Search tips
Search criteria

Results 1-25 (1070071)

Clipboard (0)

Related Articles

1.  Retinal expression of the serine protease matriptase-2 (Tmprss6) and its role in retinal iron homeostasis 
Molecular Vision  2014;20:561-574.
Matriptase-2 (also known as TMPRSS6) is a critical regulator of the iron-regulatory hormone hepcidin in the liver; matriptase-2 cleaves membrane-bound hemojuvelin and consequently alters bone morphogenetic protein (BMP) signaling. Hemojuvelin and hepcidin are expressed in the retina and play a critical role in retinal iron homeostasis. However, no information on the expression and function of matriptase-2 in the retina is available. The purpose of the present study was to examine the retinal expression of matriptase-2 and its role in retinal iron homeostasis.
RT–PCR, quantitative PCR (qPCR), and immunofluorescence were used to analyze the expression of matriptase-2 and other iron-regulatory proteins in the mouse retina. Polarized localization of matriptase-2 in the RPE was evaluated using markers for the apical and basolateral membranes. Morphometric analysis of retinas from wild-type and matriptase-2 knockout (Tmprss6msk/msk) mice was also performed. Retinal iron status in Tmprss6msk/msk mice was evaluated by comparing the expression levels of ferritin and transferrin receptor 1 between wild-type and knockout mice. BMP signaling was monitored by the phosphorylation status of Smads1/5/8 and expression levels of Id1 while interleukin-6 signaling was monitored by the phosphorylation status of STAT3.
Matriptase-2 is expressed in the mouse retina with expression detectable in all retinal cell types. Expression of matriptase-2 is restricted to the apical membrane in the RPE where hemojuvelin, the substrate for matriptase-2, is also present. There is no marked difference in retinal morphology between wild-type mice and Tmprss6msk/msk mice, except minor differences in specific retinal layers. The knockout mouse retina is iron-deficient, demonstrable by downregulation of the iron-storage protein ferritin and upregulation of transferrin receptor 1 involved in iron uptake. Hepcidin is upregulated in Tmprss6msk/msk mouse retinas, particularly in the neural retina. BMP signaling is downregulated while interleukin-6 signaling is upregulated in Tmprss6msk/msk mouse retinas, suggesting that the upregulaton of hepcidin in knockout mouse retinas occurs through interleukin-6 signaling and not through BMP signaling.
The iron-regulatory serine protease matriptase-2 is expressed in the retina, and absence of this enzyme leads to iron deficiency and increased expression of hemojuvelin and hepcidin in the retina. The upregulation of hepcidin expression in Tmprss6msk/msk mouse retinas does not occur via BMP signaling but likely via the proinflammatory cytokine interleukin-6. We conclude that matriptase-2 is a critical participant in retinal iron homeostasis.
PMCID: PMC4000719  PMID: 24791141
2.  Severe Microcytic Anemia but Increased Erythropoiesis in Mice Lacking Hfe or Tfr2 and Tmprss6 
Blood cells, molecules & diseases  2012;48(3):173-178.
Cell surface proteins Hfe, Tfr2, hemojuvelin and Tmprss6 play key roles in iron homeostasis. Hfe and Tfr2 induce transcription of hepcidin, a small peptide that promotes the degradation of the iron transporter ferroportin. Hemojuvelin, a co-receptor for bone morphogenic proteins, induces hepcidin transcription through a Smad signaling pathway. Tmprss6 (also known as matriptase-2), a membrane serine protease that has been found to bind and degrade hemojuvelin in vitro, is a potent suppressor of hepcidin expression. In order to examine if Hfe and Tfr2 are substrates for Tmprss6, we generated mice lacking functional Hfe or Tfr2 and Tmprss6. We found that double mutant mice lacking functional Hfe or Tfr2 and Tmprss6 exhibited a severe iron deficiency microcytic anemia phenotype mimicking the phenotype of single mutant mice lacking functional Tmprss6 (Tmprss6 msk/msk mutant) demonstrating that Hfe and Tfr2 are not substrates for Tmprss6. Nevertheless, the phenotype of the mice lacking Hfe or Tfr2 and Tmprss6 differed from Tmprss6 deficient mice alone, in that the double mutant mice exhibited much greater erythropoiesis. Hfe and Tfr2 have been shown to play important roles in the erythron, independent of their role in regulating liver hepcidin transcription. We demonstrate that lack of functional Tfr2 and Hfe allow for increased erythropoiesis even in the presence of high hepcidin expression, but the high levels of hepcidin levels significantly limit the availability of iron to the erythron, resulting in ineffective erythropoiesis. Furthermore, repression of hepcidin expression was unaffected by loss of functional Hfe, Tfr2 and Tmprss6.
PMCID: PMC3294186  PMID: 22244935
hepcidin; iron; TMPRSS6; hemochromatosis; anemia; HFE; TFR2; matriptase
3.  Iron-Refractory Iron Deficiency Anemia: New Molecular Mechanisms 
Kidney international  2009;76(11):1137-1141.
