Search tips
Search criteria

Results 1-25 (1535572)

Clipboard (0)

Related Articles

1.  Effects of preinduced Candida-specific systemic cell-mediated immunity on experimental vaginal candidiasis. 
Infection and Immunity  1994;62(3):1032-1038.
It has been postulated that systemic cell-mediated immunity (CMI) is an important host defense factor against recurrent vaginal infections caused by Candida albicans. Using an estrogen-dependent murine model of vaginal candidiasis, we have previously shown that mice inoculated vaginally with C. albicans acquire a persistent vaginal infection and develop Candida-specific Th1-type systemic CMI. In the present study, experimental vaginitis was monitored in the presence of preinduced systemic Candida-specific CMI. Mice immunized systemically with C. albicans culture filtrate antigens (CaCF) in complete Freund's adjuvant (CFA) had Th1-type reactivity similar to that of vaginally infected mice. CaCF given to mice intravenously induced Candida-specific suppressor T (Ts) cells. Mice preimmunized with CaCF-CFA and given a vaginal inoculum of C. albicans had positive delayed-type hypersensitivity (DTH) reactivity from the time of vaginal inoculation through 4 weeks. Conversely, mice infected in the presence of Ts cells had significantly reduced DTH responses throughout the 4-week period in comparison with naive infected mice. However, the presence of Th1-type Candida-specific DTH cells or Ts cells, either induced in mice prior to vaginal inoculation or adoptively transferred at the time of inoculation, had no effect on the vaginal Candida burden through 4 weeks of infection. A similar lack of effects was obtained in animals with lower Candida population levels resulting from a reduction in or absence of exogenous estrogen. These results suggest that systemic Th1-type CMI demonstrable with CaCF is unrelated to protective events at the level of the vaginal mucosa.
PMCID: PMC186220  PMID: 8112837
2.  Candida-specific Th1-type responsiveness in mice with experimental vaginal candidiasis. 
Infection and Immunity  1993;61(10):4202-4207.
The role of systemic cell-mediated immunity (CMI) as a host defense mechanism in the vagina is poorly understood. Using a murine pseudoestrus model of experimental vaginal candidiasis, we previously found that animals given a vaginal inoculum of viable Candida albicans blastoconidia acquired a persistent vaginal infection and developed Candida-specific delayed-type hypersensitivity (DTH) responses. The present study was designed to characterize the peripheral CMI reactivity generated from the vaginal infection in mice and to determine whether pseudoestrus is a prerequisite for the induction of peripheral CMI reactivity. Mice treated or not treated with estrogen and given a vaginal inoculum of C. albicans blastoconidia were examined for 4 weeks for their vaginal Candida burden and peripheral CMI reactivity, including DTH responsiveness and in vitro Th1 (interleukin-2 [IL-2], gamma interferon [IFN-gamma]/Th2 (IL-4, IL-10)-type lymphokine production in response to Candida antigens. Results showed that although mice not treated with estrogen before being given a vaginal inoculum of C. albicans blastoconidia developed only a short-lived vaginal infection and harbored significantly fewer Candida CFU in the vagina compared with those given estrogen and then infected; DTH reactivity was equivalent in both groups. In vitro measurement of CMI reactivity further showed that lymph node cells from both estrogen- and non-estrogen-treated infected mice produced elevated levels of IL-2 and IFN-gamma in response to Candida antigens during the 4 weeks after vaginal inoculation. In contrast, lymph node cells from the same vaginally infected mice showed no IL-10 production and only small elevations of IL-4 during week 4 of infection. These results suggest that mice with experimental vaginal candidiasis develop predominantly Th1-type Candida-specific peripheral CMI reactivity and that similar patterns of Th1-type reactivity occur in mice regardless of the persistence of infection and the estrogen status of the infected mice.
PMCID: PMC281145  PMID: 8406809
3.  Mice immunized by primary vaginal Candida albicans infection develop acquired vaginal mucosal immunity. 
Infection and Immunity  1995;63(2):547-553.
It has been postulated that systemic cell-mediated immunity (CMI) is an important host defense mechanism against Candida infections of the vagina. However, in an estrogen-dependent murine model of experimental vaginal candidiasis, we recently showed that systemic Candida-specific Th1-type CMI induced by immunization with Candida culture filtrate antigen had no effect on vaginal Candida population levels during the course of a vaginal infection. In the present study, mice given a second vaginal inoculation in the presence of peripheral Candida-specific Th1-type CMI induced by prior vaginal infection had anamnestic-type increased delayed-type hypersensitivity (DTH) responses, concomitant with significantly fewer Candida organisms in the vagina than in primary-infected mice. In addition, organisms in secondary-infected mice were fragmented and superficial penetration into the epithelium was reduced. The systemic presence of Candida-specific T suppressor (Ts) cells that significantly suppressed the infection-derived anamnestic DTH reactivity did not abrogate the protective effect in the vagina. Additional experiments showed that vaginally immunized mice were not protected from gastrointestinal or systemic candidiasis and, in contrast to mice with a second vaginal infection, did not demonstrate anamnestic DTH reactivity. These results suggest that a moderate level of local protection against a Candida vaginal infection can be achieved by vaginal immunization but that the protective role of acquired peripheral Candida-specific Th1-type reactivity at the vaginal mucosa appears to be limited.
PMCID: PMC173030  PMID: 7822020
4.  Candida-Specific Antibodies during Experimental Vaginal Candidiasis in Mice  
Infection and Immunity  2002;70(10):5790-5799.
