PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (924397)

Clipboard (0)
None

Related Articles

1.  Influence of pharmacogenetic variability on the pharmacokinetics and toxicity of the aurora kinase inhibitor danusertib 
Investigational New Drugs  2010;29(5):953-962.
Summary
Objectives Danusertib is a serine/threonine kinase inhibitor of multiple kinases, including aurora-A, B, and C. This explorative study aims to identify possible relationships between single nucleotide polymorphisms in genes coding for drug metabolizing enzymes and transporter proteins and clearance of danusertib, to clarify the interpatient variability in exposure. In addition, this study explores the relationship between target receptor polymorphisms and toxicity of danusertib. Methods For associations with clearance, 48 cancer patients treated in a phase I study were analyzed for ABCB1, ABCG2 and FMO3 polymorphisms. Association analyses between neutropenia and drug target receptors, including KDR, RET, FLT3, FLT4, AURKB and AURKA, were performed in 30 patients treated at recommended phase II dose-levels in three danusertib phase I or phase II trials. Results No relationships between danusertib clearance and drug metabolizing enzymes and transporter protein polymorphisms were found. Only, for the one patient with FMO3 18281AA polymorphism, a significantly higher clearance was noticed, compared to patients carrying at least 1 wild type allele. No effect of target receptor genotypes or haplotypes on neutropenia was observed. Conclusions As we did not find any major correlations between pharmacogenetic variability in the studied enzymes and transporters and pharmacokinetics nor toxicity, it is unlikely that danusertib is highly susceptible for pharmacogenetic variation. Therefore, no dosing alterations of danusertib are expected in the future, based on the polymorphisms studied. However, the relationship between FMO3 polymorphisms and clearance of danusertib warrants further research, as we could study only a small group of patients.
doi:10.1007/s10637-010-9405-7
PMCID: PMC3160560  PMID: 20182906
Pharmacogenetics; Pharmacogenomics; PHA-739358; Danusertib; Cancer: aurora kinase inhibitor
2.  Abcg2 Overexpression Represents a Novel Mechanism for Acquired Resistance to the Multi-Kinase Inhibitor Danusertib in BCR-ABL-Positive Cells In Vitro 
PLoS ONE  2011;6(4):e19164.
The success of Imatinib (IM) therapy in chronic myeloid leukemia (CML) is compromised by the development of IM resistance and by a limited IM effect on hematopoietic stem cells. Danusertib (formerly PHA-739358) is a potent pan-aurora and ABL kinase inhibitor with activity against known BCR-ABL mutations, including T315I. Here, the individual contribution of both signaling pathways to the therapeutic effect of Danusertib as well as mechanisms underlying the development of resistance and, as a consequence, strategies to overcome resistance to Danusertib were investigated. Starting at low concentrations, a dose-dependent inhibition of BCR-ABL activity was observed, whereas inhibition of aurora kinase activity required higher concentrations, pointing to a therapeutic window between the two effects. Interestingly, the emergence of resistant clones during Danusertib exposure in vitro occurred considerably less frequently than with comparable concentrations of IM. In addition, Danusertib-resistant clones had no mutations in BCR-ABL or aurora kinase domains and remained IM-sensitive. Overexpression of Abcg2 efflux transporter was identified and functionally validated as the predominant mechanism of acquired Danusertib resistance in vitro. Finally, the combined treatment with IM and Danusertib significantly reduced the emergence of drug resistance in vitro, raising hope that this drug combination may also achieve more durable disease control in vivo.
doi:10.1371/journal.pone.0019164
PMCID: PMC3082549  PMID: 21541334
3.  A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies 
Background
Docetaxel is a taxane anticancer drug used in a wide variety of solid tumors. Liposomes are versatile drug carriers that may increase drug solubility, serve as sustained release systems, provide protection from drug degradation and toxicities, and help overcome multidrug resistance. This phase I study was conducted to determine the maximum tolerated dose, dose-limiting toxicities (DLTs), pharmacokinetics (PK), and clinical response of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies.
Methods
LE-DT was administered using a standard 3 + 3 dose escalation schema with dose levels of 50, 65, 85, 110, and 132 mg/m2 IV on a 3-week cycle. Toxicities were assessed using the NCI-CTCAE version 3.0, and response was assessed using RECIST criteria (version 1.0). PK samples were drawn during cycle 1 and analyzed using a non-compartmental analysis.
Results
Twenty-four patients were treated for 1–30 cycles (median = 4). No DLTs were experienced through dose levels of 50, 65, 85, and 110 mg/m2. Two out of two patients experienced grade 4 neutropenia at the 132 mg/m2 dose level. When an additional three patients were treated at the expanded 110 mg/m2 dose level, two experienced grade 4 neutropenia. The 85 mg/m2 dose level was reassessed with an expanded group of three additional patients, and only one of three patients experienced grade 4 neutropenia. The protocol was amended to allow G-CSF during cycle 1, and an additional three patients were treated at 110 mg/m2 with no DLTs experienced. No patient experienced significant neuropathy, even patients treated for 19, 20, and 30 cycles. PK followed a two-compartment elimination pattern; there was no correlation between PK and toxicity. Two patients with thyroid and neuroendocrine cancer had partial responses (PR, 8 %), and one patient with non-small-cell lung cancer had an unconfirmed PR. Eight patients (33 %) had stable disease lasting more than 3 months, for a clinical benefit rate of 41 %.
Conclusion
LE-DT was well tolerated with expected toxicities of neutropenia, anemia, and fatigue, but without neuropathy or edema. Clinical benefit (SD + PR) was observed in 41 % of the patients. The recommended phase II dose of LE-DT is 85 mg/m2 without G-CSF or 110 mg/m2 with G-CSF.
doi:10.1007/s00280-012-2048-y
PMCID: PMC3703246  PMID: 23274395
Phase I; Liposomes; Docetaxel; Clinical trial
4.  Phase I and Pharmacokinetic Study of ABI-007, Albumin-bound Paclitaxel, Administered Every 3 Weeks in Japanese Patients with Solid Tumors 
Objective
ABI-007 is a novel Cremophor® EL-free nanoparticle albumin-bound paclitaxel. This Phase I study was designed to evaluate tolerability and determine recommended dose for Japanese patients when ABI-007 was administered in every-3-week schedule. Pharmacokinetics of paclitaxel was also assessed.
Methods
Patients with advanced solid tumors refractory to standard therapy received a 30 min intravenous infusion of ABI-007 every 3 weeks without pre-medications at 200, 260 or 300 mg/m2, respectively. Tolerability and recommended dose were determined by the standard ‘3 + 3’ rule.
Results
No dose-limiting toxicity was observed, despite the dose escalation. In another cohort, 260 mg/m2 was re-evaluated and resulted in no dose-limiting toxicity. Grade 3 or 4 neutropenia was reported for the majority of patients (n = 8) but no incidence of febrile neutropenia. Non-hematological toxicities were generally mild except for Grade 3 sensory neuropathy (n = 3). Pharmacokinetic study demonstrated the area under the curve of paclitaxel increased with increasing the dosage, and comparable pharmacokinetic parameters to the western population. Partial response was observed in three non-small cell lung cancer patients. Two of whom had received docetaxel-containing chemotherapy prior to the study.
