Search tips
Search criteria

Results 1-25 (779587)

Clipboard (0)

Related Articles

1.  Abcg2 Overexpression Represents a Novel Mechanism for Acquired Resistance to the Multi-Kinase Inhibitor Danusertib in BCR-ABL-Positive Cells In Vitro 
PLoS ONE  2011;6(4):e19164.
The success of Imatinib (IM) therapy in chronic myeloid leukemia (CML) is compromised by the development of IM resistance and by a limited IM effect on hematopoietic stem cells. Danusertib (formerly PHA-739358) is a potent pan-aurora and ABL kinase inhibitor with activity against known BCR-ABL mutations, including T315I. Here, the individual contribution of both signaling pathways to the therapeutic effect of Danusertib as well as mechanisms underlying the development of resistance and, as a consequence, strategies to overcome resistance to Danusertib were investigated. Starting at low concentrations, a dose-dependent inhibition of BCR-ABL activity was observed, whereas inhibition of aurora kinase activity required higher concentrations, pointing to a therapeutic window between the two effects. Interestingly, the emergence of resistant clones during Danusertib exposure in vitro occurred considerably less frequently than with comparable concentrations of IM. In addition, Danusertib-resistant clones had no mutations in BCR-ABL or aurora kinase domains and remained IM-sensitive. Overexpression of Abcg2 efflux transporter was identified and functionally validated as the predominant mechanism of acquired Danusertib resistance in vitro. Finally, the combined treatment with IM and Danusertib significantly reduced the emergence of drug resistance in vitro, raising hope that this drug combination may also achieve more durable disease control in vivo.
PMCID: PMC3082549  PMID: 21541334
2.  Influence of pharmacogenetic variability on the pharmacokinetics and toxicity of the aurora kinase inhibitor danusertib 
Investigational New Drugs  2010;29(5):953-962.
Objectives Danusertib is a serine/threonine kinase inhibitor of multiple kinases, including aurora-A, B, and C. This explorative study aims to identify possible relationships between single nucleotide polymorphisms in genes coding for drug metabolizing enzymes and transporter proteins and clearance of danusertib, to clarify the interpatient variability in exposure. In addition, this study explores the relationship between target receptor polymorphisms and toxicity of danusertib. Methods For associations with clearance, 48 cancer patients treated in a phase I study were analyzed for ABCB1, ABCG2 and FMO3 polymorphisms. Association analyses between neutropenia and drug target receptors, including KDR, RET, FLT3, FLT4, AURKB and AURKA, were performed in 30 patients treated at recommended phase II dose-levels in three danusertib phase I or phase II trials. Results No relationships between danusertib clearance and drug metabolizing enzymes and transporter protein polymorphisms were found. Only, for the one patient with FMO3 18281AA polymorphism, a significantly higher clearance was noticed, compared to patients carrying at least 1 wild type allele. No effect of target receptor genotypes or haplotypes on neutropenia was observed. Conclusions As we did not find any major correlations between pharmacogenetic variability in the studied enzymes and transporters and pharmacokinetics nor toxicity, it is unlikely that danusertib is highly susceptible for pharmacogenetic variation. Therefore, no dosing alterations of danusertib are expected in the future, based on the polymorphisms studied. However, the relationship between FMO3 polymorphisms and clearance of danusertib warrants further research, as we could study only a small group of patients.
PMCID: PMC3160560  PMID: 20182906
Pharmacogenetics; Pharmacogenomics; PHA-739358; Danusertib; Cancer: aurora kinase inhibitor
3.  Treatment of human pre-B acute lymphoblastic leukemia with the Aurora kinase inhibitor PHA-739358 (Danusertib) 
Molecular Cancer  2012;11:42.
Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemias (Ph-positive ALL) with clinically approved inhibitors of the Bcr/Abl tyrosine kinase frequently results in the emergence of a leukemic clone carrying the T315I mutation in Bcr/Abl, which confers resistance to these drugs. PHA-739358, an Aurora kinase inhibitor, was reported to inhibit the Bcr/Abl T315I mutant in CML cells but no preclinical studies have examined this in detail in human ALL.
We compared the sensitivity of human Bcr/Abl T315I, Bcr/Abl wild type and non-Bcr/Abl ALL cells to this drug. PHA-739358 inhibited proliferation and induced apoptosis independently of Bcr/Abl, the T315I mutation, or presence of the tumor suppressor p53, but the degree of effectiveness varied between different ALL samples. Since short-term treatment with a single dose of drug only transiently inhibited proliferation, we tested combination treatments of PHA-739358 with the farnesyltransferase inhibitor Lonafarnib, with vincristine and with dasatinib. All combinations reduced viability and cell numbers compared to treatment with a single drug. Clonogenic assays showed that 25 nM PHA-739358 significantly reduced the colony growth potential of Ph-positive ALL cells, and combined treatment with a second drug abrogated colony growth in this assay. PHA-739358 further effectively blocked Bcr/Abl tyrosine kinase activity and Aurora kinase B in vivo, and mice transplanted with human Bcr/Abl T315I ALL cells treated with a 3x 7-day cycle of PHA-739358 as mono-treatment had significantly longer survival.
PHA-739358 represents an alternative drug for the treatment of both Ph-positive and negative ALL, although combined treatment with a second drug may be needed to eradicate the leukemic cells.
PMCID: PMC3489684  PMID: 22721004
Ph-positive; Aurora kinase inhibition; Drug resistance; Stromal support; Co-culture; Farnesyltransferase inhibitor, Lonafarnib; Dasatinib, p53, Combination drug treatment
4.  Phase I dose escalation study of MK-0457, a novel Aurora kinase inhibitor, in adult patients with advanced solid tumors 
To assess the maximum-tolerated dose (MTD), dose-limiting toxicity (DLT), safety, and tolerability of the 24-hour continuous intravenous (CIV) infusion of MK-0457, a novel pan-Aurora kinase inhibitor, in patients with advanced solid tumors and to determine the bioavailability of an oral dose of 100 mg MK-0457.