Protective host defense mechanisms against vaginal Candida albicans infections are poorly understood. Although cell-mediated immunity (CMI) is the predominant host defense mechanism against most mucosal Candida infections, the role of CMI against vaginal candidiasis is uncertain, both in humans and in an experimental mouse model. The role of humoral immunity is equally unclear. While clinical observations suggest a minimal role for antibodies against vaginal candidiasis, an experimental rat model has provided evidence for a protective role for Candida-specific immunoglobulin A (IgA) antibodies. Additionally, Candida vaccination-induced IgM and IgG3 antibodies are protective in a mouse model of vaginitis. In the present study, the role of infection-induced humoral immunity in protection against experimental vaginal candidiasis was evaluated through the quantification of Candida-specific IgA, IgG, and IgM antibodies in serum and vaginal lavage fluids of mice with primary and secondary (partially protected) infection. In naïve mice, total, but not Candida-specific, antibodies were detected in serum and lavage fluids, consistent with lack of yeast colonization in mice. In infected mice, Candida-specific IgA and IgG antibodies were induced in serum with anamnestic responses to secondary infection. In lavage fluid, while Candida-specific antibodies were detectable, concentrations were extremely low with no anamnestic responses in mice with secondary infection. The incorporation of alternative protocols—including infections in a different strain of mice, prolongation of primary infection prior to secondary challenge, use of different enzyme-linked immunosorbent assay capture antigens, and concentration of lavage fluid—did not enhance local Candida-specific antibody production or detection. Additionally, antibodies were not removed from lavage fluids by being bound to Candida during infection. Together, these data suggest that antibodies are not readily present in vaginal secretions of infected mice and thus have a limited natural protective role against infection.
PMCID: PMC128320  PMID: 12228309
5.  Circulating CD4 and CD8 T cells have little impact on host defense against experimental vaginal candidiasis. 
Infection and Immunity  1995;63(7):2403-2408.
The etiology of recurrent vulvovaginal candidiasis in otherwise healthy women of child-bearing age remains an enigma. To date, results from both clinical studies and a murine model of vaginal candidiasis indicate that Candida vaginitis can occur in the presence of Candida-specific Th1-type cell-mediated immunity expressed in the peripheral circulation. The present study was designed to determine the role of circulating CD4 and CD8 cells in primary and secondary vaginal infections with Candida albicans. Vaginal fungal burden, Candida-specific delayed-type hypersensitivity (DTH), and lymph node cell Th1/Th2 cytokine production were monitored in CD4 and/or CD8 cell-depleted mice during persistent primary vaginal infections and secondary vaginal infections against which partial protection was observed. Treatment of mice with anti-CD4 or anti-CD8 antibodies resulted in 90% or greater depletion of the respective cell populations. Mice depleted of CD4 cells had significantly reduced Candida-specific DTH and lymph node cell Th1-type cytokine production during a primary vaginal infection, as well as reduced anamnestic DTH during a secondary vaginal infection. In contrast, mice depleted of CD8 cells showed only reduced gamma interferon production during a primary infection; no alterations in DTH were observed. Despite reductions in DTH and cytokine production, however, CD4 and/or CD8 cell depletion had no effect on vaginal C. albicans burden in mice after a primary or secondary vaginal inoculation. Taken together, these results suggest that while circulating CD4 and CD8 cells contribute to systemic Candida-specific cell-mediated immunity in vaginally infected mice, neither CD4 nor CD8 circulating T cells appear to provide significant host defenses against C. albicans at the vaginal mucosa.
PMCID: PMC173321  PMID: 7790050
6.  Immunoregulation in experimental murine candidiasis: specific suppression induced by Candida albicans cell wall glycoprotein. 
Infection and Immunity  1985;49(1):172-181.
Immune regulation in candidiasis is inferred from studies of both human and animal infection, with a suppressive role suggested for cell wall polysaccharide. To study the immunosuppressive potential of Candida albicans in a murine model, whole blastoconidia or purified cell wall components of C. albicans were tested for their effects on the development of acquired immune responses by superimposing a pretreatment regimen upon an established immunization protocol. CBA/J or BALB/cByJ mice were pretreated twice intravenously with 100 micrograms of mannan (MAN), 100 or 200 micrograms of glycoprotein (GP), or 5 X 10(7) heat-killed C. albicans blastoconidia, followed 1 week later by an immunization protocol of two cutaneous inoculations of viable C. albicans blastoconidia given 2 weeks apart. Delayed hypersensitivity (DTH) to GP or to a membrane-derived antigen, B-HEX, was tested 7 days after the second inoculation, and lymphocyte stimulation was tested with mitogens and Candida antigens after 12 days. To assess protection, mice were challenged intravenously with viable C. albicans blastoconidia 14 days after the second cutaneous inoculation and sacrificed 28 days later for quantitative culture of kidneys and brains. Sera were obtained for enzyme-linked immunosorbent assays at selected intervals. Pretreatment with GP resulted in specific in vivo suppression of DTH to GP but not to B-HEX antigen and specific in vitro suppression of lymphocyte stimulation to GP but not to other Candida antigens or mitogens. MAN and heat-killed C. albicans blastoconidia had no such effects. GP pretreatment also diminished the protective effect of immunization against challenge, demonstrable in the brain, while not altering significantly the production of antibody in response to infection. Contrary to clinical evidence, MAN was not immunosuppressive in this model, and in fact, the immunosuppressive potential of GP, which is composed largely of MAN, was found to be dependent upon the presence of its heat-labile protein moiety.
PMCID: PMC262075  PMID: 4008047
7.  Induction of antigen-specific T suppressor cells by soluble Paracoccidioides brasiliensis antigen. 
Infection and Immunity  1988;56(4):734-743.
