Search tips
Search criteria

Results 1-25 (717415)

Clipboard (0)

Related Articles

1.  Rapid categorization of natural face images in the infant right hemisphere 
eLife  null;4:e06564.
Human performance at categorizing natural visual images surpasses automatic algorithms, but how and when this function arises and develops remain unanswered. We recorded scalp electrical brain activity in 4–6 months infants viewing images of objects in their natural background at a rapid rate of 6 images/second (6 Hz). Widely variable face images appearing every 5 stimuli generate an electrophysiological response over the right hemisphere exactly at 1.2 Hz (6 Hz/5). This face-selective response is absent for phase-scrambled images and therefore not due to low-level information. These findings indicate that right lateralized face-selective processes emerge well before reading acquisition in the infant brain, which can perform figure-ground segregation and generalize face-selective responses across changes in size, viewpoint, illumination as well as expression, age and gender. These observations made with a highly sensitive and objective approach open an avenue for clarifying the developmental course of natural image categorization in the human brain.
eLife digest
Putting names to faces can sometimes be challenging, but humans are generally extremely good at recognising faces. Computers, on the other hand, often find it difficult to categorize a face as a face. Indeed, a major challenge in face recognition arises because faces come in many different shapes and sizes. Moreover, both the lighting conditions and the orientation of the head can change, which makes the challenge even more difficult.
Young infants also show a preference for pictures of human faces over nonsense images, which suggests that the ability to recognise faces is at least partly hard-wired. Neuroimaging studies have revealed that face recognition depends on activity in specific regions of the right hemisphere of the brain, and adults who sustain damage to these regions lose their face recognition skills.
De Heering and Rossion have now provided the first evidence that the right hemisphere is specialized for distinguishing between natural images of faces and ‘non-face objects’ in infants as young as 4 to 6 months. By using scalp electrodes to record electrical activity in the brain as the infants viewed images on a screen, De Heering and Rossion showed that photographs of human faces triggered a distinct pattern of electrical activity in the right hemisphere: this pattern was clearly different to the patterns triggered by photographs of animals or objects.
A consistent response was triggered by faces of different genders and expressions, and by faces presented from various viewpoints and under different lighting conditions. In a control experiment, De Heering and Rossion demonstrated that low-level visual features such as differences in luminance or contrast do not contribute to this selective response to faces.
These results argue against the idea that face perception only becomes assigned to the right hemisphere of the brain when children learn to read (that is, when language processing begins to occupy parts of the left hemisphere). By generating significant responses in a short period of time (just five minutes or less), the protocol developed by De Heering and Rossion has the potential to prove very useful to researchers investigating developmental changes to the perception of visual images during childhood.
PMCID: PMC4450157  PMID: 26032564
face perception; infants; right hemisphere; natural images; visual categorization; human
2.  When Intuition Fails to Align with Data: A Reply to Rossion (2013) 
Visual cognition  2013;21(2):10.1080/13506285.2013.796035.
Holistic processing, a hallmark of face perception, is often measured in the so-called composite paradigm, in which participants are asked to match part of a stimulus while ignoring another part. In prior work, we recommended against the use of one version of the composite task we call the partial design, on the basis of confounds with response biases. Rossion wrote a lengthy piece that reviews the work that he has published using this design, raising a large number of criticisms, both about an alternative measure of holistic processing that we have used and advocated (which we call the complete design) and about our work in general. In this reply, we have limited our discussion to those issues that would be relevant to a researcher looking to decide which version of this composite paradigm to use, as we doubt a comprehensive reply would be of significant interest outside a very small circle.
PMCID: PMC3845673  PMID: 24307858
3.  A Stable Biologically Motivated Learning Mechanism for Visual Feature Extraction to Handle Facial Categorization 
PLoS ONE  2012;7(6):e38478.
The brain mechanism of extracting visual features for recognizing various objects has consistently been a controversial issue in computational models of object recognition. To extract visual features, we introduce a new, biologically motivated model for facial categorization, which is an extension of the Hubel and Wiesel simple-to-complex cell hierarchy. To address the synaptic stability versus plasticity dilemma, we apply the Adaptive Resonance Theory (ART) for extracting informative intermediate level visual features during the learning process, which also makes this model stable against the destruction of previously learned information while learning new information. Such a mechanism has been suggested to be embedded within known laminar microcircuits of the cerebral cortex. To reveal the strength of the proposed visual feature learning mechanism, we show that when we use this mechanism in the training process of a well-known biologically motivated object recognition model (the HMAX model), it performs better than the HMAX model in face/non-face classification tasks. Furthermore, we demonstrate that our proposed mechanism is capable of following similar trends in performance as humans in a psychophysical experiment using a face versus non-face rapid categorization task.