Conclusions
ABI-007 administered in every-3-week schedule was well tolerated up to 300 mg/m2, and recommended dose was determined at 260 mg/m2 in consideration of efficacy, toxicities and similarity of pharmacokinetic profile in western studies. Additional studies of single-agent ABI-007 as well as platinum-based combinations, particularly in patients with non-small cell lung cancer, are warranted.
doi:10.1093/jjco/hyp192
PMCID: PMC2862657  PMID: 20133335
nanoparticle albumin-bound paclitaxel; ABI-007; Phase I; pharmacokinetic; Japanese
5.  PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib study of patients with advanced solid tumours 
BMC Cancer  2012;12:496.
Background
The purpose of this phase Ib clinical trial was to determine the maximum tolerated dose (MTD) of PR-104 a bioreductive pre-prodrug given in combination with gemcitabine or docetaxel in patients with advanced solid tumours.
Methods
PR-104 was administered as a one-hour intravenous infusion combined with docetaxel 60 to 75 mg/m2 on day one given with or without granulocyte colony stimulating factor (G-CSF) on day two or administrated with gemcitabine 800 mg/m2 on days one and eight, of a 21-day treatment cycle. Patients were assigned to one of ten PR-104 dose-levels ranging from 140 to 1100 mg/m2 and to one of four combination groups. Pharmacokinetic studies were scheduled for cycle one day one and 18F fluoromisonidazole (FMISO) positron emission tomography hypoxia imaging at baseline and after two treatment cycles.
Results
Forty two patients (23 females and 19 males) were enrolled with ages ranging from 27 to 85 years and a wide range of advanced solid tumours. The MTD of PR-104 was 140 mg/m2 when combined with gemcitabine, 200 mg/m2 when combined with docetaxel 60 mg/m2, 770 mg/m2 when combined with docetaxel 60 mg/m2 plus G-CSF and ≥770 mg/m2 when combined with docetaxel 75 mg/m2 plus G-CSF. Dose-limiting toxicity (DLT) across all four combination settings included thrombocytopenia, neutropenic fever and fatigue. Other common grade three or four toxicities included neutropenia, anaemia and leukopenia. Four patients had partial tumour response. Eleven of 17 patients undergoing FMISO scans showed tumour hypoxia at baseline. Plasma pharmacokinetics of PR-104, its metabolites (alcohol PR-104A, glucuronide PR-104G, hydroxylamine PR-104H, amine PR-104M and semi-mustard PR-104S1), docetaxel and gemcitabine were similar to that of their single agents.
Conclusions
Combination of PR-104 with docetaxel or gemcitabine caused dose-limiting and severe myelotoxicity, but prophylactic G-CSF allowed PR-104 dose escalation with docetaxel. Dose-limiting thrombocytopenia prohibited further evaluation of the PR104-gemcitabine combination. A recommended dose was identified for phase II trials of PR-104 of 770 mg/m2 combined with docetaxel 60 to 75 mg/m2 both given on day one of a 21-day treatment cycle supported by prophylactic G-CSF (NCT00459836).
doi:10.1186/1471-2407-12-496
PMCID: PMC3495895  PMID: 23098625
6.  A first in human study of SB-743921, a kinesin spindle protein inhibitor, to determine pharmacokinetics, biologic effects and establish a recommended phase II dose 
Purpose
To determine the maximum-tolerated dose (MTD), dose-limiting toxicity (DLT), safety, pharmacokinetics, and pharmacodynamics of SB-743921 when administered as a 1-h infusion every 21 days to patients with advanced solid tumors or relapsed/refractory lymphoma.
Methods
Patients who failed prior standard therapy or those without any standard options were eligible. Forty-four patients were enrolled using an initial accelerated dose-escalation phase followed by a standard dose-escalation phase. An additional 20 patients were enrolled at the recommended phase II dose to obtain additional safety and pharmacokinetic data. The doses evaluated ranged from 2 to 8 mg/m2. The pharmacokinetics of SB-743921 was evaluated at 19 time-points over 48 h following during administration during cycle 1. Toxicity was assessed by the NCI Common Terminology Criteria version 3.0. Response evaluation was performed every 6 weeks.
Results
The most common and consistent DLT was neutropenia. Other DLTs observed included hypophosphatemia, pulmonary emboli, SVC syndrome, transaminitis, hyponatremia, and hyperbilirubinemia. The MTD of SB-743921 as a 1-h infusion every 21 days was established as 4 mg/m2. The maximum plasma concentration and area under the plasma concentration time curve appeared to increase proportionally to dose. One durable objective response was seen in a patient with metastatic cholangiocarcinoma who was on treatment 11 months and 6 patients had stable disease for over four cycles.
Conclusions
The recommended phase II dose of SB-743921 on this specific schedule of a 1-h infusion every 3 weeks is 4 mg/m2. The promising efficacy and lack of severe toxicities in this study warrant the continued development of SB-743921.
doi:10.1007/s00280-010-1346-5
PMCID: PMC4160065  PMID: 20461380
SB-743921; Phase I; Pharmacokinetics; Kinesin spindle protein; Mitosis; Safety
7.  Aurora Kinase Inhibitor PHA-739358 Suppresses Growth of Hepatocellular Carcinoma In Vitro and in a Xenograft Mouse Model1 
Neoplasia (New York, N.Y.)  2009;11(9):934-944.
Patients with advanced stages of hepatocellular carcinoma (HCC) face a poor prognosis. Although encouraging clinical results have been obtained with multikinase inhibitor sorafenib, the development of improved therapeutic strategies for HCC remains an urgent goal. Aurora kinases are key regulators of the cell cycle, and their uncontrolled expression promotes aneuploidy and tumor development. In tissue microarray analyses, we detected aurora-A kinase expression in all of the examined 93 human HCC samples, whereas aurora-B kinase expression levels significantly correlated with the proliferation index of HCCs. In addition, two human HCC cell lines (Huh-7 and HepG2) were tested positive for aurora-A and -B and revealed Ser10 phosphorylation of histone H3, indicating an increased aurora-B kinase activity. The antiproliferative features of a novel aurora kinase inhibitor, PHA-739358, currently under investigation in phase 2 clinical trials for other solid tumors, were examined in vitro and in vivo. At concentrations exceeding 50nM, PHA-739358 completely suppressed tumor cell proliferation in cell culture experiments and strongly decreased histone H3 phosphorylation. Cell cycle inhibition and endoreduplication were observed at 50 nM, whereas higher concentrations led to a complete G2/M-phase arrest. In vivo, administration of PHA-739358 resulted in significant tumor growth inhibition at a well-tolerated dose. In combination with sorafenib, additive effects were observed. Remarkably, when tumors restarted to grow under sorafenib monotherapy, subsequent treatment with PHA-739358 induced tumor shrinkage by up to 81%. Thus, targeting aurora kinases with PHA-739358 is a promising therapeutic strategy administered alone or in combination with sorafenib for patients with advanced stages of HCC.