In naturally acquired paracoccidioidomycosis, patients have depressed in vivo and in vitro cell-mediated immune (CMI) responses to Paracoccidioides brasiliensis antigen. In addition, it has been reported that these patients have significant levels of circulating paracoccidioidal antigen in their sera. The primary purpose of this investigation was to assess the effects of P. brasiliensis antigen on the CMI responses in a mouse model. On the basis of findings with other fungal agents, we predicted that circulating paracoccidioidal antigen may be inducing suppressor cells which modulate the CMI response. In this study, we show (i) that a soluble P. brasiliensis culture filtrate antigen (Pb.Ag) emulsified in complete Freund adjuvant and injected subcutaneously into mice induces reasonably high levels of delayed-type hypersensitivity (DTH) in CBA/J mice; (ii) that Pb.Ag elicits DTH reactions specific for P. brasiliensis when injected into footpads of immunized mice; and (iii) that an intravenous injection of Pb.Ag induces a population of lymph node and spleen cells which, upon adoptive transfer, suppress the afferent limb of the DTH response to paracoccidioidal antigen. The afferent suppressor cells can be detected in spleens as early as 5 days after Pb.Ag treatment, are present in significant numbers by 7 days in both spleens and lymph nodes, and are virtually absent by 14 days. In contrast, at 14 days after antigen injection, efferent suppressor cells were detected in spleens and lymph nodes. The Pb.Ag-induced afferent suppressor cells specifically inhibit the antiparacoccidioidal DTH response. They are nylon wool-nonadherent cells, and their activity is abrogated by anti-Thy-1 and complement treatment, indicating that they are T lymphocytes. The phenotype of these afferent suppressor T cells is L3T4+ Lyt-1+2- I-J+. The Pb.Ag-specific suppressor cells described in this paper are similar to the Ts1 cells in the azobenzenearsonate, 4-hydroxy-3-nitrophenyl acetyl, and cryptococcal models of suppression of the DTH response and to the afferent suppressor cells in the dinitrofluorobenzene contact sensitivity system.
PMCID: PMC259363  PMID: 2964411
8.  Increased Levels of Candida albicans Mannan-Specific T-Cell-Derived Antigen Binding Molecules in Patients with Invasive Candidiasis 
Clinical and Vaccine Immunology  2006;13(4):467-474.
In addition to cytokines, CD4+ T cells have been found to secrete soluble, T-cell-derived antigen binding molecules (TABMs). These antigen-specific immunoproteins are thought to have immunoregulatory properties in the suppression of cell-mediated immunity (CMI) because they often associate with interleukin-10 (IL-10) and transforming growth factor beta. Decreased CMI causes susceptibility to infections caused by organisms which are normally nonpathogenic. In this situation, e.g., Candida albicans saprophytism may develop into invasive candidiasis. The difficult diagnosis of invasive candidiasis is based on the findings obtained from blood cultures and with tissue biopsy specimens, with some additional diagnostic value gained by the detection of Candida albicans mannan antigenemia and antimannan antibodies. In the present study, Candida albicans mannan-specific TABM (CAM-TABM) levels in the sera of patients with invasive candidiasis (n = 11), Candida colonization (n = 11) and noncolonization (n = 10), recurrent vulvovaginal candidiasis (n = 30), and atopic eczema dermatitis syndrome (n = 59) and healthy controls (n = 30) were analyzed. For 14 participants, the effect of mannan stimulation on TABM production and gamma interferon (IFN-γ) and IL-4 mRNA expression by peripheral blood lymphocytes was also studied. It was demonstrated that CAM-TABM production was the highest in patients with invasive candidiasis and that CAM-TABM levels could distinguish Candida-colonized patients from noncolonized patients. In addition, the CAM-TABM level was directly related to mRNA expression for IL-4 but not IFN-γ. These results reinforce the view that TABMs are associated with decreased CMI, immunoregulation, and the T-helper cell 2-type immune response.
PMCID: PMC1459633  PMID: 16603614
9.  Mannan as an antigen in cell-mediated immunity (CMI) assays and as a modulator of mannan-specific CMI. 
Infection and Immunity  1989;57(3):693-700.
Mannan (MAN) extracted from Candida albicans 20A was investigated for its potential as an antigen in the detection of cell-mediated immunity (CMI) in vivo and in vitro and for its ability to modulate CMI when administered intravenously (i.v.). CBA/J mice were either immunized as adults by the cutaneous inoculation of 10(6) viable blastoconidia or colonized as infants (primed) and then boosted cutaneously as adults. When immunized animals were footpad tested with MAN, highly significant delayed-type hypersensitivity (DH) responses were detected. The DH responses to MAN were of a greater magnitude than those noted with the same quantity of cell wall glycoprotein (GP), an ethylenediamine extract of the cell wall which contains both glucan and MAN. In contrast, GP was a better antigen for the detection of CMI responses in an in vitro lymphoproliferative assay with either spleen or lymph node cell suspensions. Mice treated with MAN i.v. prior to the initiation of immunization or between priming and secondary inoculations developed significantly suppressed DH reactions when tested with either MAN or GP. The lowest effective dose of MAN was 250 micrograms, maximum suppression occurred with 500 micrograms, and either dose given 1 week prior to immunization was suppressive. The suppression by MAN was specific for MAN or the MAN-containing GP. Responses to another unrelated candidal antigen, a membrane extract designated BEX, were relatively unaffected. MAN, therefore, was an effective antigen for the detection of CMI in vivo, and its administration i.v. created what appeared to be a MAN-specific suppression since it could be detected with both MAN and a MAN-containing extract from the cell wall. Caution must be exercised in the interpretation of these data, however, since the protein component of each of these extracts has not been characterized with respect to its potential role in the phenomena observed.