PMCID: PMC3374806  PMID: 22719892
4.  Impaired holistic processing in congenital prosopagnosia 
Neuropsychologia  2011;49(9):2541-2552.
It has long been argued that face processing requires disproportionate reliance on holistic or configural processing, relative to that required for non-face object recognition, and that a disruption of such holistic processing may be causally implicated in prosopagnosia. Previously, we demonstrated that individuals with congenital prosopagnosia (CP) did not show the normal face inversion effect (better performance for upright compared to inverted faces) and evinced a local (rather than the normal global) bias in a compound letter global/local (GL) task, supporting the claim of disrupted holistic processing in prosopagnosia. Here, we investigate further the nature of holistic processing impairments in CP, first by confirming, in a large sample of CP individuals, the absence of the normal face inversion effect and the presence of the local bias on the GL task, and, second, by employing the composite face paradigm, often regarded as the gold standard for measuring holistic face processing. In this last task, we show that, in contrast with normal individuals, the CP group perform equivalently with aligned and misaligned faces and was impervious to (the normal) interference from the task-irrelevant bottom part of faces. Interestingly, the extent of the local bias evident in the composite task is correlated with the abnormality of performance on diagnostic face processing tasks. Furthermore, there is a significant correlation between the magnitude of the local bias in the GL and performance on the composite task. These results provide further evidence for impaired holistic processing in CP and, moreover, corroborate the critical role of this type of processing for intact face recognition.
PMCID: PMC3137703  PMID: 21601583
configural; faces; face perception; global processing; acquired prosopagnosia
5.  Natural Image Coding in V1: How Much Use Is Orientation Selectivity? 
PLoS Computational Biology  2009;5(4):e1000336.
Orientation selectivity is the most striking feature of simple cell coding in V1 that has been shown to emerge from the reduction of higher-order correlations in natural images in a large variety of statistical image models. The most parsimonious one among these models is linear Independent Component Analysis (ICA), whereas second-order decorrelation transformations such as Principal Component Analysis (PCA) do not yield oriented filters. Because of this finding, it has been suggested that the emergence of orientation selectivity may be explained by higher-order redundancy reduction. To assess the tenability of this hypothesis, it is an important empirical question how much more redundancy can be removed with ICA in comparison to PCA or other second-order decorrelation methods. Although some previous studies have concluded that the amount of higher-order correlation in natural images is generally insignificant, other studies reported an extra gain for ICA of more than 100%. A consistent conclusion about the role of higher-order correlations in natural images can be reached only by the development of reliable quantitative evaluation methods. Here, we present a very careful and comprehensive analysis using three evaluation criteria related to redundancy reduction: In addition to the multi-information and the average log-loss, we compute complete rate–distortion curves for ICA in comparison with PCA. Without exception, we find that the advantage of the ICA filters is small. At the same time, we show that a simple spherically symmetric distribution with only two parameters can fit the data significantly better than the probabilistic model underlying ICA. This finding suggests that, although the amount of higher-order correlation in natural images can in fact be significant, the feature of orientation selectivity does not yield a large contribution to redundancy reduction within the linear filter bank models of V1 simple cells.
Author Summary
Since the Nobel Prize winning work of Hubel and Wiesel it has been known that orientation selectivity is an important feature of simple cells in the primary visual cortex. The standard description of this stage of visual processing is that of a linear filter bank where each neuron responds to an oriented edge at a certain location within the visual field. From a vision scientist's point of view, we would like to understand why an orientation selective filter bank provides a useful image representation. Several previous studies have shown that orientation selectivity arises when the individual filter shapes are optimized according to the statistics of natural images. Here, we investigate quantitatively how critical the feature of orientation selectivity is for this optimization. We find that there is a large range of non-oriented filter shapes that perform nearly as well as the optimal orientation selective filters. We conclude that the standard filter bank model is not suitable to reveal a strong link between orientation selectivity and the statistics of natural images. Thus, to understand the role of orientation selectivity in the primary visual cortex, we will have to develop more sophisticated, nonlinear models of natural images.
