMID: 18416598
16.  Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region 
Arthritis Research & Therapy  2008;10(5):R113.
Recent studies identified STAT4 (signal transducers and activators of transcription-4) as a susceptibility gene for systemic lupus erythematosus (SLE). STAT1 is encoded adjacently to STAT4 on 2q32.2-q32.3, upregulated in peripheral blood mononuclear cells from SLE patients, and functionally relevant to SLE. This study was conducted to test whether STAT4 is associated with SLE in a Japanese population also, to identify the risk haplotype, and to examine the potential genetic contribution of STAT1. To accomplish these aims, we carried out a comprehensive association analysis of 52 tag single nucleotide polymorphisms (SNPs) encompassing the STAT1-STAT4 region.
In the first screening, 52 tag SNPs were selected based on HapMap Phase II JPT (Japanese in Tokyo, Japan) data, and case-control association analysis was carried out on 105 Japanese female patients with SLE and 102 female controls. For associated SNPs, additional cases and controls were genotyped and association was analyzed using 308 SLE patients and 306 controls. Estimation of haplotype frequencies and an association study using the permutation test were performed with Haploview version 4.0 software. Population attributable risk percentage was estimated to compare the epidemiological significance of the risk genotype among populations.
In the first screening, rs7574865, rs11889341, and rs10168266 in STAT4 were most significantly associated (P < 0.01). Significant association was not observed for STAT1. Subsequent association studies of the three SNPs using 308 SLE patients and 306 controls confirmed a strong association of the rs7574865T allele (SLE patients: 46.3%, controls: 33.5%, P = 4.9 × 10-6, odds ratio 1.71) as well as TTT haplotype (rs10168266/rs11889341/rs7574865) (P = 1.5 × 10-6). The association was stronger in subgroups of SLE with nephritis and anti-double-stranded DNA antibodies. Population attributable risk percentage was estimated to be higher in the Japanese population (40.2%) than in Americans of European descent (19.5%).
The same STAT4 risk allele is associated with SLE in Caucasian and Japanese populations. Evidence for a role of STAT1 in genetic susceptibility to SLE was not detected. The contribution of STAT4 for the genetic background of SLE may be greater in the Japanese population than in Americans of European descent.
PMCID: PMC2592800  PMID: 18803832
17.  Deficient Innate Immunity, Thymopoiesis, and Gene Expression Response to Radiation in Survivors of Childhood Acute Lymphoblastic Leukemia 
Cancer epidemiology  2010;34(3):303-308.
Survivors of childhood acute lymphoblastic leukemia (ALL) are at an increased risk of developing secondary malignant neoplasms. Radiation and chemotherapy can cause mutations and cytogenetic abnormalities and induce genomic instability. Host immunity and appropriate DNA damage responses are critical inhibitors of carcinogenesis. Therefore, we sought to determine the long-term effects of ALL treatment on immune function and response to DNA damage.
Comparative studies on 14 survivors in first complete remission and 16 siblings were conducted.
In comparison to siblings on the cells that were involved in adaptive immunity, the patients had either higher numbers (CD19+ B cells and CD4+CD25+ T regulatory cells) or similar numbers (αβT cells and CD45RO+/RA− memory T cells) in the blood. In contrast, patients had lower numbers of all lymphocyte subsets involved in innate immunity (γδT cells and all NK subsets, including KIR2DL1+ cells, KIR2DL2/L3+ cells, and CD16+ cells), and lower natural cytotoxicity against K562 leukemia cells. Thymopoiesis was lower in patients, as demonstrated by less CD45RO−/RA+ Naïve T cell and less SjTREC levels in the blood, whereas the Vβ spectratype complexity score was similar. Array of gene expression response to low-dose radiation showed that about 70% of the probesets had a reduced response in patients. One of these genes, SCHIP-1, was also among the top-ranked single nucleotide polymorphisms (SNPs) during the whole genome scanning by SNP microarray analysis.