PMCID: PMC313164  PMID: 2917780
10.  Role of L3T4+ lymphocytes in protective immunity to systemic Candida albicans infection in mice. 
Infection and Immunity  1989;57(11):3581-3587.
Protective immunity to lethal Candida albicans challenge in vivo and activation of splenic macrophages with highly candidacidal activity in vitro were detected in mice infected with low-virulence agerminative yeast cells of the variant strain PCA-2, at a time when a strong delayed-type hypersensitivity (DTH) reaction to C. albicans occurred in the footpads of PCA-2-treated mice. The DTH reaction was transferable with spleen cell populations from these animals, and enrichment of splenic lymphocytes in L3T4+ cells significantly increased the footpad swelling. The reactivity transferred by L3T4+ cells was a radiosensitive (2,500 rads in vitro) phenomenon that required collaboration with radioresistant, silica-sensitive syngeneic cells in the host and was inhibited by treatment of recipient mice with antibodies to the L3T4 antigen or murine gamma interferon. In vitro, the PCA-2-immune L3T4+ cells produced various lymphokine activities upon incubation with C. albicans, including gamma interferon and granulocyte-macrophage colony-stimulating factor. Anti-L3T4 monoclonal antibody treatment of PCA-2-infected mice significantly impaired their footpad reaction and resistance to C. albicans, as shown by increased recovery of yeast cells from the kidneys of anti-L3T4-treated mice. These results suggested that the mechanisms of anti-Candida resistance induced by PCA-2 may involve specific induction of a DTH response mediated by inflammatory L3T4+ T cells and lymphokine-activated phagocytic effectors. However, the survival rate of the PCA-2-immune mice challenged with C. albicans was not significantly modified by administration of the anti-L3T4 antibody, thus allowing for the conclusion that compensatory mechanisms lead to considerable anti-Candida resistance when the activity of L3T4+ cells is deficient.
PMCID: PMC259871  PMID: 2572556
11.  A mannoprotein constituent of Candida albicans that elicits different levels of delayed-type hypersensitivity, cytokine production, and anticandidal protection in mice. 
Infection and Immunity  1994;62(12):5353-5360.
To identify major immunogenic constituents of Candida albicans, the effect of a mannoprotein fraction (MP-F2) on the elicitation of a delayed-type hypersensitivity (DTH) reaction, cytokine production, and protection from a virulent Candida challenge in a mouse candidiasis model was studied. In mice immunized with whole cells of a low-virulence strain of C. albicans and thus protected against a challenge with a highly virulent strain of this fungus, MP-F2 was able to elicit a strong DTH response that was accompanied by splenocyte proliferation in vitro in the presence of Candida antigen. The supernatants of MP-F2-stimulated splenocyte cultures contained gamma interferon (IFN-gamma, a typical CD4+ T helper-1 (Th1) cytokine, but no interleukin-4, (IL-4), a typical CD4+ Th2 cytokine. IFN-gamma was produced by CD4+ cells, and its level could be greatly increased by the addition of anti-IL-4 or, mostly, anti-IL-10 antibodies to the CD4+ cell cultures. Upon a suitable schedule of immunization, MP-F2 was also able to induce a vigorous DTH response in Candida-uninfected mice, a response that could be efficiently transferred into naive recipients by CD4+ cells from the spleens of MP-F2-immunized mice. The immunization described above also conferred to mice a low degree of protection against a virulent Candida challenge, both in terms of median survival time and in the number of Candida cells in the kidney. However, while DTH induction by MP-F2 was as strong as that induced by whole cells, MP-F2-induced protection was significantly weaker than that conferred by Candida whole-cell immunization. Mice immunized with either MP-F2 or Candida whole cells had an inverted ratio between the number of CD4+ splenocytes producing IFN-gamma and that of cells producing IL-4, compared with nonimmunized animals. However, the number of IL-4-producing CD4+ cells was significantly higher in MP-F2-vaccinated, weakly protected mice than in Candida whole-cell-vaccinated, highly protected animals. Overall, our data suggest that the MP-F2 fraction contains one or more major immunogens of C. albicans which are capable of interfering with the balance of CD4+ Th1 and Th2 responses that is so critical in the outcome of host-Candida relationship and are thus potentially relevant in the mechanisms of Candida-specific DTH regulation and protection.
PMCID: PMC303275  PMID: 7960114
12.  Characterization of cellular infiltrates and cytokine production during the expression phase of the anticryptococcal delayed-type hypersensitivity response. 
Infection and Immunity  1993;61(7):2854-2865.