PMCID: PMC2658886  PMID: 19343216
6.  The Face Inversion Effect Following Pitch and Yaw Rotations: Investigating the Boundaries of Holistic Processing 
Upright faces are thought to be processed holistically. However, the range of views within which holistic processing occurs is unknown. Recent research by McKone (2008) suggests that holistic processing occurs for all yaw-rotated face views (i.e., full-face through to profile). Here we examined whether holistic processing occurs for pitch, as well as yaw, rotated face views. In this face recognition experiment: (i) participants made same/different judgments about two sequentially presented faces (either both upright or both inverted); (ii) the test face was pitch/yaw rotated by between 0° and 75° from the encoding face (always a full-face view). Our logic was as follows: if a particular pitch/yaw-rotated face view is being processed holistically when upright, then this processing should be disrupted by inversion. Consistent with previous research, significant face inversion effects (FIEs) were found for all yaw-rotated views. However, while FIEs were found for pitch rotations up to 45°, none were observed for 75° pitch rotations (rotated either above or below the full face). We conclude that holistic processing does not occur for all views of upright faces (e.g., not for uncommon pitch rotated views), only those that can be matched to a generic global representation of a face.
PMCID: PMC3525703  PMID: 23267337
face recognition; inversion; holistic processing; pitch and yaw axes
7.  Efficient search for a face by chimpanzees (Pan troglodytes) 
Scientific Reports  2015;5:11437.
The face is quite an important stimulus category for human and nonhuman primates in their social lives. Recent advances in comparative-cognitive research clearly indicate that chimpanzees and humans process faces in a special manner; that is, using holistic or configural processing. Both species exhibit the face-inversion effect in which the inverted presentation of a face deteriorates their perception and recognition. Furthermore, recent studies have shown that humans detect human faces among non-facial objects rapidly. We report that chimpanzees detected chimpanzee faces among non-facial objects quite efficiently. This efficient search was not limited to own-species faces. They also found human adult and baby faces-but not monkey faces-efficiently. Additional testing showed that a front-view face was more readily detected than a profile, suggesting the important role of eye-to-eye contact. Chimpanzees also detected a photograph of a banana as efficiently as a face, but a further examination clearly indicated that the banana was detected mainly due to a low-level feature (i.e., color). Efficient face detection was hampered by an inverted presentation, suggesting that configural processing of faces is a critical element of efficient face detection in both species. This conclusion was supported by a simple simulation experiment using the saliency model.
PMCID: PMC4504146  PMID: 26180944
8.  Holistic crowding: Selective interference between configural representations of faces in crowded scenes 
Journal of vision  2007;7(2):10.1167/7.2.24.
It is difficult to recognize an object that falls in the peripheral visual field; it is even more difficult when there are other objects surrounding it. This effect, known as crowding, could be due to interactions between the low-level parts or features of the surrounding objects. Here, we investigated whether crowding can also occur selectively between higher level object representations. Many studies have demonstrated that upright faces, unlike most other objects, are coded holistically. Therefore, in addition to featural crowding within a face (M. Martelli, N. J. Majaj, & D. G. Pelli, 2005), we might expect an additional crowding effect between upright faces due to interference between the higher level holistic representations of these faces. In a series of experiments, we tested this by presenting an upright target face in a crowd of additional upright or inverted faces. We found that recognition was more strongly impaired when the target face was surrounded by upright compared to inverted flanker (distractor) faces; this pattern of results was absent when inverted faces and non-face objects were used as targets. This selective crowding of upright faces by other upright faces only occurred when the target–flanker separation was less than half the eccentricity of the target face, consistent with traditional crowding effects (H. Bouma, 1970; D. G. Pelli, M. Palomares, & N. J. Majaj, 2004). Likewise, the selective interference between upright faces did not occur at the fovea and was not a function of the target–flanker similarity, suggesting that crowding-specific processes were responsible. The results demonstrate that crowding can occur selectively between high-level representations of faces and may therefore occur at multiple stages in the visual system.
PMCID: PMC3849395  PMID: 18217839
vision; perception; awareness; face recognition; ensemble; spatial; lateral; masking; object
9.  Inverted Face Processing in Body Dysmorphic Disorder 
Journal of Psychiatric Research  2010;44(15):1088-1094.