Study Design
MK-0457 was administered as a 24-hour CIV infusion every 21 days. Dose escalation proceeded per toxicity criteria. A 100 mg oral dose was administered to 7 patients 48 hours prior to the CIV infusion dose of 64 mg/m2/hr.
Twenty-seven patients received a total of 86 infusions of MK-0457. Dose limiting toxicity at 96 mg/m2/hr included grade 4 neutropenia and grade 3 herpes zoster. The MTD was identified as 64 mg/m2/hr. The most common adverse events were nausea, vomiting, diarrhea and fatigue. Pharmacokinetic analyses revealed that CIV infusion MK-0457 had an estimated mean terminal half-life of approximately 6.6-10.2 hours and that end of infusion concentrations and mean AUCs were approximately dose proportional. The estimated mean oral bioavailability of MK-0457 was 7.9%. One patient with advanced ovarian cancer attained prolonged stable disease for 11 months.
MK-0457 was well tolerated in this schedule. Almost half the patients attained stable disease. Further development of this class of agents will likely occur in combination with other anti-cancer treatments.
PMCID: PMC3050703  PMID: 20386909
Phase I; Aurora kinase; serine/threonine protein kinases; BCR-ABL mutations
5.  The human Aurora kinase inhibitor danusertib is a lead compound for anti-trypanosomal drug discovery via target repurposing 
New drugs for neglected tropical diseases such as human African trypanosomiasis (HAT) are needed, yet drug discovery efforts are not often focused on this area due to cost. Target repurposing, achieved by the matching of essential parasite enzymes to those human enzymes that have been successfully inhibited by small molecule drugs, provides an attractive means by which new drug optimization programs can be pragmatically initiated. In this report we describe our results in repurposing an established class of human Aurora kinase inhibitors, typified by danusertib (1), which we have observed to be an inhibitor of trypanosomal Aurora kinase 1 (TbAUK1) and effective in parasite killing in vitro. Informed by homology modeling and docking, a series of analogs of 1 were prepared that explored the scope of the chemotype and provided a nearly 25-fold improvement in cellular selectivity for parasite cells over human cells.
PMCID: PMC3516633  PMID: 22889561
Aurora kinase; Trypanosoma brucei; TbAUK1; cell cycle; neglected disease; target repurposing; sleeping sickness
6.  Phase I and pharmacological study of the farnesyltransferase inhibitor tipifarnib (Zarnestra®, R115777) in combination with gemcitabine and cisplatin in patients with advanced solid tumours 
British Journal of Cancer  2005;93(11):1222-1229.
This phase I trial was designed to determine the safety and maximum tolerated dose (MTD) of tipifarnib in combination with gemcitabine and cisplatin in patients with advanced solid tumours. Furthermore, the pharmacokinetics of each of these agents was evaluated. Patients were treated with tipifarnib b.i.d. on days 1–7 of each 21-day cycle. In addition, gemcitabine was given as a 30-min i.v. infusion on days 1 and 8 and cisplatin as a 3-h i.v. infusion on day 1. An interpatient dose-escalation scheme was used. Pharmacokinetics was determined in plasma and white blood cells. In total, 31 patients were included at five dose levels. Dose-limiting toxicities (DLTs) consisted of thrombocytopenia grade 4, neutropenia grade 4, febrile neutropenia grade 4, electrolyte imbalance grade 3, fatigue grade 3 and decreased hearing grade 2. The MTD was tipifarnib 200 mg b.i.d., gemcitabine 1000 mg m−2 and cisplatin 75 mg m−2. Eight patients had a confirmed partial response and 12 patients stable disease. No clinically relevant pharmacokinetic interactions were observed. Tipifarnib can be administered safely at 200 mg b.i.d. in combination with gemcitabine 1000 mg m−2 and cisplatin 75 mg m−2. This combination showed evidence of antitumour activity and warrants further evaluation in a phase II setting.
PMCID: PMC2361514  PMID: 16251868
farnesyltransferase inhibitor; phase I study; pharmacokinetics
7.  Phase 1 study of MLN8054, a selective inhibitor of Aurora A kinase in patients with advanced solid tumors 
Aurora A kinase is critical in assembly and function of the mitotic spindle. It is overexpressed in various tumor types and implicated in oncogenesis and tumor progression. This trial evaluated the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of MLN8054, a selective small-molecule inhibitor of Aurora A kinase.
In this first-in-human, dose-escalation study, MLN8054 was given orally for 7, 14, or 21 days followed by a 14-day treatment-free period. Escalating cohorts of 3–6 patients with advanced solid tumors were treated until DLT was seen in ≥2 patients in a cohort. Serial blood samples were collected for pharmacokinetics and skin biopsies were collected for pharmacodynamics.
Sixty-one patients received 5, 10, 20, 30 or 40 mg once daily for 7 days; 25, 35, 45 or 55 mg/day in four divided doses (QID) for 7 days; or 55, 60, 70 or 80 mg/day plus methylphenidate or modafinil with daytime doses (QID/M) for 7–21 days. DLTs of reversible grade 3 benzodiazepine-like effects defined the estimated MTD of 60 mg QID/M for 14 days. MLN8054 was absorbed rapidly, exposure was dose-proportional, and terminal half-life was 30-40 hours. Three patients had stable disease for >6 cycles.
MLN8054 dosing for up to 14 days of a 28-day cycle was feasible. Reversible somnolence was dose limiting and prevented achievement of plasma concentrations predicted necessary for target modulation. A recommended dose for investigation in phase 2 trials was not established. A second-generation Aurora A kinase inhibitor is in development.