Cryptococcosis, an increasingly important opportunistic infection caused by the encapsulated yeast-like organism Cryptococcus neoformans, is limited by an anticryptococcal cell-mediated immune (CMI) response. Gaining a thorough understanding of the complex anticryptococcal CMI response is essential for developing means of controlling infections with C. neoformans. The murine cryptococcosis model utilizing footpad swelling to cryptococcal antigen (delayed-type hypersensitivity [DTH]) has proven to be a valuable tool for studying the induction and regulation of the anticryptococcal CMI response, but this technique has limitations with regard to evaluating the role of the final effector cells recruited by an ongoing CMI response. The purpose of this study was to assess the types of cells and cytokines induced into the site of cryptococcal antigen deposition in C. neoformans-infected and -immunized mice compared with those for control mice. We used a gelatin sponge implant model to examine the cells and cytokines present at the site of an anticryptococcal DTH response. Sponges implanted in infected mice and injected with cryptococcal culture filtrate antigen (CneF) 24 h before assessment had significantly increased numbers of infiltrating leukocytes compared with saline-injected sponges in the same animals. Exaggerated influxes of neutrophils and mononuclear cells were the major contributors to the increase in total numbers of cells in the DTH-reactive sponges. The numbers of CD4+ and LFA-1+ cells were found to be significantly increased in the CneF-injected sponges of infected and immunized mice over the numbers in control sponges. The numbers of large granular lymphocytes were also increased in DTH-reactive sponges compared with control sponges. Gamma interferon, interleukin 2 (IL-2), and IL-5 are clearly relevant cytokines in the anticryptococcal CMI response, since they were produced in greater amounts in the CneF-injected sponges from C. neoformans-infected and -immunized mice than in control sponges. IL-4 was not associated with the expression of DTH to cryptococcal antigen. The gelatin sponge model is an excellent tool for studying cells and cytokines involved in specific CMI responses.
PMCID: PMC280931  PMID: 8514388
13.  Local Production of Chemokines during Experimental Vaginal Candidiasis 
Infection and Immunity  1999;67(11):5820-5826.
Recurrent vulvovaginal candidiasis, caused by Candida albicans, is a significant problem in women of childbearing age. Although cell-mediated immunity (CMI) due to T cells and cytokines is the predominant host defense mechanism against C. albicans at mucosal tissue sites, host defense mechanisms against C. albicans at the vaginal mucosa are poorly understood. Based on an estrogen-dependent murine model of vaginal candidiasis, our data suggest that systemic CMI is ineffective against C. albicans vaginal infections. Thus, we have postulated that local immune mechanisms are critical for protection against infection. In the present study, the kinetic production of chemokines normally associated with the chemotaxis of T cells, macrophages (RANTES, MIP-1α, MCP-1), and polymorphonuclear neutrophils (MIP-2) was examined following intravaginal inoculation of C. albicans in estrogen-treated or untreated mice. Results showed significant increases in MCP-1 protein and mRNA in vaginal tissue of infected mice as early as 2 and 4 days postinoculation, respectively, that continued through a 21-day observation period, irrespective of estrogen status. No significant changes were observed with RANTES, MIP-1α, or MIP-2, although relatively high constitutive levels of RANTES mRNA and MIP-2 protein were observed. Furthermore, intravaginal immunoneutralization of MCP-1 with anti-MCP-1 antibodies resulted in a significant increase in vaginal fungal burden early during infection, suggesting that MCP-1 plays some role in reducing the fungal burden during vaginal infection. However, the lack of changes in leukocyte profiles in vaginal lavage fluids collected from infected versus uninfected mice suggests that MCP-1 functions to control vaginal C. albicans titers in a manner independent of cellular chemotactic activity.
PMCID: PMC96961  PMID: 10531235
14.  Immunopathogenesis of recurrent vulvovaginal candidiasis. 
Clinical Microbiology Reviews  1996;9(3):335-348.
Recurrent vulvovaginal candidiasis (RVVC) is a prevalent opportunistic mucosal infection, caused predominantly by Candida albicans, which affects a significant number of otherwise healthy women of childbearing age. Since there are no known exogenous predisposing factors to explain the incidence of symptomatic vaginitis in most women with idiopathic RVVC, it has been postulated that these particular women suffer from an immunological abnormality that prediposes them to RVVC. Because of the increased incidence of mucosal candidiasis in individuals with depressed cell-mediated immunity (CMI), defects in CMI are viewed as a possible explanation for RVVC. In this review, we attempt to place into perspective the accumulated information regarding the immunopathogenesis of RVVC, as well as to provide new immunological perspectives and hypotheses regarding potential immunological deficiencies that may predispose to RVVC and potentially other mucosal infections by the same organism. The results of both clinical studies and studies in an animal model of experimental vaginitis suggest that systemic CMI may not be the predominant host defense mechanism against C. albicans vaginal infections. Rather, locally acquired mucosal immunity, distinct from that in the peripheral circulation, is now under consideration as an important host defense at the vaginal mucosa, as well as the notion that changes in local CMI mechanism(s) may predispose to RVVC.
PMCID: PMC172897  PMID: 8809464
15.  Differences in Components at Delayed-Type Hypersensitivity Reaction Sites in Mice Immunized with Either a Protective or a Nonprotective Immunogen of Cryptococcus neoformans 
Infection and Immunity  2002;70(2):591-600.
Cell-mediated immunity is the major protective mechanism against Cryptococcus neoformans. Delayed swelling reactions, i.e., delayed-type hypersensitivity (DTH), in response to an intradermal injection of specific antigen are used as a means of detecting a cell-mediated immune (CMI) response to the antigen. We have found previously that the presence of an anticryptococcal DTH response in mice is not always indicative of protection against a cryptococcal infection. Using one immunogen that induces a protective anticryptococcal CMI response and one that induces a nonprotective response, we have shown that mice immunized with the protective immunogen undergo a classical DTH response characterized by mononuclear cell and neutrophil infiltrates and the presence of gamma interferon and NO. In contrast, immunization with the nonprotective immunogen results in an influx of primarily neutrophils and production of tumor necrosis factor alpha (TNF-α) at the DTH reaction site. Even when the anticryptococcal DTH response was augmented by blocking the down-regulator, CTLA-4 (CD152), on T cells in the mice given the nonprotective immunogen, the main leukocyte population infiltrating the DTH reaction site is the neutrophil. Although TNF-α is increased at the DTH reaction site in mice immunized with the nonprotective immunogen, it is unlikely that TNF-α activates the neutrophils, because the density of TNF receptors on the neutrophils is reduced below control levels. Uncoupling of DTH reactivity and protection has been demonstrated in other infectious-disease models; however, the mechanisms differ from our model. These findings stress the importance of defining the cascade of events occurring in response to various immunogens and establishing the relationships between protection and DTH reactions.