Individuals with body dysmorphic disorder (BDD) are preoccupied with perceived defects in appearance. Preliminary evidence suggests abnormalities in global and local visual information processing. The objective of this study was to compare global and local processing in BDD subjects and healthy controls by testing the face inversion effect, in which inverted (upside-down) faces are recognized more slowly and less accurately relative to upright faces. Eighteen medication-free subjects with BDD and 17 matched, healthy controls performed a recognition task with sets of upright and inverted faces on a computer screen that were either presented for short duration (500 msec) or long duration (5000 msec). Response time and accuracy rates were analyzed using linear and logistic mixed effects models, respectively. Results indicated that the inversion effect for response time was smaller in BDD subjects than controls during the long duration stimuli, but was not significantly different during the short duration stimuli. Inversion effect on accuracy rates did not differ significantly between groups during either of the two durations. Lesser inversion effect in BDD subjects may be due to greater detail-oriented and piecemeal processing for long duration stimuli. Similar results between groups for short duration stimuli suggest that they may be normally engaging configural and holistic processing for brief presentations. Abnormal visual information processing in BDD may contribute to distorted perception of appearance; this may not be limited to their own faces, but to others’ faces as well.
PMCID: PMC3285268  PMID: 20434170
body dysmorphic disorder; inverted faces; face inversion effect; face processing; global and local
10.  The Composite Task Reveals Stronger Holistic Processing in Children than Adults for Child Faces 
PLoS ONE  2009;4(7):e6460.
While own-age faces have been reported to be better recognized than other-age faces, the underlying cause of this phenomenon remains unclear. One potential cause is holistic face processing, a special kind of perceptual and cognitive processing reserved for perceiving upright faces. Previous studies have indeed found that adults show stronger holistic processing when looking at adult faces compared to child faces, but whether a similar own-age bias exists in children remains to be shown.
Methodology/Principal Findings
Here we used the composite face task – a standard test of holistic face processing – to investigate if, for child faces, holistic processing is stronger for children than adults. Results showed child participants (8–13 years) had a larger composite effect than adult participants (22–65 years).
Our finding suggests that differences in strength of holistic processing may underlie the own-age bias on recognition memory. We discuss the origin of own-age biases in terms of relative experience, face-space tuning, and social categorization.
PMCID: PMC2714082  PMID: 19641627
11.  The Thatcher illusion in humans and monkeys 
Primates possess the remarkable ability to differentiate faces of group members and to extract relevant information about the individual directly from the face. Recognition of conspecific faces is achieved by means of holistic processing, i.e. the processing of the face as an unparsed, perceptual whole, rather than as the collection of independent features (part-based processing). The most striking example of holistic processing is the Thatcher illusion. Local changes in facial features are hardly noticeable when the whole face is inverted (rotated 180°), but strikingly grotesque when the face is upright. This effect can be explained by a lack of processing capabilities for locally rotated facial features when the face is turned upside down. Recently, a Thatcher illusion was described in the macaque monkey analogous to that known from human investigations. Using a habituation paradigm combined with eye tracking, we address the critical follow-up questions raised in the aforementioned study to show the Thatcher illusion as a function of the observer's species (humans and macaques), the stimulus' species (humans and macaques) and the level of perceptual expertise (novice, expert).
PMCID: PMC2982021  PMID: 20484235
Thatcher illusion; monkey; face recognition; holistic perception
12.  Individual Differences in Holistic Processing Predict the Own-Race Advantage in Recognition Memory 
PLoS ONE  2013;8(4):e58253.
Individuals are consistently better at recognizing own-race faces compared to other-race faces (other-race effect, ORE). One popular hypothesis is that this recognition memory ORE is caused by differential own- and other-race holistic processing, the simultaneous integration of part and configural face information into a coherent whole. Holistic processing may create a more rich, detailed memory representation of own-race faces compared to other-race faces. Despite several studies showing that own-race faces are processed more holistically than other-race faces, studies have yet to link the holistic processing ORE and the recognition memory ORE. In the current study, we sought to use a more valid method of analyzing individual differences in holistic processing by using regression to statistically remove the influence of the control condition (part trials in the part-whole task) from the condition of interest (whole trials in the part-whole task). We also employed regression to separately examine the two components of the ORE: own-race advantage (regressing other-race from own-race performance) and other-race decrement (regressing own-race from other-race performance). First, we demonstrated that own-race faces were processed more holistically than other-race faces, particularly the eye region. Notably, using regression, we showed a significant association between the own-race advantage in recognition memory and the own-race advantage in holistic processing and that these associations were weaker when examining the other-race decrement. We also demonstrated that performance on own- and other-race faces across all of our tasks was highly correlated, suggesting that the differences we found between own- and other-race faces are quantitative rather than qualitative. Together, this suggests that own- and other-race faces recruit largely similar mechanisms, that own-race faces more thoroughly engage holistic processing, and that this greater engagement of holistic processing is significantly associated with the own-race advantage in recognition memory.