PMCID: PMC3026871  PMID: 20607239
MLN8054; Aurora A kinase; dose-limiting toxicity; pharmacokinetics; pharmacodynamics
8.  Decreased exposure to sunitinib due to concomitant administration of ifosfamide: results of a phase I and pharmacokinetic study on the combination of sunitinib and ifosfamide in patients with advanced solid malignancies 
British Journal of Cancer  2010;102(12):1699-1706.
This study aimed to define the maximally tolerated dose (MTD) of sunitinib combined with two different infusion schedules of ifosfamide.
Patients with advanced solid tumours, good performance score, good organ function, and no standard therapy available were eligible. Continuous once daily sunitinib, in escalating doses per cohort, was combined with ifosfamide, 9 g m−2 for 3 days or 6 g m−2 for 5 days, administered every 3 weeks. Pharmacokinetic (PK) and pharmacodynamic (PD) assessments were performed.
With growth-factor support, the MTD of sunitinib combined with either ifosfamide schedule was 12.5 mg in 32 patients enrolled. Neutropenia-related adverse events were dose-limiting toxicities. Sunitinib did not affect ifosfamide PK. Ifosfamide significantly decreased exposure to sunitinib and increased exposure to its metabolite, SU12662. No consistent changes in PD parameters were observed.
With growth-factor support, the MTD of sunitinib with both ifosfamide schedules was 12.5 mg. Ifosfamide produced decreased sunitinib blood levels because of CYP3A induction. As PK interactions cannot explain the relatively low sunitinib doses that can be combined with ifosfamide, synergy in toxicity is likely. Whether this also holds true for anti-tumour activity needs to be further explored.
PMCID: PMC2883699  PMID: 20485286
sunitinib; ifosfamide; pharmacokinetic; VEGF; drug-interaction; phase I
9.  Phase I and Pharmacokinetic Study of ABI-007, Albumin-bound Paclitaxel, Administered Every 3 Weeks in Japanese Patients with Solid Tumors 
ABI-007 is a novel Cremophor® EL-free nanoparticle albumin-bound paclitaxel. This Phase I study was designed to evaluate tolerability and determine recommended dose for Japanese patients when ABI-007 was administered in every-3-week schedule. Pharmacokinetics of paclitaxel was also assessed.
Patients with advanced solid tumors refractory to standard therapy received a 30 min intravenous infusion of ABI-007 every 3 weeks without pre-medications at 200, 260 or 300 mg/m2, respectively. Tolerability and recommended dose were determined by the standard ‘3 + 3’ rule.
No dose-limiting toxicity was observed, despite the dose escalation. In another cohort, 260 mg/m2 was re-evaluated and resulted in no dose-limiting toxicity. Grade 3 or 4 neutropenia was reported for the majority of patients (n = 8) but no incidence of febrile neutropenia. Non-hematological toxicities were generally mild except for Grade 3 sensory neuropathy (n = 3). Pharmacokinetic study demonstrated the area under the curve of paclitaxel increased with increasing the dosage, and comparable pharmacokinetic parameters to the western population. Partial response was observed in three non-small cell lung cancer patients. Two of whom had received docetaxel-containing chemotherapy prior to the study.
ABI-007 administered in every-3-week schedule was well tolerated up to 300 mg/m2, and recommended dose was determined at 260 mg/m2 in consideration of efficacy, toxicities and similarity of pharmacokinetic profile in western studies. Additional studies of single-agent ABI-007 as well as platinum-based combinations, particularly in patients with non-small cell lung cancer, are warranted.
PMCID: PMC2862657  PMID: 20133335
nanoparticle albumin-bound paclitaxel; ABI-007; Phase I; pharmacokinetic; Japanese
10.  A phase I study of BMS-690514 in Japanese patients with advanced or metastatic solid tumors 
BMS-690514 is a novel oral tyrosine kinase inhibitor of ErbB and vascular endothelial growth factor receptor. This open-label phase I dose-escalation study ( Identifier: NCT00516451) aimed to assess the safety, preliminary efficacy, pharmacokinetics, and pharmacodynamics of BMS-690514 in Japanese patients with advanced or metastatic solid tumors.
Patients with advanced or metastatic solid tumors received oral BMS-690514 once daily continuously until disease progression or intolerable toxicity occurred. Dose-limiting toxicity (DLT) was evaluated from the first dose to Day 29. Dose levels at 100 and 200 mg were investigated. Assessments included adverse events, tumor response, pharmacokinetics, pharmacodynamics, 2 [18F] fluoro-2-deoxyglucose positron-emitting tomography, and epidermal growth factor receptor and K-ras mutations.
BMS-690514 at the dose of 100 mg (n = 3) or 200 mg (n = 3) was administered once daily to totally nine patients and was well tolerated up to 200 mg. No treatment-related serious adverse events or DLTs were reported. Frequently observed treatment-related AEs were acne, diarrhea, dry skin, hypertension, stomatitis, blood fibrinogen increased, hemoglobin decreased, pruritus, and hypoalbuminemia. These were generally reported as Grade 1 and 2. Five of 9 patients (56 %) had stable disease. Plasma concentrations of BMS-690514 reached Cmax within 3 h and declined with an effective half-life of approximately 10 and 12 h at 100 and 200 mg, respectively.
Oral BMS-690514 was well tolerated in Japanese patients with advanced or metastatic solid tumors up to 200 mg.
PMCID: PMC3456941  PMID: 22878519
BMS-690514; Tyrosine kinase inhibitor; Phase I trial; Solid tumor
11.  A phase I study to determine the safety, pharmacokinetics and pharmacodynamics of a dual VEGFR and FGFR inhibitor, brivanib, in patients with advanced or metastatic solid tumors 
Annals of Oncology  2010;22(6):1413-1419.
Background: This study was designed to determine the safety, pharmacokinetics (PK) and pharmacodynamics (PD) of brivanib in patients with advanced/metastatic solid tumors.