Iron deficiency is a common cause of anemia. In end-stage renal disease (ESRD), iron deficiency impairs the therapeutic efficacy of recombinant erythropoietin. Oral or parental iron supplements usually are effective in treating iron deficiency anemia (IDA). Some patients, however, respond poorly to iron supplements and are diagnosed as having iron-refractory iron deficiency anemia (IRIDA). The disease represents a medical challenge but its underlying mechanism was unclear. Hepcidin is a central player in iron homeostasis. It down-regulates the iron exporter ferroportin, thereby inhibiting iron absorption, release and recycling. In ESRD, plasma hepcidin levels are elevated, which contributes to iron deficiency in patients. Matriptase-2, a liver transmembrane serine protease, has been found to have a major role in controlling hepcidin gene expression. In mice, defects in the Tmprss6 gene encoding matriptase-2 result in high hepcidin expression and cause severe microcytic anemia. Similarly, mutations in the human TMPRSS6 gene have been identified in patients with IRIDA. Thus, matriptase-2 is critical for iron homeostasis and may play a role in renal disease.
PMCID: PMC2869468  PMID: 19776721
matriptase-2; TMPRSS6; hepcidin; end-stage renal disease; EPO resistance
4.  The role of TMPRSS6/matriptase-2 in iron regulation and anemia 
Matriptase-2, encoded by the TMPRSS6 gene, is a member of the type II transmembrane serine protease family. Matriptase-2 has structural and enzymatic similarities to matriptase-1, which has been implicated in cancer progression. Matriptase-2 was later established to be essential in iron homeostasis based on the phenotypes of iron-refractory iron deficiency anemia identified in mouse models as well as in human patients with TMPRSS6 mutations. TMPRSS6 is expressed mainly in the liver and negatively regulates the production of hepcidin, the systemic iron regulatory hormone. This review focuses on the current understanding of matriptase-2 biochemistry, and its role in iron metabolism and cancer progression. In light of recent investigations, the function of matriptase-2 in hepcidin regulation, how it is being regulated, as well as the therapeutic potential of matriptase-2 are also discussed.
PMCID: PMC4053654  PMID: 24966834
iron; TMPRSS6; matriptase-2; iron overload; IRIDA
5.  Hepcidin antagonists for potential treatments of disorders with hepcidin excess 
The discovery of hepcidin clarified the basic mechanism of the control of systemic iron homeostasis. Hepcidin is mainly produced by the liver as a propeptide and processed by furin into the mature active peptide. Hepcidin binds ferroportin, the only cellular iron exporter, causing the internalization and degradation of both. Thus hepcidin blocks iron export from the key cells for dietary iron absorption (enterocytes), recycling of hemoglobin iron (the macrophages) and the release of storage iron from hepatocytes, resulting in the reduction of systemic iron availability. The BMP/HJV/SMAD pathway is the major regulator of hepcidin expression that responds to iron status. Also inflammation stimulates hepcidin via the IL6/STAT3 pathway with a support of an active BMP/HJV/SMAD pathway. In some pathological conditions hepcidin level is inadequately elevated and reduces iron availability in the body, resulting in anemia. These conditions occur in the genetic iron refractory iron deficiency anemia and the common anemia of chronic disease (ACD) or anemia of inflammation. Currently, there is no definite treatment for ACD. Erythropoiesis-stimulating agents and intravenous iron have been proposed in some cases but they are scarcely effective and may have adverse effects. Alternative approaches aimed to a pharmacological control of hepcidin expression have been attempted, targeting different regulatory steps. They include hepcidin sequestering agents (antibodies, anticalins, and aptamers), inhibitors of BMP/SMAD or of IL6/STAT3 pathway or of hepcidin transduction (siRNA/shRNA) or ferroportin stabilizers. In this review we summarized the biochemical interactions of the proteins involved in the BMP/HJV/SMAD pathway and its natural inhibitors, the murine and rat models with high hepcidin levels currently available and finally the progresses in the development of hepcidin antagonists, with particular attention to the role of heparins and heparin sulfate proteoglycans in hepcidin expression and modulation of the BMP6/SMAD pathway.
PMCID: PMC4009444  PMID: 24808863
hepcidin; heparin; anemia of chronic diseases; inflammation; iron metabolism
6.  Iron-deficiency anemia from matriptase-2 inactivation is dependent on the presence of functional Bmp6 
Blood  2010;117(2):647-650.