PMCID: PMC3622684  PMID: 23593119
13.  Stimulus Requirements for Face Perception: An Analysis Based on “Totem Poles” 
The stimulus requirements for perceiving a face are not well defined but are presumably simple, for vivid faces can often by seen in random or natural images such as cloud or rock formations. To characterize these requirements, we measured where observers reported the impression of faces in images defined by symmetric 1/f noise. This allowed us to examine the prominence and properties of different features and their necessary configurations. In these stimuli many faces can be perceived along the vertical midline, and appear stacked at multiple scales, reminiscent of “totem poles.” In addition to symmetry, the faces in noise are invariably upright and thus reveal the inversion effects that are thought to be a defining property of configural face processing. To a large extent, seeing a face required seeing eyes, and these were largely restricted to dark regions in the images. Other features were more subordinate and showed relatively little bias in polarity. Moreover, the prominence of eyes depended primarily on their luminance contrast and showed little influence of chromatic contrast. Notably, most faces were rated as clearly defined with highly distinctive attributes, suggesting that once an image area is coded as a face it is perceptually completed consistent with this interpretation. This suggests that the requisite trigger features are sufficient to holistically “capture” the surrounding noise structure to form the facial representation. Yet despite these well articulated percepts, we show in further experiments that while a pair of dark spots added to noise images appears face-like, these impressions fail to elicit other signatures of face processing, and in particular, fail to elicit an N170 or fixation patterns typical for images of actual faces. These results suggest that very simple stimulus configurations are sufficient to invoke many aspects of holistic and configural face perception while nevertheless failing to fully engage the neural machinery of face coding, implying that that different signatures of face processing may have different stimulus requirements.
PMCID: PMC3569666  PMID: 23407599
face perception; face detection; configural coding; facial features; symmetry; inversion effects; noise
14.  The complete design in the composite face paradigm: role of response bias, target certainty, and feedback 
Some years ago an improved design (the “complete design”) was proposed to assess the composite face effect in terms of a congruency effect, defined as the performance difference for congruent and incongruent target to no-target relationships (Cheung et al., 2008). In a recent paper Rossion (2013) questioned whether the congruency effect was a valid hallmark of perceptual integration, because it may contain confounds with face-unspecific interference effects. Here we argue that the complete design is well-balanced and allows one to separate face-specific from face-unspecific effects. We used the complete design for a same/different composite stimulus matching task with face and non-face objects (watches). Subjects performed the task with and without trial-by-trial feedback, and with low and high certainty about the target half. Results showed large congruency effects for faces, particularly when subjects were informed late in the trial about which face halves had to be matched. Analysis of response bias revealed that subjects preferred the “different” response in incongruent trials, which is expected when upper and lower face halves are integrated perceptually at the encoding stage. The results pattern was observed in the absence of feedback, while providing feedback generally attenuated the congruency effect, and led to an avoidance of response bias. For watches no or marginal congruency effects and a moderate global “same” bias were observed. We conclude that the congruency effect, when complemented by an evaluation of response bias, is a valid hallmark of feature integration that allows one to separate faces from non-face objects.
PMCID: PMC4215786  PMID: 25400573
feature integration; composite effect; congruency effect; response bias; selective attention
15.  Second-Order Relational Manipulations Affect Both Humans and Monkeys 
PLoS ONE  2011;6(10):e25793.
Recognition and individuation of conspecifics by their face is essential for primate social cognition. This ability is driven by a mechanism that integrates the appearance of facial features with subtle variations in their configuration (i.e., second-order relational properties) into a holistic representation. So far, there is little evidence of whether our evolutionary ancestors show sensitivity to featural spatial relations and hence holistic processing of faces as shown in humans. Here, we directly compared macaques with humans in their sensitivity to configurally altered faces in upright and inverted orientations using a habituation paradigm and eye tracking technologies. In addition, we tested for differences in processing of conspecific faces (human faces for humans, macaque faces for macaques) and non-conspecific faces, addressing aspects of perceptual expertise. In both species, we found sensitivity to second-order relational properties for conspecific (expert) faces, when presented in upright, not in inverted, orientation. This shows that macaques possess the requirements for holistic processing, and thus show similar face processing to that of humans.