Patients and methods: Ninety patients enrolled in this two-part, phase I open-label study of oral brivanib alaninate. The primary objectives of this study were (in part A) dose-limiting toxicity, maximum tolerated dose (MTD) and the lowest biologically active dose level and (in part B) the optimal dose/dose range. The secondary objectives of this study were preliminary evidence of antitumor activity, PK and PD.
Results: Across part A (open-label dose escalation and MTD) and part B (open-label dose optimization), 68 patients received brivanib alaninate. Brivanib demonstrated a manageable toxicity profile at doses of 180–800 mg. Most toxic effects were mild. Systemic exposure of the active moiety brivanib increased linearly ≤1000 mg/day. The MTD was 800 mg/day. Forty-four patients were treated at the MTD: 20 with 800 mg continuously, 11 with 800 mg intermittently and 13 with 400 mg b.i.d. doses. Partial responses were confirmed in two patients receiving brivanib ≥600 mg. Dynamic contrast-enhanced magnetic resonance imaging demonstrated statistically significant decreases in parameters reflecting tumor vascularity and permeability after multiple doses in the 800-mg continuous q.d. and 400-mg b.i.d. dose cohorts.
Conclusion: In patients with advanced/metastatic cancer, brivanib demonstrates promising antiangiogenic and antitumor activity and manageable toxicity at doses ≤800 mg orally q.d., the recommended phase II study dose.
PMCID: PMC3139984  PMID: 21131369
antiangiogenesis; brivanib; fibroblast growth factor; vascular endothelial growth factor
12.  A Phase 1 study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor in patients with refractory solid tumor malignancies and lymphomas 
To determine the maximum tolerated dose (MTD), toxicities, and pharmacokinetic-pharmacodynamic profile of the heat shock protein 90 (Hsp90) inhibitor PF-04929113 (SNX-5422) in patients with advanced solid tumors and lymphomas.
This was a single institution, phase I, dose-escalation study of PF-04929113 dosed twice-weekly. Endpoints included determination of dose-limiting toxicities (DLT), MTD, the safety profile of PF-04929113, pharmacodynamic assessment of PF-04929113 on Hsp70 induction, pharmacokinetic (PK) analysis of PF 04928473 (SNX-2112) and its prodrug PF-04929113 and assessment of response.
Thirty three patients with advanced malignancies were treated. Dose escalation was continued up to 177 mg/m2 administered orally twice a week. One DLT (non-septic arthritis) was noted. No grade 4 adverse events (AEs) were seen; grade 3 AEs included diarrhea (9%), non-septic arthritis (3%), AST elevation (3%) and thrombocytopenia (3%). No objective responses were seen in 32 evaluable patients. Fifteen patients (47%) had stable disease; 17 patients (53%) had progressive disease. PK data revealed rapid absorption, hepatic and extra-hepatic clearance, extensive tissue binding and almost linear pharmacokinetics of the active drug PF 04928473. PD studies confirmed inhibition of Hsp90 and a linear correlation between PK parameters and Hsp70 induction.
PF-04929113 administered orally twice weekly is well tolerated and inhibits its intended target Hsp90. No objective responses were seen but long lasting stabilizations were obtained. Although no clinically significant drug-related ocular toxicity was seen in this study the development of PF-04929113 has been discontinued due to ocular toxicity seen in animal models and in a separate phase I study.
PMCID: PMC3207004  PMID: 21908572
13.  A first-in-human dose-escalation study of ME-143, a second generation NADH oxidase inhibitor, in patients with advanced solid tumors 
Investigational New Drugs  2013;32:87-93.
Background ME-143, a second-generation tumor-specific NADH oxidase inhibitor, is broadly active against human cancers in vitro and in vivo. This first-in-human dose-escalation study evaluated the dose-limiting toxicities (DLTs), pharmacokinetics, safety, tolerability, and preliminary anti-tumor activity of ME-143 in patients with advanced solid tumors. Methods Patients with advanced solid tumors were treated in a 3 + 3 escalation design. ME-143 was administered via intravenous infusion on days 1, 8, and 15 of the first 28-day cycle, and weekly thereafter; the final cohort received twice-weekly treatment. Samples for pharmacokinetic analysis were collected during cycle 1. Treatment continued until disease progression or unacceptable toxicity. Results Eighteen patients were treated: 2.5 mg/kg (n = 3); 5 mg/kg (n = 3); 10 mg/kg (n = 3); 20 mg/kg (n = 6); 20 mg/kg twice-weekly (n = 3). There were no DLTs observed. Nearly all treatment-related toxicities were grade 1/2, specifically (all grades) nausea (22 %) and fatigue (17 %). Two patients experienced infusion reactions at the 20 mg/kg dose level, one of which was grade 4. Stable disease was documented in three patients with colorectal cancer, cholangiocarcinoma, and anal cancer. Pharmacokinetic exposures were linear and dose-dependent, with a half-life of approximately 5 h. Conclusions ME-143 was well-tolerated when administered intravenously at the maximally administered/recommended phase 2 dose of 20 mg/kg once weekly to patients with advanced solid tumors. Though limited clinical activity was observed with monotherapy, inhibitors of tumor-specific NADH oxidase such as ME-143 may derive their greatest benefit in combination with cytotoxic chemotherapy.
PMCID: PMC3913846  PMID: 23525756
ME-143; tNOX; Dose escalation; Isoflavone; Apoptosis
14.  First-in-human, Pharmacokinetic and Pharmacodynamic Phase I Study of Resminostat, an Oral Histone Deacetylase Inhibitor, in Patients with Advanced Solid Tumors 
This first-in-human dose-escalating trial investigated the safety, tolerability, maximum tolerated dose (MTD), dose-limiting toxicities (DLTs), pharmacokinetics and pharmacodynamics of the novel histone deacetylase (HDAC) inhibitor resminostat in patients with advanced solid tumors.