Hepcidin is the master regulator of iron homeostasis. In the liver, iron-dependent hepcidin activation is regulated through Bmp6 and its membrane receptor hemojuvelin (Hjv) whereas, in response to iron deficiency, hepcidin repression seems to be controlled by a pathway involving the serine protease matriptase-2 (encoded by Tmprss6). To determine the relationship between Bmp6 and matriptase-2 pathways, Tmprss6−/− mice (characterized by increased hepcidin levels and anemia) and Bmp6−/− mice (exhibiting severe iron overload due to hepcidin deficiency) were intercrossed. We showed that loss of Bmp6 decreased hepcidin levels, increased hepatic iron and, importantly, corrected hematological abnormalities in Tmprss6−/− mice. This suggests that elevated hepcidin levels in patients with familial iron-refractory iron deficiency anemia are due to excess signaling through the Bmp6/Hjv pathway.
PMCID: PMC3302207  PMID: 20940420
Anemia, Iron-Deficiency; metabolism; Animals; Antimicrobial Cationic Peptides; metabolism; Bone Morphogenetic Protein 6; metabolism; Female; Iron; metabolism; Iron, Dietary; metabolism; Liver; metabolism; Membrane Proteins; metabolism; Mice; Mice, Knockout; Serine Endopeptidases; metabolism; Signal Transduction; physiology; hepcidin; hemojuvelin; bmp6; matriptase2; tmprss6
Cell metabolism  2008;8(6):502-511.
The liver peptide hepcidin regulates body iron, is upregulated in iron overload and inflammation and downregulated in iron deficiency/hypoxia. The transmembrane serine protease matriptase-2 (TMPRSS6) inhibits the hepcidin response and its mutational inactivation causes iron-deficient anemia in mice and humans. Here we confirm the inhibitory effect of matriptase-2 on hepcidin promoter; we show that matriptase-2 lacking the serine protease domain, identified in the anemic Mask mouse (matriptase-2MASK), is fully inactive and that mutant R774C found in patients with genetic iron deficiency has decreased inhibitory activity. Matriptase-2 cleaves hemojuvelin (HJV), a regulator of hepcidin, on plasma membrane; matriptase-2MASK shows no and the human mutant only partial cleavage capacity. Matriptase-2 interacts with HJV through the ectodomain since the interaction is conserved in matriptase-2MASK. The expression of matriptase-2 mutants in zebrafish results in anemia, confirming the matriptase-2 role in iron metabolism and its interaction with HJV.
PMCID: PMC2648389  PMID: 18976966
8.  Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance 
Journal of Clinical Investigation  2007;117(7):1933-1939.
Systemic iron balance is regulated by hepcidin, a peptide hormone secreted by the liver. By decreasing cell surface expression of the iron exporter ferroportin, hepcidin decreases iron absorption from the intestine and iron release from reticuloendothelial stores. Hepcidin excess has been implicated in the pathogenesis of anemia of chronic disease, while hepcidin deficiency has a key role in the pathogenesis of the iron overload disorder hemochromatosis. We have recently shown that hemojuvelin is a coreceptor for bone morphogenetic protein (BMP) signaling and that BMP signaling positively regulates hepcidin expression in liver cells in vitro. Here we show that BMP-2 administration increases hepcidin expression and decreases serum iron levels in vivo. We also show that soluble hemojuvelin (HJV.Fc) selectively inhibits BMP induction of hepcidin expression in vitro and that administration of HJV.Fc decreases hepcidin expression, increases ferroportin expression, mobilizes splenic iron stores, and increases serum iron levels in vivo. These data support a role for modulators of the BMP signaling pathway in treating diseases of iron overload and anemia of chronic disease.
PMCID: PMC1904317  PMID: 17607365
9.  Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading 
Hepatology (Baltimore, Md.)  2011;53(4):1333-1341.
In response to iron loading, hepcidin synthesis is homeostatically increased to limit further absorption of dietary iron and its release from stores. Mutations in HFE, transferrin receptor 2 (Tfr2), hemojuvelin (HJV) or bone morphogenetic protein 6 (BMP6) prevent appropriate hepcidin response to iron, allowing increased absorption of dietary iron, and eventually iron overload. To understand the role each of these proteins plays in hepcidin regulation by iron, we analyzed hepcidin mRNA responsiveness to short and long-term iron challenge in iron-depleted Hfe, Tfr2, Hjv and Bmp6 mutant mice. After 1-day (acute) iron challenge, Hfe−/− showed a smaller hepcidin increase than their wild-type strain-matched controls, Bmp6−/− nearly no increase, and Tfr2 and Hjv mutants no increase in hepcidin expression, indicating that all four proteins participate in hepcidin regulation by acute iron changes. After a 21-day (chronic) iron challenge, Hfe and Tfr2 mutants increased hepcidin expression to nearly wild-type levels but a blunted increase of hepcidin was seen in Bmp6−/− and Hjv−/− mice. BMP6, whose expression is also regulated by iron, may mediate hepcidin regulation by iron stores. None of the mutant strains (excepting Bmp6−/− mice) had impaired BMP6 mRNA response to chronic iron loading. Conclusion: TfR2, HJV and BMP6 and, to a lesser extent, HFE, are required for the hepcidin response to acute iron loading, but are partially redundant for hepcidin regulation during chronic iron loading, and are not involved in the regulation of BMP6 expression. Our findings support a model in which acute increases in holotransferrin concentrations transmitted through HFE, TfR2 and HJV augment BMP receptor sensitivity to BMPs. A distinct regulatory mechanism that senses hepatic iron may modulate hepcidin response to chronic iron loading.