ALL survivors were deficient in innate immunity, thymopoiesis, and DNA damage responses to radiation. These defects may contribute to their increased likelihood of second malignancy.
PMCID: PMC2874127  PMID: 20413363
children; lymphoblastic leukemia; second malignancy; immunity; DNA damage
18.  The association between Toll-like receptor 2 single-nucleotide polymorphisms and hepatocellular carcinoma susceptibility 
BMC Cancer  2012;12:57.
Toll-like receptors (TLR) are key innate immunity receptors participating in an immune response. Growing evidence suggests that mutations of TLR2/TLR9 gene are associated with the progress of cancers. The present study aimed to investigate the temporal relationship of single nucleotide polymorphisms (SNP) of TLR2/TLR9 and the risk of hepatocellular carcinoma (HCC).
In this single center-based case-control study, SNaPshot method was used to genotype sequence variants of TLR2 and TLR9 in 211 patients with HCC and 232 subjects as controls.
Two synonymous SNPs in the exon of TLR2 were closely associated with risk of HCC. Compared with those carrying wild-type homozygous genotypes (T/T), risk of HCC decreased significantly in individuals carrying the heterozygous genotypes (C/T) of the rs3804099 (adjusted odds ratio (OR), 0.493, 95% CI 0.331 - 0.736, P < 0.01) and rs3804100 (adjusted OR, 0.509, 95% CI 0.342 - 0.759, P < 0.01). There was no significant association found in two TLR9 SNPs concerning the risk of HCC. The haplotype TT for TLR2 was associated significantly with the decreased risk of HCC (OR 0.524, 95% CI 0.394 - 0.697, P = 0.000). Inversely, the risk of HCC increased significantly in patients with the haplotype CC (OR 2.743, 95% CI 1.915 - 3.930, P = 0.000).
These results suggested that TLR2 rs3804099 C/T and rs3804100 C/T polymorphisms were closely associated with HCC. In addition, the haplotypes composed of these two TLR2 synonymous SNPs have stronger effects on the susceptibility of HCC.
PMCID: PMC3311588  PMID: 22309608
19.  Childhood Exposure to Secondhand Smoke and Functional Mannose Binding Lectin Polymorphisms Are Associated with Increased Lung Cancer Risk 
Exposure to secondhand smoke during adulthood has detrimental health effects, including increased lung cancer risk. Compared with adults, children may be more susceptible to secondhand smoke. This susceptibility may be exacerbated by alterations in inherited genetic variants of innate immunity genes. We hypothesized a positive association between childhood secondhand smoke exposure and lung cancer risk that would be modified by genetic polymorphisms in the mannose binding lectin-2 (MBL2) gene resulting in well-known functional changes in innate immunity.
Childhood secondhand smoke exposure and lung cancer risk was assessed among men and women in the ongoing National Cancer Institute-Maryland Lung Cancer (NCI-MD) study, which included 624 cases and 348 controls. Secondhand smoke history was collected via in-person interviews. DNA was used for genotyping the MBL2 gene. To replicate, we used an independent case-control study from Mayo Clinic consisting of 461 never smokers, made up of 172 cases and 289 controls. All statistical tests were two-sided.
In the NCI-MD study, secondhand smoke exposure during childhood was associated with increased lung cancer risk among never smokers [odds ratio (OR), 2.25; 95% confidence interval (95% CI), 1.04-4.90]. This was confirmed in the Mayo study (OR, 1.47; 95% CI, 1.00-2.15). A functional MBL2 haplotype associated with high circulating levels of MBL and increased MBL2 activity was associated with increased lung cancer risk among those exposed to childhood secondhand smoke in both the NCI-MD and Mayo studies (OR, 2.52; 95% CI, 1.13-5.60, and OR, 2.78; 95% CI, 1.18-3.85, respectively).
Secondhand smoke exposure during childhood is associated with increased lung cancer risk among never smokers, particularly among those possessing a haplotype corresponding to a known overactive complement pathway of the innate immune system.