Experimental Design
Resminostat was administered orally once-daily on days 1-5 every 14 days at 5 dose levels between 100 mg and 800 mg. Safety, pharmacokinetics, pharmacodynamics including histone acetylation and HDAC enzyme activity, and antitumor efficacy were assessed.
Nineteen patients (median age 58 years, range 39-70) were treated. At 800 mg, 1 patient experienced grade 3 nausea and vomiting, grade 2 liver enzyme elevation, and grade 1 hypokalemia and thrombocytopenia; these were declared as a combined DLT. No other DLT was observed. Although an MTD was not reached and patients were safely dosed up to 800 mg, 3 of 7 patients treated with 800 mg underwent dose reductions after the DLT-defining period due to cumulative gastrointestinal toxicities and fatigue. All toxicities resolved following drug cessation. No grade 4 treatment-related adverse event was observed. The pharmacokinetic profile was dose-proportional with low inter-patient variability. Pharmacodynamic inhibition of HDAC enzyme was dose-dependent and reached 100% at doses ≥400 mg. Eleven heavily pre-treated patients had stable disease and 1 patient with metastatic thymoma had a 27% reduction in target lesion dimensions.
Resminostat was safely administered with a dose-proportional pharmacokinetic profile, optimal on-target pharmacodynamic activity at dose levels ≥400 mg and signs of antitumor efficacy. The recommended phase II dose is 600 mg once-daily on days 1-5 every 14 days.
PMCID: PMC3790647  PMID: 24065624
resminostat; histone deacetylase inhibitor; Phase I trial
15.  Phase I study of docetaxel plus ifosfamide in patients with advanced cancer 
British Journal of Cancer  2002;87(8):846-849.
The aim of this study was to determine the maximum tolerated dose of a fixed dose of docetaxel when combined with continuous infusion ifosfamide, with and without G-CSF support, in the treatment of advanced cancer, and to evaluate anti-tumour activity of this combination. Thirty-one patients with advanced malignancies were treated with docetaxel 75 mg/m2 intravenously on days 1, and ifosfamide at increasing dose levels from 1500 mg/m2/day to 2750 mg/m2/day as a continuous infusion from day 1–3, every 3 weeks. A total of 107 cycles of treatment were administered. Without G-CSF support dose-limiting toxicity of grade 4 neutropenia greater than 5 days duration occurred at dose level 1. With the addition of G-CSF the maximum tolerated dose was docetaxel 75 mg/m2 on day 1 and ifosfamide 2750 mg/m2/day on days 1–3. Dose limiting toxicity (DLT) included ifosfamide-induced encephalopathy, febrile neutropenia and grade three mucositis. Three complete responses and 3 partial responses were seen. This combination of docetaxel and infusional ifosfamide is feasible and effective. The recommended dose for future phase II studies is docetaxel 75 mg/m2 on day 1 and ifosfamide 2500 mg/m2/day continuous infusion on days 1–3.
British Journal of Cancer (2002) 87, 846–849. doi:10.1038/sj.bjc.6600542
© 2002 Cancer Research UK
PMCID: PMC2376167  PMID: 12373597
ifosfamide; docetaxel; malignancy; toxicity; G-CSF
16.  A phase I trial of docetaxel and pulse-dose 17-allylamino-17-demethoxygeldanamycin in adult patients with solid tumors 
Cancer chemotherapy and pharmacology  2011;69(4):1089-1097.
To define maximum tolerated dose (MTD), clinical toxicities, and pharmacokinetics of 17-allylamino-17-demethoxygeldanamycin (17-AAG) when administered in combination with docetaxel once every 21 days in patients with advanced solid tumor malignancies.
Experimental design
Docetaxel was administered over 1 h at doses of 55, 70, and 75 mg/m2. 17-AAG was administered over 1–2 h, following the completion of the docetaxel infusion, at escalating doses ranging from 80 to 650 mg/m2 in 12 patient cohorts. Serum was collected for pharmacokinetic and pharmacodynamic studies during cycle 1. Docetaxel, 17-AAG, and 17-AG levels were determined by high-performance liquid chromatography. Biologic effects of 17-AAG were monitored in peripheral blood mononuclear cells by immunoblot.
Forty-nine patients received docetaxel and 17-AAG. The most common all-cause grade 3 and 4 toxicities were leukopenia, lymphopenia, and neutropenia. An MTD was not defined; however, three dose-limiting toxicities were observed, including 2 incidences of neutropenic fever and 1 of junctional bradycardia. Dose escalation was halted at docetaxel 75 mg/m2-17-AAG 650 mg/m2 due to delayed toxicities attributed to patient intolerance of the DMSO-based 17-AAG formulation. Of 46 evaluable patients, 1 patient with lung cancer experienced a partial response. Minor responses were observed in patients with lung, prostate, melanoma, and bladder cancers. A correlation between reduced docetaxel clearance and 17-AAG dose level was observed.
The combination of docetaxel and 17-AAG was well tolerated in adult patients with solid tumors, although patient intolerance to the DMSO formulation precluded further dose escalation. The recommended phase II dose is docetaxel 70 mg/m2 and 17-AAG 500 mg/m2.
PMCID: PMC3471133  PMID: 22124669
17-AAG; Geldanamycin; Hsp90; Docetaxel; Phase I
17.  A dose-finding, pharmacokinetic and pharmacodynamic study of a novel schedule of flavopiridol in patients with advanced solid tumors 
Investigational new drugs  2010;30(2):629-638.
Based on the promising activity and tolerability of flavopiridol administered with a pharmacokinetically-derived dosing schedule in chronic lymphocytic leukemia (CLL), we conducted a phase I study using this schedule in patients with advanced solid tumors.