PMCID: PMC3074982  PMID: 21480335
Hereditary hemochromatosis; bone morphogenetic protein 6; hemojuvelin; HFE; transferrin receptor 2
10.  Control of Systemic Iron Homeostasis by the Hemojuvelin-Hepcidin Axis12 
Advances in Nutrition  2010;1(1):38-45.
Systemic iron homeostasis is maintained by the coordinate regulation of iron absorption in the duodenum, iron recycling of senescent erythrocytes in macrophages, and mobilization of storage iron in the liver. These processes are controlled by hepcidin, a key iron regulatory hormone. Hepcidin is a 25-amino acid peptide secreted predominantly from hepatocytes. It downregulates ferroportin, the only known iron exporter, and therefore inhibits iron efflux from duodenal enterocytes, macrophages, and hepatocytes into the circulation. Hepcidin expression is regulated positively by body iron load. Although the underlying mechanism of iron-regulated hepcidin expression has not been fully elucidated, several proteins have been identified that participate in this process. Among them, hemojuvelin (HJV) plays a particularly important role. HJV undergoes complicated post-translational processing in an iron-dependent manner, and it interacts with multiple proteins that are essential for iron homeostasis. In this review, I focus on the recent findings that elucidate the role of HJV and its interacting partners in the modulation of hepatic hepcidin expression.
PMCID: PMC3042782  PMID: 22043450
11.  A Multi-Scale Model of Hepcidin Promoter Regulation Reveals Factors Controlling Systemic Iron Homeostasis 
PLoS Computational Biology  2014;10(1):e1003421.
Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF) phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.
Author Summary
The nutritional iron uptake is tightly regulated because the body has limited capacity of iron excretion. Mammals maintain iron homeostasis by a negative feedback loop, in which the peptide hepcidin senses the iron blood level and controls iron resorption. Molecular perturbations in the homeostasis loop lead to iron-related diseases such as hemochromatosis or anemia of inflammation. Quantitative studies are required to understand the dynamics of the iron homeostasis circuitry in health and disease. We investigated how the biological activity of hepcidin is regulated by combining experiments with mathematical modeling. We present a multi-scale model that describes the signaling network and the gene promoter controlling hepcidin expression. Possible scenarios of hepcidin regulation were systematically tested against experimental data, and interpreted using a network model of iron metabolism in vivo. The analysis showed that the presence of multiple redundant regulatory elements in the hepcidin gene promoter facilitates homeostasis, because changes in iron blood levels are sensed with high sensitivity. We further suggest that inflammatory signals establish molecular competition at the hepcidin promoter, thereby reducing its iron sensitivity and leading to a loss of homeostasis in anemia of inflammation. We conclude that quantitative insights into hepcidin expression regulation explain features of systemic iron homeostasis.
PMCID: PMC3879105  PMID: 24391488
12.  A Strong Anti-Inflammatory Signature Revealed by Liver Transcription Profiling of Tmprss6−/− Mice 
PLoS ONE  2013;8(7):e69694.
Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA)-low hepcidin show a pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO mice, Hfe−/− mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of Hfe−/− deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target pathways/genes of Tmprss6.
PMCID: PMC3726786  PMID: 23922777
13.  Rethinking Iron Regulation and Assessment in Iron Deficiency, Anemia of Chronic Disease, and Obesity: Introducing Hepcidin 
Adequate iron availability is essential to human development and overall health. Iron is a key component of oxygen-carrying proteins, has a pivotal role in cellular metabolism, and is essential to cell growth and differentiation. Inadequate dietary iron intake, chronic and acute inflammatory conditions, and obesity are each associated with alterations in iron homeostasis. Tight regulation of iron is necessary because iron is highly toxic and human beings can only excrete small amounts through sweat, skin and enterocyte sloughing, and fecal and menstrual blood loss. Hepcidin, a small peptide hormone produced mainly by the liver, acts as the key regulator of systemic iron homeostasis. Hepcidin controls movement of iron into plasma by regulating the activity of the sole known iron exporter ferroportin-1. Downregulation of the ferroportin-1 exporter results in sequestration of iron within intestinal enterocytes, hepatocytes, and iron-storing macrophages reducing iron bioavailability. Hepcidin expression is increased by higher body iron levels and inflammation and decreased by anemia and hypoxia. Importantly, existing data illustrate that hepcidin may play a significant role in the development of several iron-related disorders, including the anemia of chronic disease and the iron dysregulation observed in obesity. Therefore, the purpose of this article is to discuss iron regulation, with specific emphasis on systemic regulation by hepcidin, and examine the role of hepcidin within several disease states, including iron deficiency, anemia of chronic disease, and obesity. The relationship between obesity and iron depletion and the clinical assessment of iron status will also be reviewed.