PMCID: PMC2951599  PMID: 19959685
20.  Birth weight and other perinatal characteristics and childhood leukemia in California 
Cancer epidemiology  2012;36(6):e359-e365.
We conducted a large registry-based study in California to investigate the association of perinatal factors and childhood leukemia with analysis of two major subtypes, acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML).
We linked California cancer and birth registries to obtain information on 5788 cases and 5788 controls matched on age and sex (1:1). We examined the association of birth weight, gestational age, birth and pregnancy order, parental ages, and specific conditions during pregnancy and risk of total leukemia, ALL and AML using conditional logistic regression, with adjustment for potential confounders.
The odds ratio (OR) per 1000 gram increase in birth weight was 1.11 for both total leukemia and ALL. The OR were highest for babies weighing ≥4,500g with reference <2,500g: 1.59 (95% CI: 1.05-2.40) and 1.70 (95% CI: 1.08-2.68) for total leukemia and ALL, respectively. For AML, increase in risk was also observed but the estimate was imprecise due to small numbers. Compared to average-for-gestational age (AGA), large-for-gestational age (LGA) babies were at slightly increased risk of total childhood leukemia (OR=1.10) and both ALL and AML (OR=1.07 and OR=1.13, respectively) but estimates were imprecise. Being small-forgestational age (SGA) was associated with reduced risk of childhood leukemia (OR=0.81, 95% CI: 0.67-0.97) and ALL (OR=0.77, 95% CI: 0.63-0.94), but not AML. Being first-born was associated with decreased risk of AML only (OR=0.70; 95% CI: 0.53-0.93). Compared to children with paternal age <25 years, children with paternal age between 35 and 45 years were at increased risk of total childhood leukemia (OR=1.12; 95% CI: 1.04-1.40) and ALL (OR=1.23; 95% CI: 1.04-1.47). None of conditions during pregnancy examined or maternal age were associated with increased risk of childhood leukemia or its subtypes.
Our results suggest that high birth weight and LGA were associated with increased risk and SGA with decreased risk of total childhood leukemia and ALL, being first-born was associated with decreased risk of AML, and advanced paternal age was associated with increased risk of ALL. These findings suggest that associations of childhood leukemia and perinatal factors depend highly on subtype of leukemia.
PMCID: PMC4034745  PMID: 22926338
childhood leukemia; birth weight; birth order; parental age; perinatal factors; pregnancy complications
21.  Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk 
Leukemia research  2008;33(2):250-258.
We conducted a case–control study to evaluate the association between paternal smoking and childhood leukemia and to evaluate potential modification by polymorphisms in CYP1A1. Histologically confirmed childhood leukemia cases (n = 164) and non-cancer controls (n = 164) were recruited from three teaching hospitals in Seoul, Korea. Five single nucleotide polymorphisms in CYP1A1 (–17961T>C, –9893G>A, I462V, 1188C>T (*2A), and 11599C>G) were genotyped and haplotypes were estimated by the expectation-maximization method. We also conducted a meta-analysis of 12 studies that have reported the association between paternal smoking and childhood leukemia risk. Paternal smoking at home was associated with all leukemias (OR = 1.8, 95% CI = 1.1–2.8) and acute lymphoblastic leukemia (ALL) (2.0, 1.2–3.4). An increasing trend in risk was observed for pack-years smoked after birth (Ptrend = 0.06 and 0.02, respectively) and the number of smokers in the home during the child's life (Ptrend = 0.05 and 0.03, respectively). Among those without the CGACC haplotype, ALL risk was significantly increased by the father's smoking at home (2.8, 1.5–5.3) and the presence of at least one smoker in the home (2.3, 1.2–4.4), and the test for interaction was significant (Pinteraction = 0.03 and 0.02, respectively). The meta-analysis showed that overall paternal smoking (1.13, 1.04–1.24) and smoking before the pregnancy of the child (1.12, 1.04–1.21) were significantly associated with childhood leukemia risk. Our results suggest that paternal smoking is a risk factor for childhood leukemia and the effect may be modified by CYP1A1 genotype.