PMCID: PMC127722  PMID: 11796587
16.  Vaginal and Oral Epithelial Cell Anti-Candida Activity  
Infection and Immunity  2002;70(12):7081-7088.
Candida albicans is the causative agent of acute and recurrent vulvovaginal candidiasis (VVC), a common mucosal infection affecting significant numbers of women in their reproductive years. While any murine host protective role for cell-mediated immunity (CMI), humoral immunity, and innate resistance by neutrophils against the vaginal infection appear negligible, significant in vitro growth inhibition of Candida species by vaginal and oral epithelial cell-enriched cells has been observed. Both oral and vaginal epithelial cell anti-Candida activity has a strict requirement for cell contact to C. albicans with no role for soluble factors, and oral epithelial cells inhibit C. albicans through a cell surface carbohydrate moiety. The present study further evaluated the inhibitory mechanisms by murine vaginal epithelial cells and the fate of C. albicans by oral and vaginal epithelial cells. Similar to human oral cells, anti-Candida activity produced by murine vaginal epithelial cells is unaffected by enzymatic cleavage of cell surface proteins and lipids but sensitive to periodic acid cleavage of surface carbohydrates. Analysis of specific membrane carbohydrate moieties, however, showed no role for sulfated polysaccharides, sialic acid residues, or glucose and mannose-containing carbohydrates, also similar to oral cells. Staining for live and dead Candida in the coculture with fluorescein diacetate (FDA) and propidium iodide (PI), respectively, showed a clear predominance of live organisms, suggesting a static rather than cidal action. Together, the results suggest that oral and vaginal epithelial cells retard or arrest the growth rather than kill C. albicans through an as-yet-unidentified carbohydrate moiety in a noninflammatory manner.
PMCID: PMC133056  PMID: 12438389
17.  Enhanced immune responses in mice treated with penicillin-tetracycline or trimethoprim-sulfamethoxazole when colonized intragastrically with Candida albicans. 
Immune consequences of gastrointestinal colonization of CD-1 and CBA/J mice with Candida albicans in the presence or absence of continuous antibiotic treatment with penicillin-tetracycline or trimethoprimsulfamethoxazole were investigated. Intubation with C. albicans in the absence of antibiotics resulted in the induction of low but detectable delayed-type hypersensitivity (DTH), demonstrable by footpad testing with a C. albicans wall glycoprotein (GP), and in the stimulation of a moderate level of protective immunity, demonstrable by intravenous (i.v.) challenge. DTH to a membrane extract, BEX, could not be detected in such animals. However, animals colonized in the presence of antibiotics and then inoculated cutaneously prior to being tested for DTH or protective immunity developed significantly enhanced levels of DTH to GP and BEX and were protected to an even greater extent than animals colonized in the absence of antibiotics who were not inoculated cutaneously. The priming effect of colonization, particularly with respect to the antigen GP, was also obvious from an enzyme-linked immunosorbent assay for GP-specific antibody with sera of mice surviving the i.v. challenge, in that GP-specific antibody was present in the highest titers in colonized animals that had been inoculated cutaneously prior to i.v. challenge. While the antibiotics promoted higher levels of colonization, as evidenced by stomach and fecal cultures of intubated mice, antibiotic administration was not necessary for the induction of C. albicans-specific responses. Moreover, contrary to reports in the literature, antibiotic administration had no adverse effect on the immune responses measured. Females were innately more resistant than males to i.v. challenge with C. albicans, but each sex was capable of developing protective immunity of equal intensity in response to colonization or immunization by cutaneous challenge.
PMCID: PMC174816  PMID: 3300536
18.  Studies of Immune Responses in Candida vaginitis 
Pathogens  2015;4(4):697-707.
The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis.
PMCID: PMC4693159  PMID: 26473934
Candida vaginitis; immune response; aspartyl proteinase; mucosal anti-Candida vaccine
19.  Effectiveness of a Vaccine Composed of Heat-Killed Candida albicans and a Novel Mucosal Adjuvant, LT(R192G), against Systemic Candidiasis 
Infection and Immunity  1999;67(2):826-833.
The incidence of fungal infections caused by the opportunistic yeast Candida albicans has increased significantly in recent years. The ability to vaccinate selected patients against the organism would be advantageous. In this paper we describe a potential anti-C. albicans vaccine consisting of heat-killed C. albicans (HK-CA) in combination with the novel mucosal adjuvant LT(R192G), a genetically detoxified form of the heat-labile toxin of enterotoxigenic Escherichia coli. Groups of male CBA/J mice were immunized intranasally on three occasions at weekly intervals with 2 × 107 HK-CA per dose, alone or in conjunction with 10 μg of LT(R192G) per dose. Two weeks following the last application of antigen, some animals were challenged intravenously (i.v.) with 104, 105, or 106 viable C. albicans to assess protection as measured by survival and/or culture. Some groups of animals were footpad tested with C. albicans mannan to assess delayed-type hypersensitivity (DTH), and all the animals were bled for antibody assays. In two independent studies, all the animals immunized with HK-CA plus LT(R192G) were able to eradicate 104 C. albicans completely, as determined by kidney culture 4 weeks after challenge. Animals immunized with HK-CA only had reduced levels of C. albicans compared to the adjuvant or saline-only control. Greatly enhanced survival was observed when mice immunized with HK-CA plus LT(R192G) were challenged with 105 live C. albicans as well. Animals immunized with HK-CA plus LT(R192G) developed a significant DH response, while those given HK-CA alone developed only marginal DH responses. High immunoglobulin G (IgG) levels to cytoplasmic antigens developed in mice immunized with HK-CA plus LT(R192G), but they were found only after i.v. challenge. Addition of adjuvant shifted the antibody isotype production in i.v.-challenged animals to a response dominated by IgG2a. Clearly, intranasal immunization with killed C. albicans in conjunction with LT(R192G) afforded significant levels of protection. This novel approach offers new possibilities for the development of an effective vaccine against candidiasis for use in humans.