PMCID: PMC3381289  PMID: 22717199
14.  Iron metabolism: current facts and future directions 
Biochemia Medica  2012;22(3):311-328.
Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ of system iron homeostasis. Liver cells receive multiple signals related to iron balance and respond by transcriptional regulation of hepcidin expression. This liver hormone is negative regulator of iron metabolism that represses iron efflux from macrophages, hepatocytes and enterocytes by its binding to iron export protein ferroportin. Ferroportin degradation leads to cellular iron retention and decreased iron availability. At level of a cell IRE/IRP (iron responsive elements/iron responsive proteins) system allows tight regulation of iron assimilation that prevents an excess of free intracellular iron which could lead to oxidative stress and damage of DNA, proteins and lipid membranes by ROS (reactive oxygen species). At the same time IRE/IRP system provides sufficient iron in order to meet the metabolic needs.
Recently a significant progress in understanding of iron metabolism has been made and new molecular participants have been characterized. Article gives an overview of the current understanding of iron metabolism: absorption, distribution, cellular uptake, release, and storage. We also discuss mechanisms underlying systemic and cellular iron regulation with emphasis on central regulatory hormone hepcidin.
PMCID: PMC3900049  PMID: 23092063
hepcidin; hemojuvelin; iron metabolism
15.  Estrogen Regulates Hepcidin Expression via GPR30-BMP6-Dependent Signaling in Hepatocytes 
PLoS ONE  2012;7(7):e40465.
Hepcidin, a liver-derived iron regulatory protein, plays a crucial role in iron metabolism. It is known that gender differences exist with respect to iron storage in the body; however, the effects of sex steroid hormones on iron metabolism are not completely understood. We focused on the effects of the female sex hormone estrogen on hepcidin expression. First, ovariectomized (OVX) and sham-operated mice were employed to investigate the effects of estrogen on hepcidin expression in an in vivo study. Hepcidin expression was decreased in the livers of OVX mice compared to the sham-operated mice. In OVX mice, bone morphologic protein-6 (BMP6), a regulator of hepcidin, was also found to be downregulated in the liver, whereas ferroportin (FPN), an iron export protein, was upregulated in the duodenum. Both serum and liver iron concentrations were elevated in OVX mice relative to their concentrations in sham-operated mice. In in vitro studies, 17β-estradiol (E2) increased the mRNA expression of hepcidin in HepG2 cells in a concentration-dependent manner. E2-induced hepatic hepcidin upregulation was not inhibited by ICI 182720, an inhibitor of the estrogen receptor; instead, hepcidin expression was increased by ICI 182720. E2 and ICI 182720 exhibit agonist actions with G-protein coupled receptor 30 (GPR30), the 7-transmembrane estrogen receptor. G1, a GPR30 agonist, upregulated hepcidin expression, and GPR30 siRNA treatment abolished E2-induced hepcidin expression. BMP6 expression induced by E2 was abolished by GPR30 silencing. Finally, both E2 and G1 supplementation restored reduced hepatic hepcidin and BMP6 expression and reversed the augmentation of duodenal FPN expression in the OVX mice. In contrast, serum hepcidin was elevated in OVX mice, which was reversed in these mice with E2 and G1. Thus, estrogen is involved in hepcidin expression via a GPR30-BMP6-dependent mechanism, providing new insight into the role of estrogen in iron metabolism.
PMCID: PMC3394730  PMID: 22792339
16.  Iron regulation by hepcidin 
The Journal of Clinical Investigation  2013;123(6):2337-2343.
Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physiologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulation of hepcidin is found in many disease states, such as the anemia of chronic disease, iron refractory iron deficiency anemia, cancer, hereditary hemochromatosis, and ineffective erythropoiesis, such as β-thalassemia. Thus, the regulation of hepcidin is the subject of interest for the amelioration of the detrimental effects of either iron deficiency or overload.
PMCID: PMC3668831  PMID: 23722909
17.  Inflammation Regulates TMPRSS6 Expression via STAT5 
PLoS ONE  2013;8(12):e82127.