PMCID: PMC2787091  PMID: 18691756
Childhood leukemia; Paternal smoking; CYP1A1; Interaction; Haplotype
22.  Single Nucleotide Polymorphisms in Pathogen Recognition Receptor Genes Are Associated with Susceptibility to Meningococcal Meningitis in a Pediatric Cohort 
PLoS ONE  2013;8(5):e64252.
Bacterial meningitis (BM) is a serious infection of the central nervous system, frequently occurring in childhood and often resulting in hearing loss, learning disabilities, and encephalopathy. Previous studies showed that genetic variation in innate immune response genes affects susceptibility, severity, and outcome of BM. The aim of this study is to describe whether single nucleotide polymorphisms (SNPs) in pathogen recognition gene products are associated with susceptibility to develop BM in single genes analysis as well as SNP combinations. Genotype frequencies of seven SNPs, in five immune response genes encoding for Toll-like receptors (TLRs), nucleotide oligomerization domain (NOD) proteins and caspase-1 (CASP1), in 391 children with meningococcal meningitis (MM) and 82 children with pneumococcal meningitis were compared with a large cohort of 1141 ethnically matched healthy controls. Carriage of TLR4 +896 GG mutant predisposed to susceptibility to develop MM (p = 1.2*10−5, OR  = 9.4, 95% CI  = 3.0–29.2). The NOD2 SNP8 mutant was significantly more frequent in MM patients compared to controls (p = 0.0004, OR  = 12.2, 95% CI  = 2.6–57.8). Combined carriage of TLR2 +2477 and TLR4 +896 mutants was strongly associated with MM (p = 4.2*10−5, OR  = 8.6, 95% CI  = 2.7–27.3). A carrier trait of TLR4 +896 and NOD2 SNP8 mutants was also strongly associated with susceptibility to develop MM (p = 4.2*10−5, OR  = 10.6, 95% CI  = 2.9–38.6). This study associates SNPs in TLR4 and NOD2 with susceptibility to develop MM.
PMCID: PMC3653876  PMID: 23691182
23.  Longitudinal Replication Studies of GWAS Risk SNPs Influencing Body Mass Index over the Course of Childhood and Adulthood 
PLoS ONE  2012;7(2):e31470.
Genome-wide association studies (GWAS) have identified multiple common variants associated with body mass index (BMI). In this study, we tested 23 genotyped GWAS-significant SNPs (p-value<5*10-8) for longitudinal associations with BMI during childhood (3–17 years) and adulthood (18–45 years) for 658 subjects. We also proposed a heuristic forward search for the best joint effect model to explain the longitudinal BMI variation. After using false discovery rate (FDR) to adjust for multiple tests, childhood and adulthood BMI were found to be significantly associated with six SNPs each (q-value<0.05), with one SNP associated with both BMI measurements: KCTD15 rs29941 (q-value<7.6*10-4). These 12 SNPs are located at or near genes either expressed in the brain (BDNF, KCTD15, TMEM18, MTCH2, and FTO) or implicated in cell apoptosis and proliferation (FAIM2, MAP2K5, and TFAP2B). The longitudinal effects of FAIM2 rs7138803 on childhood BMI and MAP2K5 rs2241423 on adulthood BMI decreased as age increased (q-value<0.05). The FTO candidate SNPs, rs6499640 at the 5 ′-end and rs1121980 and rs8050136 downstream, were associated with childhood and adulthood BMI, respectively, and the risk effects of rs6499640 and rs1121980 increased as birth weight decreased. The best joint effect model for childhood and adulthood BMI contained 14 and 15 SNPs each, with 11 in common, and the percentage of explained variance increased from 0.17% and 9.0*10−6% to 2.22% and 2.71%, respectively. In summary, this study evidenced the presence of long-term major effects of genes on obesity development, implicated in pathways related to neural development and cell metabolism, and different sets of genes associated with childhood and adulthood BMI, respectively. The gene effects can vary with age and be modified by prenatal development. The best joint effect model indicated that multiple variants with effects that are weak or absent alone can nevertheless jointly exert a large longitudinal effect on BMI.