Experimental Design
Flavopiridol was given IV as a 30-min loading dose followed by a 4-hr infusion weekly for 4 weeks repeated every 6 weeks. Dose-escalation was in cohorts of three patients using the standard 3+3 phase I study design. Blood samples were obtained for pharmacokinetic and pharmacodynamic studies.
Thirty-four eligible patients with advanced solid tumors received a total of 208 doses (median 7, range 1–24). Total doses ranged from 40 – 105 mg/m2. The primary dose limiting toxicity was cytokine release syndrome (CKRS). No antitumor responses were observed. The mean peak plasma concentration across all doses was 1.65 ± 0.86 µM. Area under the concentration-versus-time curve (AUC0–∞) ranged from 4.31 to 32.2 µM·hr with an overall mean of 13.6 ± 7.0 µM·hr. Plasma flavopiridol concentrations and AUC increased proportionally with dose. There was no correlation between cytokine levels and clinical outcomes.
The maximum-tolerated dose of flavopiridol is 20 mg/m2 bolus followed by 20 mg/m2 infusion over 4 hours given weekly for 4 weeks on a 6-week cycle in patients with advanced solid tumors. Flavopiridol PK was notably different, and there was a higher frequency of CKRS, despite prophylactic steroids, seen in this patient group compared to previous studies with CLL using a similar dosing schedule.
PMCID: PMC3486515  PMID: 20938713
Flavopiridol; CDK inhibitor; Phase I trial; Solid tumors
18.  A Phase I, open-label, dose escalation study of afatinib, in a 3-week-on/1-week-off schedule in patients with advanced solid tumors 
Investigational New Drugs  2012;31(2):399-408.
Background A Phase I study to determine the maximum tolerated dose (MTD) and pharmacokinetics of afatinib (BIBW 2992), a novel irreversible ErbB Family Blocker, administered orally once daily in a 3-week-on/1-week-off dosing schedule. Methods Patients with advanced solid tumors received single-agent afatinib at 10, 20, 40, 55 or 65 mg/day. Safety, antitumor activity, pharmacokinetics and pharmacodynamic modulation of biomarkers were assessed. Results: Forty-three patients were enrolled. Dose-limiting toxicities (DLTs) occurred in five patients in the dose escalation phase (1/8 at 40 mg/day; 1/6 at 55 mg/day; 3/6 at 65 mg/day). The MTD was established at 55 mg/day. In the expansion cohort at the MTD, 6 patients experienced a DLT in the first 28-day treatment period. The most frequent DLT was diarrhea. The most common adverse events were diarrhea, rash, nausea, vomiting and fatigue. Overall, the afatinib safety profile in a 3-week-on/1-week-off dose schedule was similar to that of our daily-continuous schedule. Afatinib displayed dose-dependent pharmacokinetics at doses up to and including 55 mg/day, with a terminal half-life suitable for once-daily dosing. Signs of clinical antitumor activity were observed. In biopsies taken from clinically normal forearm skin, afatinib caused a reduced proliferation rate, with a concomitant increase in differentiation of epidermal keratinocytes. Conclusion Afatinib in a 3-week-on/1-week-off schedule showed a good safety profile. The MTD was 55 mg/day, although excess DLTs in the expansion cohort indicated that the 40 mg/day dose would have an acceptable safety profile for future studies. Dose cohorts between 40 and 55 mg/day were not examined in this study.
PMCID: PMC3589659  PMID: 23161335
Afatinib; Pharmacokinetics; EGFR; HER2
19.  Volociximab, a Chimeric Monoclonal Antibody that Specifically Binds α5β1 Integrin: A Phase I, Pharmacokinetic, and Biological Correlative Study 
Clinical Cancer Research  2008;14(23):7924-7929.
This study aimed to assess the safety and feasibility of administering volociximab, a chimeric monoclonal antibody that specifically binds to α5β1 integrin, and to determine the pharmacokinetics, pharmacodynamics, and preliminary evidence of antitumor activity.
Experimental Design
Patients with advanced solid malignancies were treated with escalating doses of volociximab i.v. administered over 60 minutes. Blood samples were assayed to determine plasma pharmacokinetic parameters, detect human antichimeric antibody formation, and determine the saturation of α5β1 sites on peripheral blood monocytes.
Twenty-one patients received 223 infusions of volociximab at doses ranging from 0.5 to 15 mg/kg i.v. on days 1, 15, 22, 29, and 36; and weekly thereafter. Treatment was well tolerated, and dose-limiting toxicity was not identified over the range examined. Mild (grade 1 or 2), reversible fatigue was the principal toxicity of volociximab at the highest dose levels of 10 and 15 mg/kg. Nausea, fever, anorexia, headache, vomiting, and myalgias were mild and infrequent, and there was no hematologic toxicity. Volociximab had biexponential distribution; clearance was inversely related to increasing dose, and the half-life at 15 mg/kg was estimated as being 30 days. Three patients tested positive for anti-volociximab antibodies. Saturation of monocyte α5β1 integrin sites was dose-dependent up to 15 mg/kg. There was one minor response (renal, 7 months) and one durable stable disease (melanoma, 14 months).
Volociximab can be safely administered at 15 mg/kg i.v. per week. The absence of severe toxicities and preliminary activity at the highest dose level warrants further disease-directed studies.
PMCID: PMC3394092  PMID: 19047123
20.  Pegfilgrastim prophylaxis is associated with a lower risk of hospitalization of cancer patients than filgrastim prophylaxis: a retrospective United States claims analysis of granulocyte colony-stimulating factors (G-CSF) 
BMC Cancer  2013;13:11.
Myelosuppressive chemotherapy can lead to dose-limiting febrile neutropenia. Prophylactic use of recombinant human G-CSF such as daily filgrastim and once-per-cycle pegfilgrastim may reduce the incidence of febrile neutropenia. This comparative study examined the effect of pegfilgrastim versus daily filgrastim on the risk of hospitalization.