TMPRSS6 is a regulated gene, with a crucial role in the regulation of iron homeostasis by inhibiting hepcidin expression. The main regulator of iron homeostasis, the antimicrobial peptide hepcidin, which also has a role in immunity, is directly upregulated by inflammation. In this study, we analyzed whether inflammation is also a modulator of TMPRSS6 expression in vitro and in vivo and we determined the mechanism of this regulation A Human Hepatoma cell line was treated with interleukin-6 and mice were injected with lipopolysaccharide and TMPRSS6 expression and the regulatory mechanism were addressed. In this study, we demonstrate that inflammation downregulates TMPRSS6 expression in vitro and in vivo. The downregulation of Tmprss6 by inflammation in mice is not dependent on the Bmp-Smad pathway but occurs through a decrease in Stat5 phosphorylation. Moreover, Stat5 positively regulates Tmprss6 expression directly by binding to a Stat5 element located on the Tmprss6 promoter. Importantly, our results highlight the functional role of inflammatory modulation of TMPRSS6 expression in the regulation of hepcidin. TMPRSS6 inhibition via decreased STAT5 phosphorylation may be an additional mechanism by which inflammation stimulates hepcidin expression to regulate iron homeostasis and immunity.
PMCID: PMC3871639  PMID: 24376517
18.  Hereditary Hemochromatosis and Transferrin Receptor 2 
Biochimica et Biophysica Acta  2011;1820(3):256-263.
Multicellular organisms regulate the uptake of calories, trace elements, and other nutrients by complex feedback mechanisms. In the case of iron, the body senses internal iron stores, iron requirements for hematopoiesis, and inflammatory status, and regulates iron uptake by modulating the uptake of dietary iron from the intestine. Both the liver and the intestine participate in the coordination of iron uptake and distribution in the body. The liver senses inflammatory signals and iron status of the organism and secretes a peptide hormone, hepcidin. Under high iron or inflammatory conditions hepcidin levels increase. Hepcidin binds to the iron transport protein, ferroportin (FPN), promoting FPN internalization and degradation. Decreased FPN levels reduce iron efflux out of intestinal epithelial cells and macrophages into the circulation. Derangements in iron metabolism result in either the abnormal accumulation of iron in the body, or in anemias. The identification of the mutations that cause the iron overload disease, hereditary hemochromatosis (HH), or iron-refractory iron-deficiencey anemia has revealed many of the proteins used to regulate iron uptake.
Scope of the review
In this review we discuss recent data concerning the regulation of iron homeostasis in the body by the liver and how transferrin receptor 2 (TfR2) affects this process.
Major conclusions
TfR2 plays a key role in regulating iron homeostasis in the body.
General significance
The regulation of iron homeostasis is important. One third of the people in the world are anemic. HH is the most common inherited disease in people of Northern European origin and can lead to severe health complications if left untreated.
PMCID: PMC3234335  PMID: 21864651
Hereditary hemochromatosis; transferrin receptor 2; TfR2; HFE; hepcidin; hemojuvelin; BMP; ferroportin
19.  Iron-Responsive miR-485-3p Regulates Cellular Iron Homeostasis by Targeting Ferroportin 
PLoS Genetics  2013;9(4):e1003408.
Ferroportin (FPN) is the only known cellular iron exporter in mammalian cells and plays a critical role in the maintenance of both cellular and systemic iron balance. During iron deprivation, the translation of FPN is repressed by iron regulatory proteins (IRPs), which bind to the 5′ untranslated region (UTR), to reduce iron export and preserve cellular iron. Here, we report a novel iron-responsive mechanism for the post-transcriptional regulation of FPN, mediated by miR-485-3p, which is induced during iron deficiency and represses FPN expression by directly targeting the FPN 3′UTR. The overexpression of miR-485-3p represses FPN expression and leads to increased cellular ferritin levels, consistent with increased cellular iron. Conversely, both inhibition of miR-485-3p activity and mutation of the miR-485-3p target sites on the FPN 3′UTR are able to relieve FPN repression and lead to decreased cellular iron levels. Together, these findings support a model that includes both IRPs and microRNAs as iron-responsive post-transcriptional regulators of FPN. The involvement of microRNA in the iron-responsive regulation of FPN offers additional stability and fine-tuning of iron homeostasis within different cellular contexts. MiR-485-3p-mediated repression of FPN may also offer a novel potential therapeutic mechanism for circumventing hepcidin-resistant mechanisms responsible for some iron overload diseases.
Author Summary
Cellular iron homeostasis is maintained by a sophisticated system that responds to iron levels and coordinates the expression of targets important for balancing iron export and uptake with intracellular storage and utilization. Ferroportin is the only known cellular iron exporter in mammalian cells and plays a critical role in both cellular and systemic iron balance. Thus the ability to regulate cellular iron export is of great interest in the search for therapeutic strategies to control dysregulated iron homeostasis, iron overload disorders, and conditions affected by cellular iron concentrations such as antimicrobial resistance. During iron deprivation, repression of ferroportin levels reduces iron export and preserves cellular iron. Ferroportin translation is known to be repressed by iron regulatory proteins that bind to the 5′UTR, yet alternative mechanisms that can post-transcriptionally regulate ferroportin have not been previously reported. Here, we find that miR-485-3p is induced during iron deficiency and represses ferroportin by directly targeting its 3′UTR, and further experimental evidence supports a model that includes both iron regulatory proteins and microRNAs as post-transcriptional regulators of ferroportin. These findings demonstrate a novel role for microRNAs in the cellular response to iron deficiency and can have therapeutic implications for various diseases of iron homeostasis.