PMCID: PMC2735802  PMID: 19724687
8.  A phase I trial of docetaxel and pulse-dose 17-allylamino-17-demethoxygeldanamycin in adult patients with solid tumors 
Cancer chemotherapy and pharmacology  2011;69(4):1089-1097.
Purpose
To define maximum tolerated dose (MTD), clinical toxicities, and pharmacokinetics of 17-allylamino-17-demethoxygeldanamycin (17-AAG) when administered in combination with docetaxel once every 21 days in patients with advanced solid tumor malignancies.
Experimental design
Docetaxel was administered over 1 h at doses of 55, 70, and 75 mg/m2. 17-AAG was administered over 1–2 h, following the completion of the docetaxel infusion, at escalating doses ranging from 80 to 650 mg/m2 in 12 patient cohorts. Serum was collected for pharmacokinetic and pharmacodynamic studies during cycle 1. Docetaxel, 17-AAG, and 17-AG levels were determined by high-performance liquid chromatography. Biologic effects of 17-AAG were monitored in peripheral blood mononuclear cells by immunoblot.
Results
Forty-nine patients received docetaxel and 17-AAG. The most common all-cause grade 3 and 4 toxicities were leukopenia, lymphopenia, and neutropenia. An MTD was not defined; however, three dose-limiting toxicities were observed, including 2 incidences of neutropenic fever and 1 of junctional bradycardia. Dose escalation was halted at docetaxel 75 mg/m2-17-AAG 650 mg/m2 due to delayed toxicities attributed to patient intolerance of the DMSO-based 17-AAG formulation. Of 46 evaluable patients, 1 patient with lung cancer experienced a partial response. Minor responses were observed in patients with lung, prostate, melanoma, and bladder cancers. A correlation between reduced docetaxel clearance and 17-AAG dose level was observed.
Conclusions
The combination of docetaxel and 17-AAG was well tolerated in adult patients with solid tumors, although patient intolerance to the DMSO formulation precluded further dose escalation. The recommended phase II dose is docetaxel 70 mg/m2 and 17-AAG 500 mg/m2.
doi:10.1007/s00280-011-1789-3
PMCID: PMC3471133  PMID: 22124669
17-AAG; Geldanamycin; Hsp90; Docetaxel; Phase I
9.  Phase 1 dose-escalation, pharmacokinetic, and cerebrospinal fluid distribution study of TAK-285, an investigational inhibitor of EGFR and HER2 
Investigational New Drugs  2013;32(1):160-170.
Summary
Introduction This phase 1 study assessed safety, maximum tolerated dose (MTD), pharmacokinetics, cerebrospinal fluid (CSF) distribution, and preliminary clinical activity of the receptor tyrosine kinase inhibitor TAK-285. Methods Patients with advanced, histologically confirmed solid tumors and Eastern Cooperative Oncology Group performance status ≤2 received daily oral TAK-285; daily dose was escalated within defined cohorts until MTD and recommended phase 2 dose (RP2D) were determined. Eleven patients were enrolled into an RP2D cohort. Blood samples were collected from all cohorts; CSF was collected at pharmacokinetic steady-state from RP2D patients. Tumor responses were assessed every 8 weeks per Response Evaluation Criteria in Solid Tumors. Results Fifty-four patients were enrolled (median age 60; range, 35–76 years). The most common diagnoses were cancers of the colon (28 %), breast (17 %), and pancreas (9 %). Escalation cohorts evaluated doses from 50 mg daily to 500 mg twice daily; the MTD/RP2D was 400 mg twice daily. Dose-limiting toxicities included diarrhea, hypokalemia, and fatigue. Drug absorption was fast (median time of maximum concentration was 2–3 h), and mean half-life was 9 h. Steady-state average unbound CSF concentration (geometric mean 1.54 [range, 0.51–4.27] ng/mL; n = 5) at the RP2D was below the 50 % inhibitory concentration (9.3 ng/mL) for inhibition of tyrosine kinase activity in cells expressing recombinant HER2. Best response was stable disease (12 weeks of nonprogression) in 13 patients. Conclusions TAK-285 was generally well tolerated at the RP2D. Distribution in human CSF was confirmed, but the free concentration of the drug was below that associated with biologically relevant target inhibition.
doi:10.1007/s10637-013-9988-x
PMCID: PMC3913854  PMID: 23817974
Breast cancer; Brain metastases; EGFR; HER2; Pharmacokinetics
10.  Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study 
The lancet oncology  2013;14(6):472-480.
Summary
Background
Various human cancers have ALK gene translocations, amplifications, or oncogenic mutations, such as anaplastic large-cell lymphoma, inflammatory myofibroblastic tumours, non-small-cell lung cancer (NSCLC), and neuroblastoma. Therefore, ALK inhibition could be a useful therapeutic strategy in children. We aimed to determine the safety, recommended phase 2 dose, and antitumour activity of crizotinib in children with refractory solid tumours and anaplastic large-cell lymphoma.
Methods
In this open-label, phase 1 dose-escalation trial, patients older than 12 months and younger than 22 years with measurable or evaluable solid or CNS tumours, or anaplastic large-cell lymphoma, refractory to therapy and for whom there was no known curative treatment were eligible. Crizotinib was given twice daily without interruption. Six dose levels (100, 130, 165, 215, 280, 365 mg/m2 per dose) were assessed in the dose-finding phase of the study (part A1), which is now completed. The primary endpoint was to estimate the maximum tolerated dose, to define the toxic effects of crizotinib, and to characterise the pharmacokinetics of crizotinib in children with refractory cancer. Additionally, patients with confirmed ALK translocations, mutations, or amplification (part A2 of the study) or neuroblastoma (part A3) could enrol at one dose level lower than was currently given in part A1. We assessed ALK genomic status in tumour tissue and used quantitative RT-PCR to measure NPM-ALK fusion transcript in bone marrow and blood samples of patients with anaplastic large-cell lymphoma. All patients who received at least one dose of crizotinib were evaluable for response; patients completing at least one cycle of therapy or experiencing dose limiting toxicity before that were considered fully evaluable for toxicity. This study is registered with ClinicalTrials. gov, NCT00939770.
Findings
79 patients were enrolled in the study from Oct 2, 2009, to May 31, 2012. The median age was 10·1 years (range 1·1–21·4); 43 patients were included in the dose escalation phase (A1), 25 patients in part A2, and 11 patients in part A3. Crizotinib was well tolerated with a recommended phase 2 dose of 280 mg/m2 twice daily. Grade 4 adverse events in cycle 1 were neutropenia (two) and liver enzyme elevation (one). Grade 3 adverse events that occurred in more than one patient in cycle 1 were lymphopenia (two), and neutropenia (eight). The mean steady state peak concentration of crizotinib was 630 ng/mL and the time to reach this peak was 4 h (range 1–6). Objective tumour responses were documented in 14 of 79 patients (nine complete responses, five partial responses); and the anti-tumour activity was enriched in patients with known activating ALK aberrations (eight of nine with anaplastic large-cell lymphoma, one of 11 with neuroblastoma, three of seven with inflammatory myofibroblastic tumour, and one of two with NSCLC).