PMCID: PMC3185012  PMID: 21991354
16.  Holistic Processing for Other-Race Faces in Chinese Participants Occurs for Upright but Not Inverted Faces 
Recent evidence suggests stronger holistic processing for own-race faces may underlie the own-race advantage in face memory. In previous studies Caucasian participants have demonstrated larger holistic processing effects for Caucasian over Asian faces. However, Asian participants have consistently shown similar sized effects for both Asian and Caucasian faces. We investigated two proposed explanations for the holistic processing of other-race faces by Asian participants: (1) greater other-race exposure, (2) a general global processing bias. Holistic processing was tested using the part-whole task. Participants were living in predominantly own-race environments and other-race contact was evaluated. Despite reporting significantly greater contact with own-race than other-race people, Chinese participants displayed strong holistic processing for both Asian and Caucasian upright faces. In addition, Chinese participants showed no evidence of holistic processing for inverted faces arguing against a general global processing bias explanation. Caucasian participants, in line with previous studies, displayed stronger holistic processing for Caucasian than Asian upright faces. For inverted faces there were no race-of-face differences. These results are used to suggest that Asians may make more general use of face-specific mechanisms than Caucasians.
PMCID: PMC3560099  PMID: 23386840
holistic face processing; other-race effect; part-whole effect; inversion effect; face recognition
17.  The inversion effect reveals species differences in face processing 
Acta psychologica  2011;138(1):204-210.
Face recognition is a complex skill that requires the integration of facial features across the whole face, e.g., holistic processing. It is unclear whether, and to what extent, other species process faces in a manner that is similar to humans. Previous studies on the inversion effect, a marker of holistic processing, in nonhuman primates have revealed mixed results in part because many studies have failed to include alternative image categories necessary to understand whether the effects are truly face-specific. The present study re-examined the inversion effect in rhesus monkeys and chimpanzees using comparable testing methods and a variety of high quality stimuli including faces and nonfaces. The data support an inversion effect in chimpanzees only for conspecifics’ faces (expert category), suggesting face-specific holistic processing similar to humans. Rhesus monkeys showed inversion effects for conspecifics, but also for heterospecifics’ faces (chimpanzees), and nonfaces images (houses), supporting important species differences in this simple test of holistic face processing.
PMCID: PMC3208376  PMID: 21784381
face recognition; inversion effect; holistic processing; matching-to-sample; comparative
18.  A computational neural model of orientation detection based on multiple guesses: comparison of geometrical and algebraic models 
Cognitive Neurodynamics  2012;7(5):361-379.
The implementation of Hubel-Wiesel hypothesis that orientation selectivity of a simple cell is based on ordered arrangement of its afferent cells has some difficulties. It requires the receptive fields (RFs) of those ganglion cells (GCs) and LGN cells to be similar in size and sub-structure and highly arranged in a perfect order. It also requires an adequate number of regularly distributed simple cells to match ubiquitous edges. However, the anatomical and electrophysiological evidence is not strong enough to support this geometry-based model. These strict regularities also make the model very uneconomical in both evolution and neural computation. We propose a new neural model based on an algebraic method to estimate orientations. This approach synthesizes the guesses made by multiple GCs or LGN cells and calculates local orientation information subject to a group of constraints. This algebraic model need not obey the constraints of Hubel-Wiesel hypothesis, and is easily implemented with a neural network. By using the idea of a satisfiability problem with constraints, we also prove that the precision and efficiency of this model are mathematically practicable. The proposed model makes clear several major questions which Hubel-Wiesel model does not account for. Image-rebuilding experiments are conducted to check whether this model misses any important boundary in the visual field because of the estimation strategy. This study is significant in terms of explaining the neural mechanism of orientation detection, and finding the circuit structure and computational route in neural networks. For engineering applications, our model can be used in orientation detection and as a simulation platform for cell-to-cell communications to develop bio-inspired eye chips.
PMCID: PMC3773326  PMID: 24427212
Simple cell; Ganglion cell; Receptive field; Orientation selectivity; Orientation detection
19.  Holistic crowding of Mooney faces 
Journal of vision  2009;9(6):18.1-1815.
An object or feature is generally more difficult to identify when other objects are presented nearby, an effect referred to as crowding. Here, we used Mooney faces to examine whether crowding can also occur within and between holistic face representations (C. M. Mooney, 1957). Mooney faces are ideal stimuli for this test because no cues exist to distinguish facial features in a Mooney face; to find any facial feature, such as an eye or a nose, one must first holistically perceive the image as a face. Through a series of six experiments we tested the effect of crowding on Mooney face recognition. Our results demonstrate crowding between and within Mooney faces and fulfill the diagnostic criteria for crowding, including eccentricity dependence and lack of crowding in the fovea, critical flanker spacing consistent with less than half the eccentricity of the target, and inner-outer flanker asymmetry. Further, our results show that recognition of an upright Mooney face is more strongly impaired by upright Mooney face flankers than inverted ones. Taken together, these results suggest crowding can occur selectively between high-level representations of faces and that crowding must occur at multiple levels in the visual system.