PMCID: PMC96393  PMID: 9916097
20.  Transcriptomic Analysis of Vulvovaginal Candidiasis Identifies a Role for the NLRP3 Inflammasome 
mBio  2015;6(2):e00182-15.
Treatment of vulvovaginal candidiasis (VVC), caused most frequently by Candida albicans, represents a significant unmet clinical need. C. albicans, as both a commensal and a pathogenic organism, has a complex and poorly understood interaction with the vaginal environment. Understanding the complex nature of this relationship is necessary for the development of desperately needed therapies to treat symptomatic infection. Using transcriptome sequencing (RNA-seq), we characterized the early murine vaginal and fungal transcriptomes of the organism during VVC. Network analysis of host genes that were differentially expressed between infected and naive mice predicted the activation or repression of several signaling pathways that have not been previously associated with VVC, including NLRP3 inflammasome activation. Intravaginal challenge of Nlrp3−/− mice with C. albicans demonstrated severely reduced levels of polymorphonuclear leukocytes (PMNs), alarmins, and inflammatory cytokines, including interleukin-1β (IL-1β) (the hallmarks of VVC immunopathogenesis) in vaginal lavage fluid. Intravaginal administration of wild-type (WT) mice with glyburide, a potent inhibitor of the NLRP3 inflammasome, reduced PMN infiltration and IL-1β to levels comparable to those observed in Nlrp3−/− mice. Furthermore, RNA-seq analysis of C. albicans genes indicated robust expression of hypha-associated secreted aspartyl proteinases 4, 5, and 6 (SAP4–6), which are known inflammasome activators. Despite colonization similar to that of the WT strain, ΔSAP4–6 triple and ΔSAP5 single mutants induced significantly less PMN influx and IL-1β during intravaginal challenge. Our findings demonstrate a novel role for the inflammasome in the immunopathogenesis of VVC and implicate the hypha-associated SAPs as major C. albicans virulence determinants during vulvovaginal candidiasis.
Vaginitis, most commonly caused by the fungus Candida albicans, results in significant quality-of-life issues for all women of reproductive age. Recent efforts have suggested that vaginitis results from an immunopathological response governed by host innate immunity, although an explanatory mechanism has remained undefined. Using comprehensive genomic, immunological, and pharmacological approaches, we have elucidated the NLRP3 inflammasome as a crucial molecular mechanism contributing to host immunopathology. We have also demonstrated that C. albicans hypha-associated secreted aspartyl proteinases (SAP4–6 and SAP5, more specifically) contribute to disease immunopathology. Ultimately, this study enhances our understanding of the complex interplay between host and fungus at the vaginal mucosa and provides proof-of-principle evidence for therapeutic targeting of inflammasomes for symptomatic vulvovaginal candidiasis.
PMCID: PMC4453569  PMID: 25900651
21.  Effects of Tumor Necrosis Factor Alpha on Dendritic Cell Accumulation in Lymph Nodes Draining the Immunization Site and the Impact on the Anticryptococcal Cell-Mediated Immune Response  
Infection and Immunity  2003;71(1):68-74.
Cell-mediated immune (CMI) responses and tumor necrosis factor alpha (TNF-α) have been shown to be essential in acquired protection against Cryptococcus neoformans. Induction of a protective anticryptococcal CMI response includes increases in dendritic cells (DC) and activated CD4+ T cells in draining lymph nodes (DLN). During the expression phase, activated CD4+ T cells accumulate at a peripheral site where cryptococcal antigen is injected, resulting in a classical delayed-type hypersensitivity (DTH) reaction. Induction of a nonprotective anticryptococcal CMI response results in no significant increases in the numbers of DC or activated CD4+ T cells in DLN. This study focuses on examining the role of TNF-α in induction of protective and nonprotective anticryptococcal CMI responses. We found that neutralization of TNF-α at the time of immunization with the protective immunogen (i) reduces the numbers of Langerhans cells, myeloid and lymphoid DC, and activated CD4+ T cells in DLN and (ii) diminishes the total numbers of cells, the numbers of activated CD4+ T cells, and amount of gamma interferon at the DTH reaction site. Although TNF-α neutralization during induction of the nonprotective CMI response had little effect on cellular and cytokine parameters measured, it did cause a reduction in footpad swelling when mice received challenge in the footpad. Our findings show that TNF-α functions during induction of the protective CMI response by influencing the accumulation of all three DC subsets into DLN. Without antigen stimulated DC in DLN, activated CD4+ T cells are not induced and thus not available for the expression phase of the CMI response.
PMCID: PMC143367  PMID: 12496150
22.  Chlamydia trachomatis Infection Does Not Enhance Local Cellular Immunity against Concurrent Candida Vaginal Infection 
Infection and Immunity  2001;69(5):3451-3454.