Interpretation
The findings suggest that a targeted inhibitor of ALK has antitumour activity in childhood malignancies harbouring ALK translocations, particularly anaplastic large-cell lymphoma and inflammatory myofibroblastic tumours, and that further investigation in the subset of neuroblastoma harbouring known ALK oncogenic mutations is warranted.
Funding
Pfizer and National Cancer Institute grant to the Children’s Oncology Group.
doi:10.1016/S1470-2045(13)70095-0
PMCID: PMC3730818  PMID: 23598171
11.  Plasma and cerebrospinal fluid pharmacokinetics of topotecan in a phase I trial of topotecan, tamoxifen, and carboplatin, in the treatment of recurrent or refractory brain or spinal cord tumors 
Purpose
This study was designed to ascertain the dose-limiting toxicities (DLT) and maximally tolerated doses of the combination of fixed-dose tamoxifen and carboplatin, with escalating doses of topotecan, and to determine the pharmacokinetics of topotecan in the plasma and cerebrospinal fluid.
Methods
Tamoxifen 100 mg po bid, topotecan 0.25, 0.5, 0.75, or 1.0 mg/m2/d IV, administered as a 72 h continuous infusion on days 1–3, followed by carboplatin AUC = 3, IV on day 3. Cycles were repeated every 4 weeks.
Results
Seventeen patients received 39 cycles of treatment: median 2, (range 1–5). The tumors included glioblastoma (6), anaplastic astrocytoma (2), metastatic non-small cell (3), small cell lung (2), and one each with medulloblastoma, ependymoma, and metastatic breast or colon carcinoma. The median Karnofsky performance status was 70% (range 60–90%) and age: 52 (range 24–75). Eleven patients were female and six male. Toxicities included thrombocytopenia (2), neutropenia without fever lasting 6 days (1), DVT (2), and emesis (1). Topotecan levels, total and lactone, were measured prior to the end of infusion in plasma and cerebrospinal fluid (CSF). At 1.0 mg/m2/d, the median CSF/plasma ratio was 19.4% (range 15.1–59.1%). The total plasma topotecan in two pts with DLTs was 4.63 and 5.87 ng/ml, in three without DLTs at the same dose level the mean total plasma topotecan was 3.4 ng/ml (range 3.02–3.83). Plasma lactone levels were 33% of the total; CSF penetration was 20% of the total plasma levels. 4/8 pts with high-grade gliomas had stable disease (median: 3 cycles (range 2–5)). Two had minor responses. One patient with metastatic non-small cell and one with small cell lung cancer had objective PRs.
Conclusions
The recommended phase II doses are: tamoxifen 100 mg po bid, topotecan 0.75 mg/m2/d IV continuous infusion for 72 h, followed by carboplatin AUC = 3 IV on day 3. Measurable topotecan levels, both total and lactone, are observed in the CSF.
doi:10.1007/s00280-010-1242-z
PMCID: PMC3265324  PMID: 20107803
Topotecan; Carboplatin; Tamoxifen; Brain tumors; Chemotherapy
12.  Intercalated Erlotinib-Docetaxel Dosing Schedules Designed to Achieve Pharmacodynamic Separation: Results of a Phase I/II Trial 
Introduction
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) given concurrently with chemotherapy do not improve patient outcomes compared with chemotherapy alone in advanced non-small cell lung cancer (NSCLC). Based on preclinical models, we hypothesized pharmacodynamic separation, achieved by intermittent delivery of EGFR TKIs intercalated with chemotherapy, as a reasonable strategy to deliver combination therapy.
Methods
A Phase I dose-escalating trial employing two scheduling strategies (arm A and arm B) was conducted in advanced solid tumor patients to determine the feasibility of intermittent erlotinib and docetaxel. Phase II efficacy evaluation was conducted in an expanded cohort of previously treated advanced NSCLC patients using arm B scheduling. Docetaxel was given every 21 days (70–75 mg/m2 intravenously) in both arms. In arm A, erlotinib was administered on Days 2, 9, and 16 (600–1000 mg); in arm B, erlotinib was delivered on Days 2 through 16 (150 – 300 mg). Patients without progression or unacceptable toxicity after 6 cycles continued erlotinib alone.
Results
Eighty-one patients were enrolled in this study (17 arm A; 25 arm B; 39 at phase II dose). Phase I patients had advanced solid tumors and 22 with NSCLC (10 and 12 patients for arms A and B, respectively). Treatment was well-tolerated for both arms, with dose-limiting toxicities including: grade 3 infection and febrile neutropenia in arm A (maximum tolerated dose [MTD] of erlotinib 600 mg/docetaxel 70 mg/m2); grade 4 rash, febrile neutropenia, grade 3 mucositis, and grade 3 diarrhea in arm B (MTD of erlotinib 200 mg/docetaxel 70 mg/m2). The MTD for arm B was chosen for phase II evaluation given the feasibility of administration, number of responses (1 complete response, 3 partial responses), and achievement of pharmacodynamic separation. The response rate for patients treated at the phase II dose was 28.2% and disease control rate was 64.1%. Median progression-free and overall survival was 4.1 and 18.2 months, respectively. Common grade ≥ 3 toxicities were neutropenia (36%) and diarrhea (18%).
Conclusions
Pharmacodynamic separation utilizing intercalated schedules of erlotinib delivered on an intermittent basis together with docetaxel chemotherapy is feasible and tolerable. Further studies employing this approach together with interrogation of relevant molecular pathways are ongoing.
doi:10.1097/JTO.0b013e31822ae061
PMCID: PMC3219834  PMID: 21892109
erlotinib; docetaxel; pharmacodynamic separation; non-small cell lung cancer; phase II
13.  Pharmacodynamic-Guided Modified Continuous Reassessment Method–Based, Dose-Finding Study of Rapamycin in Adult Patients With Solid Tumors 
Journal of Clinical Oncology  2008;26(25):4172-4179.
Purpose
Pharmacodynamic studies are frequently incorporated into phase I trials, but it is uncommon that they guide dose selection. We conducted a dose selection study with daily rapamycin (sirolimus) in patients with solid tumors employing a modified continuous reassessment method (mCRM) using real-time pharmacodynamic data as primary dose-estimation parameter.
Patients and Methods
We adapted the mCRM logit function from its classic toxicity-based input data to a pharmacodynamic-based input. The pharmacodynamic end point was skin phospho-P70 change after 28 days. Pharmacodynamic effect was defined as at least 80% inhibition from baseline. The first two dose levels (2 and 3 mg) were evaluated before implementing the mCRM, and the data used to estimate the next dose level based on statistical modeling. Toxicity-based boundaries limited the escalation steps. Other correlates analyzed were positron emission tomography (PET) and computed tomography, pharmacokinetics, phospho-P70 in peripheral-blood mononuclear cells, and tumor biopsies in patients at the maximum-tolerated dose (MTD).