PMCID: PMC3616902  PMID: 23593016
20.  Function of the hemochromatosis protein HFE: Lessons from animal models 
Hereditary hemochromatosis (HH) is caused by chronic hyperabsorption of dietary iron. Progressive accumulation of excess iron within tissue parenchymal cells may lead to severe organ damage. The most prevalent type of HH is linked to mutations in the HFE gene, encoding an atypical major histocompatibility complex classImolecule. Shortly after its discovery in 1996, the hemochromatosis protein HFE was shown to physically interact with transferrin receptor 1 (TfR1) and impair the uptake of transferrin-bound iron in cells. However, these findings provided no clue why HFE mutations associate with systemic iron overload. It was later established that all forms of HH result from misregulation of hepcidin expression. This liver-derived circulating peptide hormone controls iron efflux from duodenal enterocytes and reticuloendothelial macrophages by promoting the degradation of the iron exporter ferroportin. Recent studies with animal models of HH uncover a crucial role of HFE as a hepatocyte iron sensor and upstream regulator of hepcidin. Thus, hepatocyte HFE is indispensable for signaling to hepcidin, presumably as a constituent of a larger iron-sensing complex. A working model postulates that the signaling activity of HFE is silenced when the protein is bound to TfR1. An increase in the iron saturation of plasma transferrin leads to displacement of TfR1 from HFE and assembly of the putative iron-sensing complex. In this way, iron uptake by the hepatocyte is translated into upregulation of hepcidin, reinforcing the concept that the liver is the major regulatory site for systemic iron homeostasis, and not merely an iron storage depot.
PMCID: PMC2773850  PMID: 19058322
Hepcidin; Iron metabolism; Transferrin; Hemojuvelin; Bone morphogenetic proteins
21.  Leishmania-Mediated Inhibition of Iron Export Promotes Parasite Replication in Macrophages 
PLoS Pathogens  2014;10(1):e1003901.
Leishmania parasites infect macrophages, cells that play an important role in organismal iron homeostasis. By expressing ferroportin, a membrane protein specialized in iron export, macrophages release iron stored intracellularly into the circulation. Iron is essential for the intracellular replication of Leishmania, but how the parasites compete with the iron export function of their host cell is unknown. Here, we show that infection with Leishmania amazonensis inhibits ferroportin expression in macrophages. In a TLR4-dependent manner, infected macrophages upregulated transcription of hepcidin, a peptide hormone that triggers ferroportin degradation. Parasite replication was inhibited in hepcidin-deficient macrophages and in wild type macrophages overexpressing mutant ferroportin that is resistant to hepcidin-induced degradation. Conversely, intracellular growth was enhanced by exogenously added hepcidin, or by expression of dominant-negative ferroportin. Importantly, dominant-negative ferroportin and macrophages from flatiron mice, a mouse model for human type IV hereditary hemochromatosis, restored the infectivity of mutant parasite strains defective in iron acquisition. Thus, inhibition of ferroportin expression is a specific strategy used by L. amazonensis to inhibit iron export and promote their own intracellular growth.
Author Summary
Infection with the protozoan parasite Leishmania causes significant human disease in many parts of the world, particularly in the Middle East, India and South America. The parasite is transmitted by sand flies, which are difficult to control and are becoming increasingly common in urban areas. With domestic dogs serving as reservoirs of the disease and global travel increasing the population of infected human patients, the overall burden of leishmaniasis is on the rise. In mammals these parasites replicate inside macrophages, and therefore need strategies to survive within a cell that is specialized in killing pathogens. Earlier work demonstrated that iron is one of the essential nutrients that Leishmania must acquire from host cells to survive. Acquiring iron is particularly challenging inside macrophages, which play an important role in host iron homeostasis and export iron extracellularly through the membrane transporter ferroportin. We found that Leishmania amazonesis induces their host macrophages to produce hepcidin, a peptide that triggers internalization and degradation of ferroportin. This strategy increases the macrophage intracellular iron pool, and stimulates Leishmania replication. These results suggest that defects in iron homeostasis, which occur frequently in the human population, can have an important role in susceptibility to Leishmania infections.
PMCID: PMC3907422  PMID: 24497831
22.  Hepcidin Regulation by BMP Signaling in Macrophages Is Lipopolysaccharide Dependent 
PLoS ONE  2012;7(9):e44622.