PMCID: PMC2857385  PMID: 19761309
peripheral vision; spatial vision; object recognition; inversion; asymmetry
20.  A U-Shaped Relation between Sitting Ability and Upright Face Processing in Infants 
Child development  2012;84(3):802-809.
A growing body of research indicates connections exist between action, perception, and cognition in infants. In the present study, associated changes between sitting ability and upright face processing were tested in 111 infants. Using the visual habituation “switch” task (Cashon & Cohen, 2004; Cohen & Cashon, 2001), holistic processing of faces was assessed in same-aged non- and near-sitters (22–25 weeks) and same-aged new- and expert-sitters (27–32 weeks). U-shaped relation was found between sitting stage and holistic face processing such that only non-sitters and expert-sitters processed faces holistically. It is posited that the results are due to a reorganization of the upright face processing system resulting from infants’ learning to sit independently and trying to incorporate the meaning of upright faces.
PMCID: PMC3594454  PMID: 23199285
infant development; face perception; sitting; posture; U-shaped development; overload; reorganization
21.  Holistic Processing Predicts Face Recognition 
Psychological science  2011;22(4):464-471.
The concept of holistic processing is a cornerstone of face-recognition research. In the study reported here, we demonstrated that holistic processing predicts face-recognition abilities on the Cambridge Face Memory Test and on a perceptual face-identification task. Our findings validate a large body of work that relies on the assumption that holistic processing is related to face recognition. These findings also reconcile the study of face recognition with the perceptual-expertise work it inspired; such work links holistic processing of objects with people's ability to individuate them. Our results differ from those of a recent study showing no link between holistic processing and face recognition. This discrepancy can be attributed to the use in prior research of a popular but flawed measure of holistic processing. Our findings salvage the central role of holistic processing in face recognition and cast doubt on a subset of the face-perception literature that relies on a problematic measure of holistic processing.
PMCID: PMC3077885  PMID: 21393576
face perception; individual differences; holistic processing
22.  “I Look in Your Eyes, Honey”: Internal Face Features Induce Spatial Frequency Preference for Human Face Processing 
PLoS Computational Biology  2009;5(3):e1000329.
Numerous psychophysical experiments found that humans preferably rely on a narrow band of spatial frequencies for recognition of face identity. A recently conducted theoretical study by the author suggests that this frequency preference reflects an adaptation of the brain's face processing machinery to this specific stimulus class (i.e., faces). The purpose of the present study is to examine this property in greater detail and to specifically elucidate the implication of internal face features (i.e., eyes, mouth, and nose). To this end, I parameterized Gabor filters to match the spatial receptive field of contrast sensitive neurons in the primary visual cortex (simple and complex cells). Filter responses to a large number of face images were computed, aligned for internal face features, and response-equalized (“whitened”). The results demonstrate that the frequency preference is caused by internal face features. Thus, the psychophysically observed human frequency bias for face processing seems to be specifically caused by the intrinsic spatial frequency content of internal face features.
Author Summary
Imagine a photograph showing your friend's face. Although you might think that every single detail in his face matters for recognizing him, numerous experiments have shown that the brain prefers a rather coarse resolution instead. This means that a small rectangular photograph of about 30 to 40 pixels in width (showing only the face from left ear to right ear) is optimal. But why? To answer this question, I analyzed a large number of male and female face images. (The analysis was designed to mimic the way that the brain presumably processes them.) The analysis was carried out separately for each of the internal face features (left eye, right eye, mouth, and nose), which permits us to identify the responsible feature(s) for setting the resolution level, and it turns out that the eyes and the mouth are responsible for setting it. Thus, looking at eyes and mouth at the mentioned coarse resolution gives the most reliable signals for face recognition, and the brain has built-in knowledge about that. Although a preferred resolution level for face recognition has been observed for a long time in numerous experiments, this study offers, for the first time, a plausible explanation.
PMCID: PMC2653192  PMID: 19325870
23.  What's in a face? Effects of stimulus duration and inversion on face processing in schizophrenia☆ 
Schizophrenia research  2008;103(1-3):283-292.