Although Th1-type cell-mediated immunity (CMI) is the predominant host defense mechanism against mucosal Candida albicans infection, CMI against a vaginal C. albicans infection in mice is limited at the vaginal mucosa despite a strong Candida-specific Th1-type response in the draining lymph nodes. In contrast, Th1-type CMI is highly effective against an experimental Chlamydia trachomatis genital tract infection. This study demonstrated through two independent designs that a concurrent Candida and Chlamydia infection could not accelerate or modulate the anti-Candida CMI response. Together, these results suggest that host responses to these genital tract infections are independent and not influenced by the presence of the other.
PMCID: PMC98310  PMID: 11292774
23.  Vaginal yeast colonisation, prevalence of vaginitis, and associated local immunity in adolescents 
Objectives: To evaluate point prevalence vaginal yeast colonisation and symptomatic vaginitis in middle adolescents and to identify relation of these yeast conditions with reproductive hormones, sexual activity, sexual behaviours, and associated local immunity.
Methods: Middle adolescent females (n = 153) were evaluated for sexually transmitted infections (STIs), asymptomatic yeast colonisation, and symptomatic vulvovaginal candidiasis (VVC) by standard criteria. Also evaluated were local parameters, including vaginal associated cytokines, chemokines, and antibodies, vaginal epithelial cell antifungal activity, and Candida specific peripheral blood lymphocyte responses. Correlations between yeast colonisation/vaginitis and local immunomodulators, reproductive hormones, douching, sexual activity, condom use, and STIs were identified.
Results: Rates of point prevalence asymptomatic yeast colonisation (22%) were similar to adults and similarly dominated by Candida albicans, but with uncharacteristically high vaginal yeast burden. In contrast with the high rate of STIs (18%), incidence of symptomatic VVC was low (<2%). Immunological properties included high rates of Candida specific systemic immune sensitisation, a Th2 type vaginal cytokine profile, total and Candida specific vaginal antibodies dominated by IgA, and moderate vaginal epithelial cell anti-Candida activity. Endogenous reproductive hormones were in low concentration. Sexual activity positively correlated with vaginal yeast colonisation, whereas vaginal cytokines (Th1, Th2, proinflammatory), chemokines, antibodies, contraception, douching, or condom use did not.
Conclusion: Asymptomatic vaginal yeast colonisation in adolescents is distinct in some ways with adults, and positively correlates with sexual activity, but not with local immunomodulators or sexual behaviours. Despite several factors predictive for VVC, symptomatic VVC was low compared to STIs.
PMCID: PMC1758371  PMID: 14755036
24.  Role for Dendritic Cells in Immunoregulation during Experimental Vaginal Candidiasis  
Infection and Immunity  2006;74(6):3213-3221.
Vulvovaginal candidiasis (VVC) caused by the commensal organism Candida albicans remains a significant problem among women of childbearing age, with protection against and susceptibility to infection still poorly understood. While cell-mediated immunity by CD4+ Th1-type cells is protective against most forms of mucosal candidiasis, no protective role for adaptive immunity has been identified against VVC. This is postulated to be due to immunoregulation that prohibits a more profound Candida-specific CD4+ T-cell response against infection. The purpose of this study was to examine the role of dendritic cells (DCs) in the induction phase of the immune response as a means to understand the initiation of the immunoregulatory events. Immunostaining of DCs in sectioned murine lymph nodes draining the vagina revealed a profound cellular reorganization with DCs becoming concentrated in the T-cell zone throughout the course of experimental vaginal Candida infection consistent with cell-mediated immune responsiveness. However, analysis of draining lymph node DC subsets revealed a predominance of immunoregulation-associated CD11c+ B220+ plasmacytoid DCs (pDCs) under both uninfected and infected conditions. Staining of vaginal DCs showed the presence of both DEC-205+ and pDCs, with extension of dendrites into the vaginal lumen of infected mice in close contact with Candida. Flow cytometric analysis of draining lymph node DC costimulatory molecules and activation markers from infected mice indicated a lack of upregulation of major histocompatibility complex class II, CD80, CD86, and CD40 during infection, consistent with a tolerizing condition. Together, the results suggest that DCs are involved in the immunoregulatory events manifested during a vaginal Candida infection and potentially through the action of pDCs.
PMCID: PMC1479243  PMID: 16714548
25.  Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis 
PLoS Pathogens  2015;11(10):e1005164.
Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC) we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs) present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity.
Author Summary
Candida spp. are present in the normal microbiota without causing damage to the host. They can become pathogenic and bear a serious health hazard for individuals with a weakened immune system. The continuous incidence of fungal infections and the increase in resistance against available antifungal drugs urge the development of novel preventive and therapeutic strategies. Knowledge gained from understanding how immunocompetent mammals control Candida will help develop new immunotherapeutic and-prophylactic approaches suitable to improve patient prognosis. It is well known that T helper cells, and in particular the Th17 subset, provide resistance against mucocutaneous infections with Candida. However, the mechanisms through which T cell-mediated antifungal immunity is induced in such context are not well understood. Here we developed a new experimental system to study the regulation of antigen-specific T cells with high resolution. Our results reveal the interplay of different dendritic cell subsets associated to the oral mucosa of infected mice that directly present fungal antigen to Candida-specific T cells and orchestrate a protective Th17 response in a tissue specific manner. Thus, our data highlight important features of immune regulation in the oral mucosa, a tissue that is immunologically not well characterized.
PMCID: PMC4591991  PMID: 26431538

Results 1-25 (1535572)