This retrospective United States claims analysis utilized 2004–2009 data for filgrastim- and pegfilgrastim-treated patients receiving chemotherapy for non-Hodgkin’s lymphoma (NHL) or breast, lung, ovarian, or colorectal cancers. Cycles in which pegfilgrastim or filgrastim was administered within 5 days from initiation of chemotherapy (considered to represent prophylaxis) were pooled for analysis. Neutropenia-related hospitalization and other healthcare encounters were defined with a “narrow” criterion for claims with an ICD-9 code for neutropenia and with a “broad” criterion for claims with an ICD-9 code for neutropenia, fever, or infection. Odds ratios (OR) for hospitalization and 95% confidence intervals (CI) were estimated by generalized estimating equation (GEE) models and adjusted for patient, tumor, and treatment characteristics. Per-cycle healthcare utilization and costs were examined for cycles with pegfilgrastim or filgrastim prophylaxis.
We identified 3,535 patients receiving G-CSF prophylaxis, representing 12,056 chemotherapy cycles (11,683 pegfilgrastim, 373 filgrastim). The mean duration of filgrastim prophylaxis in the sample was 4.8 days. The mean duration of pegfilgrastim prophylaxis in the sample was 1.0 day, consistent with the recommended dosage of pegfilgrastim - a single injection once per chemotherapy cycle. Cycles with prophylactic pegfilgrastim were associated with a decreased risk of neutropenia-related hospitalization (narrow definition: OR = 0.43, 95% CI: 0.16–1.13; broad definition: OR = 0.38, 95% CI: 0.24–0.59) and all-cause hospitalization (OR = 0.50, 95% CI: 0.35–0.72) versus cycles with prophylactic filgrastim. For neutropenia-related utilization by setting of care, there were more ambulatory visits and hospitalizations per cycle associated with filgrastim prophylaxis than with pegfilgrastim prophylaxis. Mean per-cycle neutropenia-related costs were also higher with prophylactic filgrastim than with prophylactic pegfilgrastim.
In this comparative effectiveness study, pegfilgrastim prophylaxis was associated with a reduced risk of neutropenia-related or all-cause hospitalization relative to filgrastim prophylaxis.
PMCID: PMC3559272  PMID: 23298389
21.  Phase I Trial of 17-Allylamino-17-Demethoxygeldanamycin in Patients with Advanced Cancer 
To define the maximum tolerated dose (MTD), toxicities, and pharmacokinetics of 17-allylamino-17-demethoxygeldanamycin (17-AAG) when administered using continuous and intermittent dosing schedules.
Experimental Design
Patients with progressive solid tumor malignancies were treated with 17-AAG using an accelerated titration dose escalation schema. The starting dose and schedule were 5 mg/m2 daily for 5 days with cycles repeated every 21 days. Dosing modifications based on safety, pharmacodynamic modeling, and clinical outcomes led to the evaluation of the following schedules: daily × 3 repeated every 14 days; twice weekly (days 1, 4, 8, and 11) for 2 weeks every 3 weeks; and twice weekly (days 1 and 4) without interruption. During cycle 1, blood was collected for pharmacokinetic and pharmacodynamic studies.
Fifty-four eligible patients were treated. The MTD was schedule dependent: 56 mg/m2 on the daily × 5 schedule; 112 mg/m2 on the daily × 3 schedule; and 220 mg/m2 on the days 1, 4, 8, and 11 every-21-day schedule. Continuous twice-weekly dosing was deemed too toxic because of delayed hepatotoxicity. Hepatic toxicity was also dose limiting with the daily × 5 schedule. Other common toxicities encountered were fatigue, myalgias, and nausea. This latter adverse effect may have been attributable, in part, to the DMSO-based formulation. Concentrations of 17-AAG above those required for activity in preclinical models could be safely achieved in plasma. Induction of a heat shock response and down-regulation of Akt and Raf-1 were observed in biomarker studies.
The MTD and toxicity profile of 17-AAG were schedule dependent. Intermittent dosing schedules were less toxic and are recommended for future phase II studies.
PMCID: PMC3203693  PMID: 17363532
22.  A phase I trial of MK-0731, a Kinesin Spindle Protein (KSP) inhibitor, in patients with solid tumors 
Investigational New Drugs  2011;30(3):1088-1095.
The kinesin spindle protein (KSP) is essential for separation of spindle poles during mitosis. Its inhibition results in mitotic arrest. This phase I trial examined safety, tolerability, dose-limiting toxicity (DLT), maximum tolerated dose (MTD), pharmacokinetic parameters, and anti-tumor activity of MK-0731, a potent inhibitor of KSP.
Experimental design
In part 1, patients with advanced solid tumors received MK-0731 intravenously over 24 h every 21 days starting at 6 mg/m2, escalating until MTD was reached. In part 2, patients with taxane-resistant tumors received the MTD. Plasma samples were collected to analyze the pharmacokinetics of MK-0731. Tumor response was evaluated using Response Evaluation Criteria in Solid Tumors (RECIST) v1.0.
In part 1, 21 patients (median age 63 years) were treated with MK-0731 at doses ranging from 6 to 48 mg/m2/24 h for median four cycles. The dose-limiting toxicity was neutropenia and the MTD was 17 mg/m2/24 h. At the MTD, AUC (±SD) was 10.5 (±7.3) μM × hour, clearance (±SD) was 153 mL/min (±84), and t1/2 was 5.9 h. In part 2, 22 patients received the MTD and there were no DLTs. Although there were no objective tumor responses, four patients (with cervical, non-small cell lung, and ovarian cancers) had prolonged stable disease.
MK-0731 at the MTD of 17 mg/m2/day every 21 days in patients with solid tumors had few grade 3 and 4 toxicities with the major DLTs at higher doses being myelosuppression. Anti-tumor efficacy was suggested by the length of stable disease in selected patients with taxane-resistant tumors.