Results
Twenty-one patients were enrolled at doses between 2 and 9 mg. Pharmacodynamic effect occurred across dose levels, and toxicity boundaries ultimately drove dose selection. The MTD of daily oral rapamycin was 6 mg. Toxicities in at least 20% were hyperglycemia, hyperlipidemia, elevated transaminases, anemia, leucopenia, neutropenia, and mucositis. Pharmacokinetics were consistent with prior data, and exposure increased with dose. No objective responses occurred, but five previously progressing patients received at least 12 cycles. PET showed generalized stable or decreased glucose uptake unrelated to antitumor effect.
Conclusion
mCRM-based dose escalation using real-time pharmacodynamic assessment was feasible. However, the selected pharmacodynamic end point did not correlate with dose. Toxicity ultimately drove dose selection. Rapamycin is a well-tolerated and active oral anticancer agent.
doi:10.1200/JCO.2008.16.2347
PMCID: PMC2654371  PMID: 18757332
14.  Phase I Trial of Oxaliplatin, Infusional 5-Fluorouracil, and Leucovorin (FOLFOX4) With Erlotinib and Bevacizumab in Colorectal Cancer 
Clinical colorectal cancer  2010;9(5):297-304.
Rationale
This phase I study was conducted to determine the maximum tolerated dose (MTD) of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, with 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX4) in patients with advanced colorectal cancer (CRC). Bevacizumab was later included as standard of care at the MTD.
Patients and Methods
Patients received FOLFOX4 with escalating doses of erlotinib: dose level (DL) 1, 50 mg; DL 2, 100 mg; and DL 3, 150 mg once daily continuously. Bevacizumab 5 mg/kg days 1 and 15 was added at the MTD upon Food and Drug Administration approval. Correlative studies included pharmacokinetics, pharmacodynamics was assessed in paired skin biopsies, and fluorodeoxyglucose positron emission tomography scans.
Results
Fifteen patients received 60 cycles (120 FOLFOX treatments). Two dose-limiting toxicities (DLTs) were seen at DL 3: intolerable grade 2 rash (Common Terminology Criteria for Adverse Events version 2) lasting > 1 week, and grade 4 neutropenia. Dose level 2 was expanded to 6 more patients, this time adding bevacizumab, and 1 DLT of grade 3 mucositis occurred. As expected, the primary toxicities were cytopenias, diarrhea, rash, and fatigue. There were 2 occurrences of pneumatosis. One patient experienced an unrelated grade 4 myocardial infarction before starting chemotherapy. No pharmacokinetic drug interactions were observed. The Response Evaluation Criteria in Solid Tumors response rate was 11 of 14 (78%), median progression-free survival was 9.5 months, and median overall survival was 30 months. Three patients are currently alive > 3 years, with 1 having no evidence of disease.
Conclusion
The MTD of erlotinib with FOLFOX4 with or without bevacizumab is 100 mg daily. The regimen appeared to increase toxicity but showed activity in patients with CRC.
doi:10.3816/CCC.2010.n.043
PMCID: PMC3033228  PMID: 21208844
Epidermal growth factor receptor; Pharmacokinetics; Tyrosine kinase
15.  Phase I–II study of docetaxel and ifosfamide combination in patients with anthracycline pretreated advanced breast cancer 
British Journal of Cancer  2003;88(8):1168-1174.
Given the established individual activity of docetaxel and ifosfamide in anthracycline pretreated advanced breast cancer, the present phase I–II study aimed to define the maximum tolerated dose (MTD), the dose-limiting toxicities (DLTs), and activity of the docetaxel–ifosfamide combination in this setting. Cohorts of three to six patients with histologically confirmed metastatic breast cancer after prior anthracycline-based chemotherapy were treated at successive dose levels (DLs) with escalated doses of docetaxel 70–100 mg m−2 over 1 h on day 1 followed by ifosfamide 5–6 g m−2 divided over days 1 and 2 (2.5–3.0 g m−2 day−1 over 1 h), and recycled every 21 days. G-CSF was added once dose-limiting neutropenia was encountered at a certain DL and planned to be incorporated prophylactically in subsequent higher DLs. In total, 56 patients with a median age of 54.5 (range, 32–72) years and performance status (WHO) of 1 (range, 0–2) were treated at five DLs as follows: 21 in phase I DLs (DL1: 3, DL2: 6, DL3: 3, DL4: 6, and DL5: 3) and the remaining 35 were treated at DL4 (total of 41 patients at DL4), which was defined as the level for phase II testing. All patients were assessable for toxicity and 53 for response. Dose-limiting toxicity (with the addition of G-CSF after DL2) was reached at DL5 with two out of three initial patients developing febrile neutropenia (FN). Clinical response rates, on an intention-to-treat basis, in phase II were: 53.6% (95% CI, 38.3–68.9%); three complete remissions, 19 partial remissions, seven stable disease, and 12 progressive disease. The median response duration was 7 months (3–24 months), median time to progression 6.5 month (0.1–26 month), and median overall survival 13 months (0.1–33 months). Grade 3/4 toxicities included time to progression neutropenia in 78% of patients–with 63% developing grade 4 neutropenia (⩽7 days) and in 12% of these FN, while no grade 3/4 thrombocytopenia was observed. Other toxicities included peripheral neuropathy grade 2 only in 12%, grade 1/2 reversible CNS toxicity in 17%, no renal toxicity, grade 2 myalgias in 10%, grade 3 diarrhoea in 10%, skin/nail toxicity in 17%, and grade 2 fluid retention in 2% of patients. One patient in the study treated at phase II died as a result of acute liver failure after the first cycle. In conclusion, the present phase I–II study determined the feasibility of the docetaxel–ifosfamide combination, defined the MTD and demonstrated the encouraging activity of the regimen in phase II, thus warranting further randomised phase III comparisons to single-agent docetaxel or combinations of the latter with other active agents.
doi:10.1038/sj.bjc.6600887
PMCID: PMC2747562  PMID: 12698179
docetaxel; ifosfamide; breast cancer; phase I study
16.  Phase I Study to Assess the Safety, Tolerability and Pharmacokinetics of AZD4877 in Japanese Patients with Solid Tumors 
Archives of Drug Information  2011;4(2):23-31.
Introduction
AZD4877 is a potent Eg5 inhibitor that has been shown to have an acceptable tolerability profile in a Phase I study of Western patients with solid tumors. This study was conducted to evaluate the safety, pharmacokinetic (PK) profile, maximum tolerated dose (MTD) and efficacy of AZD4877 in a Japanese population with solid tumors.
Methods
In this Phase I, open-label, dose-escalation study, AZD4877 (10, 15, 20 or 25 mg) was administered as a 1-hour intravenous infusion on days 1, 8 and 15 of repeated 28-day cycles to Japanese patients with advanced solid tumors. Adverse events (AEs) were evaluated according to Common Terminology Criteria for Adverse Events (CTCAE) version 3.0. PK variables were assessed pre- and post dosing. The MTD of AZD4877 was determined by evaluating dose-limiting toxicities (DLTs). Efficacy was evaluated by assessing best response according to Response Evaluation Criteria In Solid Tumors version 1.0.