PMCID: PMC3280302  PMID: 22355368
24.  Toll-like receptor 9 polymorphisms influence mother-to-child transmission of human immunodeficiency virus type 1 
Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and play a crucial role in the host's innate immune response. Genetic variations in TLR genes may influence host-viral interactions and might impact upon the risk of mother-to-child transmission (MTCT) of Human Immunodeficiency Virus type 1 (HIV-1). The aim of this study was to investigate the influence of genetic variants of TLR 9 gene on MTCT.
Three hundred children (118 HIV-1-infected and 182 HIV-1-uninfected) born to HIV-1-infected mothers were studied. Single nucleotide polymorphisms (SNPs) NM_017442.2: c.4-44G > A (rs352139) and c.1635A > G (rs352140) of the TLR9 gene were genotyped by TaqMan allelic discrimination assay. Statistical analyses were performed using SNPStats program.
When considered separately, neither of the two SNPs was significantly associated with risk of HIV-1 infection. However, the [A;A] and [G;G] haplotypes were associated with a higher risk of HIV-1 infection compared to the prevalent [G;A] haplotype [odds ratio (OR) = 3.16, 95% confidence interval (CI) 1.24-8.03, p = 0.016, and OR = 5.54, 95% CI 1.76-17.50, p = 0.004, respectively].
Overall, results demonstrate a significant correlation between specific genetic variants of the TLR9 gene and risk of MTCT of HIV-1, thus confirming a critical role of innate immunity in perinatal HIV-1 infection. Strategies aimed at modulating innate immunity might be useful for future treatment of pediatric HIV-1 infection and AIDS.
PMCID: PMC2887426  PMID: 20500814
25.  Two HPA axis genes, CRHBP and FKBP5, interact with childhood trauma to increase the risk for suicidal behavior 
Childhood trauma is associated with hypothalamic–pituitary–adrenal (HPA) axis dysregulation. Both factors increase risk for suicidal behavior. Corticotropin releasing hormone (CRH) regulates the HPA axis and its actions are moderated by a high-affinity binding protein (CRHBP). We hypothesized that CRHBP variation and interaction with childhood trauma might influence suicidal behavior. Moreover, there might be an additive effect with FKPB5, another HPA axis gene previously associated with suicidality in this dataset. African Americans were recruited: 398 treatment seeking patients with substance dependence (90% men; 120 suicide attempters) and 432 non-substance dependent individuals (40% men; 21 suicide attempters). A total of 474 participants (112 suicide attempters) completed the Childhood Trauma Questionnaire (CTQ). Haplotype-tagging SNPs were genotyped across CRHBP and, for completeness, across CRH, CRHR1 and CRHR2. FKBP5 genotypes were available. Three CRHBP SNPs rs6453267, rs7728378 and rs10474485 showed a nominally significant interaction with the continuous CTQ score to predict suicide attempt; rs7728378 remained significant after FDR correction. There was an additive effect with FKBP5: in the group exposed to high trauma, the prevalence of suicide attempt was 0.35–0.30 in carriers of either the FKBP5 rs3800373 major homozygote or the CRHBP rs7728378 major homozygote and 0.58 in carriers of both major homozygotes. Individuals without either major homozygote were resilient to the effects of childhood trauma (suicide attempt prevalence 0.24). Main effects of CRHBP rs6453267 and CRHR1 rs9900679, both unique to African ancestry, were detected. CRHBP variation may predispose, independently and additively, to suicidal behavior in individuals who have experienced childhood trauma.
PMCID: PMC3506169  PMID: 21978546
African Americans; Substance dependence; CTQ; CRH; CRHR1; CRHR2

Results 1-25 (1363059)