PMCID: PMC3394096  PMID: 21424701
Kinesin spindle protein; Oncology; Neutropenia
23.  Phase 1 dose-escalation, pharmacokinetic, and cerebrospinal fluid distribution study of TAK-285, an investigational inhibitor of EGFR and HER2 
Investigational New Drugs  2013;32:160-170.
Introduction This phase 1 study assessed safety, maximum tolerated dose (MTD), pharmacokinetics, cerebrospinal fluid (CSF) distribution, and preliminary clinical activity of the receptor tyrosine kinase inhibitor TAK-285. Methods Patients with advanced, histologically confirmed solid tumors and Eastern Cooperative Oncology Group performance status ≤2 received daily oral TAK-285; daily dose was escalated within defined cohorts until MTD and recommended phase 2 dose (RP2D) were determined. Eleven patients were enrolled into an RP2D cohort. Blood samples were collected from all cohorts; CSF was collected at pharmacokinetic steady-state from RP2D patients. Tumor responses were assessed every 8 weeks per Response Evaluation Criteria in Solid Tumors. Results Fifty-four patients were enrolled (median age 60; range, 35–76 years). The most common diagnoses were cancers of the colon (28 %), breast (17 %), and pancreas (9 %). Escalation cohorts evaluated doses from 50 mg daily to 500 mg twice daily; the MTD/RP2D was 400 mg twice daily. Dose-limiting toxicities included diarrhea, hypokalemia, and fatigue. Drug absorption was fast (median time of maximum concentration was 2–3 h), and mean half-life was 9 h. Steady-state average unbound CSF concentration (geometric mean 1.54 [range, 0.51–4.27] ng/mL; n = 5) at the RP2D was below the 50 % inhibitory concentration (9.3 ng/mL) for inhibition of tyrosine kinase activity in cells expressing recombinant HER2. Best response was stable disease (12 weeks of nonprogression) in 13 patients. Conclusions TAK-285 was generally well tolerated at the RP2D. Distribution in human CSF was confirmed, but the free concentration of the drug was below that associated with biologically relevant target inhibition.
PMCID: PMC3913854  PMID: 23817974
Breast cancer; Brain metastases; EGFR; HER2; Pharmacokinetics
24.  Phase I trial of CYT997, a novel cytotoxic and vascular-disrupting agent 
British Journal of Cancer  2010;103(5):597-606.
CYT997 is a novel microtubule inhibitor and vascular-disrupting agent with marked preclinical anti-tumour activity.
This phase I dose-escalation study assessed the safety, tolerability, pharmacokinetics and pharmacodynamics of CYT997 administered by continuous intravenous infusion over 24 h every 3 weeks to patients with advanced solid tumours.
Thirty-one patients received CYT997 over 12 dose levels (7–358 mg m−2). Doses up to 202 mg m−2 were well tolerated. Dose-limiting toxicities were observed at 269 and 358 mg m−2, consisting of grade 3 prolonged corrected QT interval in two patients and grade 3 hypoxia and grade 4 dyspnea in one patient. All toxicities were reversible. The pharmacokinetics of CYT997 were linear over the entire dose range. Dynamic contrast-enhanced magnetic resonance imaging scans showed significant changes in tumour Ktrans values consistent with vascular disruption in 7 out of 11 evaluable patients treated at CYT997 doses of ⩾65 mg m−2. Moreover, plasma levels of von Willebrand factor and caspase-cleaved cytokeratin-18 increased post-treatment at higher dose levels. Among 22 patients evaluable for response, 18 achieved stable disease for >2 cycles.
CYT997 was well tolerated at doses that were associated with pharmacodynamic evidence of vascular disruption in tumours.
PMCID: PMC2938266  PMID: 20733579
vascular-disrupting agents; CYT997; phase I clinical trial; pharmacokinetics; DCE-MRI
25.  A Phase I study of the Heat Shock Protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors 
A Phase I study to define toxicity and recommend a Phase II dose of the HSP90 inhibitor alvespimycin (17-DMAG; 17-dimethylaminoethylamino-17-demethoxygeldanamycin). Secondary endpoints included evaluation of pharmacokinetic profile, tumor response and definition of a biologically effective dose (BED).
Patients and Methods
Patients with advanced solid cancers were treated with weekly, intravenous (IV) 17-DMAG. An accelerated titration dose escalation design was used. The maximum tolerated dose (MTD) was the highest dose at which ≤ 1/6 patients experienced dose limiting toxicity (DLT). Dose de-escalation from the MTD was planned with mandatory, sequential tumor biopsies to determine a BED. Pharmacokinetic and pharmacodynamic assays were validated prior to patient accrual.
Twenty five patients received 17-DMAG (range 2.5 to 106 mg/m2). At 106mg/m2 of 17-DMAG 2/4 patients experienced DLT, including one treatment related death. No DLT occurred at 80mg/m2. Common adverse events were gastrointestinal, liver function changes and ocular. AUC and Cmax increased proportionally with 17-DMAG doses ≤ 80mg/m2. In peripheral blood mononuclear cells significant (p <0.05) HSP72 induction was detected (≥ 20mg/m2) and sustained for 96 hours (≥ 40mg/m2). Plasma HSP72 levels were greatest in the two patients who experienced DLT. At 80mg/m2 client protein (CDK4, LCK) depletion was detected and tumor samples from 3/5 patients confirmed HSP90 inhibition. Clinical activity included complete response (castration refractory prostate cancer, CRPC 124 weeks), partial response (melanoma, 159 weeks) and stable disease (chondrosarcoma, CRPC and renal cancer for 28, 59 and 76 weeks respectively).
The recommended Phase II dose of 17-DMAG is 80mg/m2 weekly, IV.
PMCID: PMC3060938  PMID: 21278242

Results 1-25 (779587)