A number of studies show deficits in early-stage visual processing in schizophrenia. Deficits are also seen at more complex levels, such as ability to discriminate faces. This study investigated the “face inversion” effect, which reflects intrinsic cortical processing within the ventral visual stream, as well as contrast sensitivity, which reflects low-level visual processing, in order to evaluate integrity of specific stages of face processing in schizophrenia. Patients with schizophrenia and controls discriminated between pairs of upright or inverted faces or houses that had been manipulated to differ in the shape of the parts or the spatial distance among parts. The duration threshold for above chance performance on upright stimuli was obtained for patients using a house discrimination task. Contrast sensitivity was assessed for gratings of three spatial frequencies ranging from 0.5 to 21 cycles/degree. Patients needed significantly longer time to obtain 70% correct for upright stimuli and showed decreased contrast sensitivity. Increased duration threshold correlated with reduced contrast sensitivity to low (magnocellular-biased) but not medium or high spatial frequency stimuli. Using increased durations, patients showed significant inversion effects that were equivalent to those of controls on the face part and spacing tasks. Like controls, patients did not show inversion effects on the house tasks. These findings show that patients have difficulty integrating visual information as shown by increased duration thresholds. However, when faces were presented at these longer duration thresholds, patients showed the same relative processing ability for upright vs. inverted faces as controls, suggesting preserved intrinsic processing within cortical face processing regions. Similar inversion effects for face part and spacing for both groups suggest that they are using the same holistic face processing mechanism.
PMCID: PMC2755251  PMID: 18450426
Schizophrenia; Face inversion effect; Visual; Magnocellular; Fusiform face area
24.  Holistic face training enhances face processing in developmental prosopagnosia 
Brain  2014;137(6):1781-1798.
Recent case studies suggest that face recognition can be improved in individual developmental prosopagnosics. Using a 3-week online program targeting holistic face processing, DeGutis et al. reveal perceptual improvements in 24 subjects. Those who reached more difficult levels of training showed the greatest improvements in holistic processing.
Prosopagnosia has largely been regarded as an untreatable disorder. However, recent case studies using cognitive training have shown that it is possible to enhance face recognition abilities in individuals with developmental prosopagnosia. Our goal was to determine if this approach could be effective in a larger population of developmental prosopagnosics. We trained 24 developmental prosopagnosics using a 3-week online face-training program targeting holistic face processing. Twelve subjects with developmental prosopagnosia were assessed before and after training, and the other 12 were assessed before and after a waiting period, they then performed the training, and were then assessed again. The assessments included measures of front-view face discrimination, face discrimination with view-point changes, measures of holistic face processing, and a 5-day diary to quantify potential real-world improvements. Compared with the waiting period, developmental prosopagnosics showed moderate but significant overall training-related improvements on measures of front-view face discrimination. Those who reached the more difficult levels of training (‘better’ trainees) showed the strongest improvements in front-view face discrimination and showed significantly increased holistic face processing to the point of being similar to that of unimpaired control subjects. Despite challenges in characterizing developmental prosopagnosics’ everyday face recognition and potential biases in self-report, results also showed modest but consistent self-reported diary improvements. In summary, we demonstrate that by using cognitive training that targets holistic processing, it is possible to enhance face perception across a group of developmental prosopagnosics and further suggest that those who improved the most on the training task received the greatest benefits.
PMCID: PMC4032098  PMID: 24691394
developmental prosopagnosia; computer-based cognitive remediation; configural/holistic processing
25.  Disrupting perceptual grouping of face parts impairs holistic face processing 
Face perception is widely believed to involve integration of facial features into a holistic perceptual unit, but the mechanisms underlying this integration are relatively unknown. We examined whether perceptual grouping cues influence a classic marker of holistic face perception, the “composite-face effect.” Participants made same–different judgments about a cued part of sequentially presented chimeric faces, and holistic processing was indexed as the degree to which the task-irrelevant face halves impacted performance. Grouping was encouraged or discouraged by adjusting the backgrounds behind the face halves: Although the face halves were always aligned, their respective backgrounds could be misaligned and of different colors. Holistic processing of face, but not of nonface, stimuli was significantly reduced when the backgrounds were misaligned and of different colors, cues that discouraged grouping of the face halves into a cohesive unit (Exp. 1). This effect was sensitive to stimulus orientation at short (200 ms) but not at long (2,500 ms) encoding durations, consistent with the previously documented temporal properties of the holistic processing of upright and inverted faces (Exps. 2 and 3). These results suggest that grouping mechanisms, typically involved in the perception of objecthood more generally, might contribute in important ways to the holistic perception of faces.
PMCID: PMC3824569  PMID: 23179914
Face perception; Object-based attention; Grouping; Segmentation; Holistic processing

Results 1-25 (717415)