Results
Of the 21 patients enrolled, 18 received at least one dose of AZD4877 (N = 3 in both the 10 and 15 mg cohorts, N = 6 in both the 20 and 25 mg cohorts). The most commonly reported AEs were fatigue and nausea (39% of patients each). One patient in each of the 20 and 25 mg cohorts experienced a DLT (neutropenia and febrile neutropenia). Dose escalation was halted at 25 mg and the MTD was not defined in this population. CTCAE grade ≥3 abnormal laboratory findings/vital signs were reported in 12 patients, with neutropenia (56%) and leukopenia (44%) being the most commonly reported. Exposure to AZD4877 was not fully dose proportional and AZD4877 clearance and elimination half-life appeared independent of dose. The best response to AZD4877 was stable disease in five of 16 evaluable patients.
Conclusion
AZD4877 up to doses of 25 mg was well tolerated in Japanese patients. There was little evidence of clinical efficacy.
doi:10.1111/j.1753-5174.2011.00034.x
PMCID: PMC3130141  PMID: 21765863
AZD4877; Eg5 Inhibitor; Solid Tumors; Japanese
17.  A Phase I study of the Heat Shock Protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors 
Purpose
A Phase I study to define toxicity and recommend a Phase II dose of the HSP90 inhibitor alvespimycin (17-DMAG; 17-dimethylaminoethylamino-17-demethoxygeldanamycin). Secondary endpoints included evaluation of pharmacokinetic profile, tumor response and definition of a biologically effective dose (BED).
Patients and Methods
Patients with advanced solid cancers were treated with weekly, intravenous (IV) 17-DMAG. An accelerated titration dose escalation design was used. The maximum tolerated dose (MTD) was the highest dose at which ≤ 1/6 patients experienced dose limiting toxicity (DLT). Dose de-escalation from the MTD was planned with mandatory, sequential tumor biopsies to determine a BED. Pharmacokinetic and pharmacodynamic assays were validated prior to patient accrual.
Results
Twenty five patients received 17-DMAG (range 2.5 to 106 mg/m2). At 106mg/m2 of 17-DMAG 2/4 patients experienced DLT, including one treatment related death. No DLT occurred at 80mg/m2. Common adverse events were gastrointestinal, liver function changes and ocular. AUC and Cmax increased proportionally with 17-DMAG doses ≤ 80mg/m2. In peripheral blood mononuclear cells significant (p <0.05) HSP72 induction was detected (≥ 20mg/m2) and sustained for 96 hours (≥ 40mg/m2). Plasma HSP72 levels were greatest in the two patients who experienced DLT. At 80mg/m2 client protein (CDK4, LCK) depletion was detected and tumor samples from 3/5 patients confirmed HSP90 inhibition. Clinical activity included complete response (castration refractory prostate cancer, CRPC 124 weeks), partial response (melanoma, 159 weeks) and stable disease (chondrosarcoma, CRPC and renal cancer for 28, 59 and 76 weeks respectively).
Conclusion
The recommended Phase II dose of 17-DMAG is 80mg/m2 weekly, IV.
doi:10.1158/1078-0432.CCR-10-1927
PMCID: PMC3060938  PMID: 21278242
18.  A phase I safety, pharmacological, and biological study of the farnesyl protein transferase inhibitor, lonafarnib (SCH 663366), in combination with cisplatin and gemcitabine in patients with advanced solid tumors 
Purpose
This phase I study was conducted to evaluate the safety, tolerability, pharmacological properties and biological activity of the combination of the lonafarnib, a farnesylproteintransferase (FTPase) inhibitor, with gemcitabine and cisplatin in patients with advanced solid malignancies.
Experimental design
This was a single institution study to determine the maximal tolerated dose (MTD) of escalating lonafarnib (75–125 mg po BID) with gemcitabine (750–1,000 mg/m2 on days 1, 8, 15) and fixed cisplatin (75 mg/m2 day 1) every 28 days. Due to dose-limiting toxicities (DLTs) of neutropenia and thrombocytopenia in initial patients, these patients were considered “heavily pretreated” and the protocol was amended to limit prior therapy and re-escalate lonafarnib in “less heavily pre-treated patients” on 28-day and 21-day schedules. Cycle 1 and 2 pharmacokinetics (PK), and farnesylation of the HDJ2 chaperone protein and FPTase activity were analyzed.
Results
Twenty-two patients received 53 courses of therapy. Nausea, vomiting, and fatigue were frequent in all patients. Severe toxicities were observed in 91% of patients: neutropenia (41%), nausea (36%), thrombocytopenia (32%), anemia (23%) and vomiting (23%). Nine patients withdrew from the study due to toxicity. DLTs of neutropenia, febrile neutropenia, thrombocytopenia, and fatigue limited dose-escalation on the 28-day schedule. The MTD was established as lonafarnib 75 mg BID, gemcitabine 750 mg/m2 days 1, 8, 15, and cisplatin 75 mg/m2 in heavily pre-treated patients. The MTD in the less heavily pre-treated patients could not be established on the 28-day schedule as DLTs were observed at the lowest dose level, and dose escalation was not completed on the 21-day schedule due to early study termination by the Sponsor. No PK interactions were observed. FTPase inhibition was not observed at the MTD, however HDJ-2 gel shift was observed in one patient at the 100 mg BID lonafarnib dose. Anti-cancer activity was observed: four patients had stable disease lasting >2 cycles, one subject had a complete response, and another had a partial response, both with metastatic breast cancer.
Conclusion
Lonafarnib 75 mg BID, gemcitabine 750 mg/m2 days 1, 8, 15, and cisplatin 75 mg/m2 day 1 on a 28-day schedule was established as the MTD. Lonafarnib did not demonstrate FTPase inhibition at these doses. Despite the observed efficacy, substantial toxicity and questionable contribution of anti-tumor activity of lonafarnib to gemcitabine and cisplatin limits further exploration of this combination.
doi:10.1007/s00280-007-0646-x
PMCID: PMC2813768  PMID: 18058098
Lonafarnib; SCH66336; Cisplatin; Gemcitabine; Farnesyltransferase; Phase I; Pharmacokinetics
19.  A Phase I Study of Flavopiridol Administered with Oxaliplatin and Fluorouracil/Leucovorin (FOLFOX) in Advanced Solid Tumors: Encouraging Activity in Refractory Germ Cell Tumors 
Purpose
Flavopiridol, a cyclin-dependent kinase inhibitor, has promising clinical activity when combined with chemotherapy. Preclinical data indicate that flavopiridol enhances oxaliplatin (OX)- and fluorouracil (5FU)-induced apoptosis in a sequence-dependent manner.
Experimental Design
We conducted a phase I trial of flavopiridol + FOLFOX (folinic acid, 5FU, and OX) for advanced solid tumors. Flavopiridol was administered every two weeks with OX before 5FU, based on sequence-dependent growth inhibition. Flavopiridol pharmacokinetics and p53 status were evaluated.