Hepcidin is an antimicrobial peptide, which also negatively regulates iron in circulation by controlling iron absorption from dietary sources and iron release from macrophages. Hepcidin is synthesized mainly in the liver, where hepcidin is regulated by iron loading, inflammation and hypoxia. Recently, we have demonstrated that bone morphogenetic protein (BMP)-hemojuvelin (HJV)-SMAD signaling is central for hepcidin regulation in hepatocytes. Hepcidin is also expressed by macrophages. Studies have shown that hepcidin expression by macrophages increases following bacterial infection, and that hepcidin decreases iron release from macrophages in an autocrine and/or paracrine manner. Although previous studies have shown that lipopolysaccharide (LPS) can induce hepcidin expression in macrophages, whether hepcidin is also regulated by BMPs in macrophages is still unknown. Therefore, we examined the effects of BMP signaling on hepcidin expression in RAW 264.7 and J774 macrophage cell lines, and in primary peritoneal macrophages. We found that BMP4 or BMP6 alone did not have any effect on hepcidin expression in macrophages although they stimulated Smad1/5/8 phosphorylation and Id1 expression. In the presence of LPS, however, BMP4 and BMP6 were able to stimulate hepcidin expression in macrophages, and this stimulation was abolished by the NF-κB inhibitor Ro1069920. These results suggest that hepcidin expression is regulated differently in macrophages than in hepatocytes, and that BMPs regulate hepcidin expression in macrophages in a LPS-NF-κB dependent manner.
PMCID: PMC3441567  PMID: 23028567
23.  BMP6 treatment compensates for the molecular defect and ameliorates hemochromatosis in Hfe knockout mice 
Gastroenterology  2010;139(5):1721-1729.
Abnormal hepcidin regulation is central to the pathogenesis of HFE hemochromatosis. Hepatic bone morphogenetic protein 6 (BMP6)-SMAD signaling is a main regulatory mechanism controlling hepcidin expression, and this pathway was recently demonstrated to be impaired in Hfe knockout (Hfe−/−) mice. To more definitively determine whether HFE regulates hepcidin expression through an interaction with the BMP6-SMAD signaling pathway, we investigated whether hepatic Hfe overexpression activates the BMP6-SMAD pathway to induce hepcidin expression. We then investigated whether excess exogenous BMP6 administration overcomes the BMP6-SMAD signaling impairment and ameliorates hemochromatosis in Hfe−/− mice.
The BMP6-SMAD pathway and the effects of neutralizing BMP6 antibody were examined in Hfe transgenic mice (Hfe Tg) compared with wildtype (WT) mice. Hfe−/− and WT mice were treated with exogenous BMP6 and analyzed for hepcidin expression and iron parameters.
Hfe Tg mice exhibited hepcidin excess and iron deficiency anemia. Hfe Tg mice also exhibited increased hepatic BMP6-SMAD target gene expression compared with WT mice, while anti-BMP6 antibody administration to Hfe Tg mice improved the hepcidin excess and iron deficiency. In Hfe−/− mice, supraphysiologic doses of exogenous BMP6 improved hepcidin deficiency, reduced serum iron, and redistributed tissue iron to appropriate storage sites.
HFE interacts with the BMP6-SMAD signaling pathway to regulate hepcidin expression, but HFE is not necessary for hepcidin induction by BMP6. Exogenous BMP6 treatment in mice compensates for the molecular defect underlying Hfe hemochromatosis, and BMP6-like agonists may have a role as an alternative therapeutic strategy for this disease.
PMCID: PMC3295242  PMID: 20682319
hemochromatosis; HFE; bone morphogenetic protein
24.  The serine protease TMPRSS6 is required to sense iron deficiency 
Science (New York, N.Y.)  2008;320(5879):1088-1092.
Hepcidin, a liver-derived protein that restricts enteric iron absorption, is the key regulator of body iron content. Several proteins induce expression of the hepcidin-encoding gene Hamp in response to infection or high levels of iron. However, mechanism(s) of Hamp suppression during iron depletion are poorly understood. Here we describe mask, a recessive, chemically induced mutant mouse phenotype, characterized by progressive loss of body but not facial hair and microcytic anemia. The mask phenotype results from reduced absorption of dietary iron caused by high levels of hepcidin, and is due to a splicing defect in the transmembrane serine protease 6 gene Tmprss6. Overexpression of normal TMPRSS6 protein suppresses activation of the Hamp promoter, and the TMPRSS6 cytoplasmic domain mediates Hamp suppression via proximal promoter element(s). TMPRSS6 is an essential component of a pathway that detects iron deficiency and blocks Hamp transcription, permitting enhanced dietary iron absorption.
PMCID: PMC2430097  PMID: 18451267
25.  Iron-Dependent Regulation of Hepcidin in Hjv−/− Mice: Evidence That Hemojuvelin Is Dispensable for Sensing Body Iron Levels 
PLoS ONE  2014;9(1):e85530.
Hemojuvelin (Hjv) is a bone morphogenetic protein (BMP) co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv−/− mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv−/− mice developed systemic iron overload under all regimens. Transferrin (Tf) was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin.
PMCID: PMC3883712  PMID: 24409331

Results 1-25 (1070071)