Results
Forty-eight patients were treated on study. With dose escalation of OX (85 mg/m2) and 5FU (2400 mg/m2), dose-limiting toxicities (DLT) included hyponatremia, thrombocytopenia, and neutropenia. 5FU was subsequently reduced to allow for dose escalation of flavopiridol. DLTs with escalation of flavopiridol were nausea, vomiting, and neutropenia. The maximum tolerated dose (MTD) was flavopiridol 70 mg/m2, oxaliplatin 85 mg/m2, and 5FU 1800 mg/m2 continuous infusion over 48 hours. Clinical activity was noted in platinum-refractory germ cell tumors (GCTs): 3 out of 9 (33%) evaluable patients demonstrated a partial response on imaging, and 7 out of 10 (70%) had a decline in serum tumor markers. Responses were also observed in pancreatic, gastric, and sweat gland tumors. Flavopiridol pharmacokinetics had significant interpatient variability. At the MTD, tumor samples were p53 mutant (>30% positive cells) for responders and p53 wild-type for non-responders.
Conclusions
Flavopiridol with FOLFOX is a safe and tolerable regimen. Promising clinical activity was seen across tumor types. Encouraging results in the platinum-refractory GCT population has prompted a phase II trial which is currently open for accrual.
doi:10.1158/1078-0432.CCR-09-1502
PMCID: PMC2787644  PMID: 19934304
flavopiridol; FOLFOX; germ cell tumor; solid tumor; refractory
20.  A Phase I Study of Weekly Topotecan in Combination with Pemetrexed in Patients with Advanced Malignancies 
The Oncologist  2010;15(9):954-960.
The safety, tolerability, preliminary antitumor activity, and pharmacokinetic interaction of weekly topotecan plus pemetrexed in patients with advanced solid tumors were investigated. The combination was well tolerated and active.
Introduction.
This phase I study evaluated the safety, tolerability, preliminary antitumor activity, and pharmacokinetic interaction of weekly topotecan (days 1 and 8) in combination with pemetrexed (day 1 only) in patients with advanced solid tumors.
Methods.
Patients received topotecan (3.0–4.0 mg/m2 i.v. days 1 and 8) and pemetrexed (375–500 mg/m2 i.v. day 1) over 21-day cycles. Patients were accrued across five different dose levels and were observed for safety, tolerability, and preliminary activity.
Results.
Twenty-six patients received 120 cycles of pemetrexed and topotecan, including five patients who received 8, 8, 10, 12, and 17 cycles without dose reductions, confirming a lack of cumulative myelosuppression. Four patients received topotecan (4.0 mg/m2 i.v.) and pemetrexed (500 mg/m2 i.v.), but experienced two dose-limiting toxicities (febrile neutropenia, grade 4 thrombocytopenia). As a result, the topotecan (3.5 mg/m2 i.v.) and pemetrexed (500 mg/m2 i.v.) group was expanded to 12 patients. The only grade 3 or 4 nonhematologic toxicity was one episode of grade 3 fatigue; no grade 3 or 4 nausea/vomiting/diarrhea, mucositis, or rash was reported. One non-small cell lung cancer (NSCLC) patient (12 months) and one soft tissue sarcoma patient (6 months) achieved a partial response.
Conclusions.
Weekly topotecan plus every-3-week pemetrexed was well tolerated and active. Full doses of topotecan plus pemetrexed caused brief reversible myelosuppression with minimal dose delays/reductions; no grade 3 or 4 nausea/vomiting/diarrhea, mucositis, or rash was reported. All six NSCLC patients at the recommended phase II dose had at least stable disease as a best response, including one partial response lasting 12 months. There was no evidence of an effect of pemetrexed on topotecan pharmacokinetics. Collectively, these data suggest that further phase II exploration of weekly topotecan plus every-3-week pemetrexed for advanced malignancies is indicated.
doi:10.1634/theoncologist.2010-0006
PMCID: PMC3228036  PMID: 20798192
Topotecan; Pemetrexed; Hematologic toxicity; Pharmacokinetics; Advanced solid tumors
21.  Phase I study of docetaxel plus ifosfamide in patients with advanced cancer 
British Journal of Cancer  2002;87(8):846-849.
The aim of this study was to determine the maximum tolerated dose of a fixed dose of docetaxel when combined with continuous infusion ifosfamide, with and without G-CSF support, in the treatment of advanced cancer, and to evaluate anti-tumour activity of this combination. Thirty-one patients with advanced malignancies were treated with docetaxel 75 mg/m2 intravenously on days 1, and ifosfamide at increasing dose levels from 1500 mg/m2/day to 2750 mg/m2/day as a continuous infusion from day 1–3, every 3 weeks. A total of 107 cycles of treatment were administered. Without G-CSF support dose-limiting toxicity of grade 4 neutropenia greater than 5 days duration occurred at dose level 1. With the addition of G-CSF the maximum tolerated dose was docetaxel 75 mg/m2 on day 1 and ifosfamide 2750 mg/m2/day on days 1–3. Dose limiting toxicity (DLT) included ifosfamide-induced encephalopathy, febrile neutropenia and grade three mucositis. Three complete responses and 3 partial responses were seen. This combination of docetaxel and infusional ifosfamide is feasible and effective. The recommended dose for future phase II studies is docetaxel 75 mg/m2 on day 1 and ifosfamide 2500 mg/m2/day continuous infusion on days 1–3.
British Journal of Cancer (2002) 87, 846–849. doi:10.1038/sj.bjc.6600542 www.bjcancer.com
© 2002 Cancer Research UK
doi:10.1038/sj.bjc.6600542
PMCID: PMC2376167  PMID: 12373597
ifosfamide; docetaxel; malignancy; toxicity; G-CSF
22.  A non-interventional study of biosimilar granulocyte colony-stimulating factor as prophylaxis for chemotherapy-induced neutropenia in a community oncology centre 
Objectives:
Prophylaxis with granulocyte colony-stimulating factor (G-CSF) reduces the severity of chemotherapy-induced neutropenia. Biosimilar G-CSF is now approved for use, based on comparable efficacy, safety and quality with the originator product.
Methods:
We conducted a retrospective review of patients’ charts following the switch from originator G-CSF (Neupogen®) to biosimilar G-CSF (Zarzio®/Filgrastim Hexal®) in a large community oncology practice. A total of 77 consecutive patients with cancer who received biosimilar G-CSF were reviewed, as were 25 patients who received originator G-CSF at the same centre.
Results:
The median age of patients in the biosimilar G-CSF cohort was 67 years (range 20−83). In this cohort 48% had chemotherapy with a febrile neutropenia risk of >20%. Biosimilar G-CSF was given as primary prophylaxis in 52% and as secondary prophylaxis in 48% of patients. Age and febrile neutropenia in medical history or in previous chemotherapy were factors that triggered the use of G-CSF in patients with a febrile neutropenia risk of <20%. One patient developed febrile neutropenia. Neutropenia led to chemotherapy dose reductions in five patients (6.5%) and discontinuation in two patients (2.5%). No unexpected safety findings were observed. Patient characteristics were generally similar in the originator G-CSF cohort. Only 24% of patients had a febrile neutropenia risk >20% and 36% received primary prophylactic G-CSF. One patient developed febrile neutropenia. Neutropenia led to chemotherapy dose reductions in two patients (8%) and discontinuation in two patients (8%).
Conclusions:
Biosimilar G-CSF was effective and prevented dose reductions/discontinuation in the majority of patients. Biosimilar G-CSF was considered clinically comparable to its reference product.
doi:10.1177/1758834012461330
PMCID: PMC3481562  PMID: 23118804
biosimilars; chemotherapy; granulocyte colony-stimulating factor; neutropenia
23.  An open-label study to determine the maximum tolerated dose of the multitargeted tyrosine kinase inhibitor CEP-11981 in patients with advanced cancer 
Investigational New Drugs  2014;32(6):1258-1268.
Summary
Background This phase I study evaluated the pharmacokinetics and pharmacodynamics of CEP-11981, an oral vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor, in patients with advanced, relapsed, or refractory solid tumors. Methods Oral CEP-11981 dose escalations followed a modified Fibonacci sequence (from 3.0 to 4.2, 5.9, 11.8, 19.7, 29.6, 41.4, 55.0, 73.0, 97.4, and 126.6 mg/m2). The maximum-tolerated dose (MTD), dose-limiting toxicities (DLTs), tumor response, and safety were evaluated. Results CEP-11981 was tolerated at doses between 3.0 and 97.4 mg/m2. The MTD of CEP-11981 was determined to be 97.4 mg/m2, with DLTs observed at the 126.6 mg/m2 dose. The DLTs were grade 4 neutropenia in 1 patient and grade 3 T-wave inversion with chest heaviness and fatigue in 1 patient. All 3 events resolved on stopping CEP-11981. The most frequently reported adverse events of any grade were fatigue, nausea, diarrhea, decreased appetite, abdominal pain, back pain, vomiting, constipation, headache, dizziness, and dyspnea. Treatment-related grade 3/4 neutropenia was observed in the highest-dose cohorts (2 patients at 97.4 mg/m2 and 1 patient at 126.6 mg/m2), indicating some off-target inhibition. VEGF inhibition was greatest in the higher-dose groups. Although no patient experienced complete or partial response, 44 % patients achieved stable disease when measured at ≥ 6 weeks, which occurred more frequently in cohorts receiving ≥ 73.0 mg/m2. Conclusions In patients with recurrent or refractory solid tumors, disease stabilization was achieved. Despite acceptable tolerability of CEP-11981 at the MTD, further development by the sponsor has ceased.
doi:10.1007/s10637-014-0147-9
PMCID: PMC4226840  PMID: 25152243
Dose-finding study; Multitargeted inhibition; Safety profile; Tie-2; Tyrosine kinase inhibitor; Vascular endothelial growth factor
24.  Phase I trial of vinflunine and pemetrexed in refractory solid tumors 
Investigational new drugs  2009;29(1):131-136.
Summary
Background
Vinflunine is a novel vinca alkaloid with promising single agent clinical activity. Pemetrexed has at least additive activity with other vincas. A phase I trial was undertaken to assess the safety of vinflunine and pemetrexed in patients with refractory solid tumors.
Methods
A standard 3-patient cohort dose escalation scheme was used to determine the dose-limiting toxicity (DLT) and maximum tolerated dose (MTD) of the vinflunine/pemetrexed combination. Pemetrexed 500 mg/m2 was given with vinflunine 280 mg/m2 (cohort 1), 300 mg/m2 (cohort 2) or 320 mg/m2 (cohort 3) on day 1 of a 21-day cycle.
Results
19 patients were enrolled, median age 58 years (range 32 to 77) and had a median of 3 (range 1–6) prior therapies. DLT occured 1 of 6 pts in cohort 1 (thrombocytopenia, hyponatremia), 2 of 10 pts in cohort 2 (febrile neutropenia, hyponatremia, hyperbilirubinema; febrile neutropenia), and 2 of 3 pts in cohort 3 (febrile neutropenia, hypokalemia; febrile neutropenia). 1 pt in cohort 2 died prior to completion of cycle 1 likely from disease progression. Most common grade 3/4 adverse events were neutropenia (7), leukopenia (5). Febrile neutropenia occurred in 4 patients (21%). No objective responses were seen. Two patients (breast and lung) had prolonged stable disease for 25 and 20 cycles respectively.
Conclusions
Based on this experience we recommend vinflunine 300 mg/m2 and pemetrexed 500 mg/m2 in combination every 3 weeks for future study. At these doses, the combination of vinflunine and pemetrexed was tolerable in this heavily pretreated population. Hematologic toxicity, including febrile neutropenia, was prominent.
doi:10.1007/s10637-009-9344-3
PMCID: PMC3143820  PMID: 19830387
Phase I; Vinflunine; Pemetrexed; Vinca alkaloid
25.  Phase I Trial of Bortezomib (PS-341; NSC 681239) and Alvocidib (Flavopiridol; NSC 649890) in Patients with Recurrent or Refractory B-cell Neoplasms 
Purpose
A phase I study was conducted to determine the dose-limiting toxicities (DLT) and maximally tolerated dose (MTD) for the combination of bortezomib and alvocidib in patients with B cell malignancies (multiple myeloma, indolent and mantle cell lymphoma).
Experimental Design
Patients received bortezomib by IV push on days 1, 4, 8 and 11. Patients also received alvocidib on days 1 and 8 by 30 min bolus infusion followed by a 4 hour continuous infusion. Treatment was on a 21 day cycle, with indefinite continuation for patients experiencing responses or stable disease. Dose escalation employed a standard 3+3 design until the MTD was identified based upon DLTs. Pharmacokinetic studies and pharmacodynamic studies were performed.
Results
Sixteen patients were treated. The MTD was established as 1.3 mg/m2 for bortezomib and 30 mg/m2 for alvocidib (both the 30 min bolus and 4 hour infusions). Common hematologic toxicities included leukopenia, lymphopenia, neutropenia, and thrombocytopenia. Common non-hematologic toxicities included fatigue and febrile neutropenia. DLTs included fatigue, febrile neutropenia, and elevated aspartate aminotransferase (AST) levels. Two complete responses (CR; 12%) and five partial responses (PR; 31%) were observed at the MTD (overall response rate 44%). Pharmacokinetic results were typical for alvocidib, and pharmacodynamic studies yielded variable results.
Conclusions
The combination of bortezomib and alvocidib is tolerable and an MTD has been established for the tested schedule. The regimen appears active in patients with relapsed and/or refractory multiple myeloma or non-Hodgkin’s lymphoma, justifying phase II studies to determine the activity of this regimen more definitively.
doi:10.1158/1078-0432.CCR-10-2876
PMCID: PMC3096752  PMID: 21447728
Alvocidib; bortezomib; B cell neoplasms; phase I clinical trial

Results 1-25 (924397)