Search tips
Search criteria

Results 1-25 (1046685)

Clipboard (0)

Related Articles

1.  The late response of rat subependymal zone stem and progenitor cells to stroke is restricted to directly affected areas of their niche☆ 
Experimental Neurology  2013;248(100):387-397.
Ischaemia leads to increased proliferation of progenitors in the subependymal zone (SEZ) neurogenic niche of the adult brain and to generation and migration of newborn neurons. Here we investigated the spatiotemporal characteristics of the mitotic activity of adult neural stem and progenitor cells in the SEZ during the sub-acute and chronic post-ischaemic phases. Ischaemia was induced by performing a 1 h unilateral middle cerebral artery occlusion (MCAO) and tissue was collected 4/5 weeks and 1 year after the insult. Neural stem cells (NSCs) responded differently from their downstream progenitors to MCAO, with NSCs being activated only transiently whilst progenitors remain activated even at 1 year post-injury. Importantly, mitotic activation was observed only in the affected areas of the niche and specifically in the dorsal half of the SEZ. Analysis of the topography of mitoses, in relation to the anatomy of the lesion and to the position of ependymal cells and blood vessels, suggested an interplay between lesion-derived recruiting signals and the local signals that normally control proliferation in the chronic post-ischaemic phase.
•Neural stem cells respond transiently to ischaemia.•Progenitors respond chronically to ischaemia.•Neural stem/progenitor cells of the subependymal zone respond only in areas of damage to the niche.•Ischaemia affects the cytoarchitecture of mitoses in the ageing niche.•Density of microglia is decreased in the ageing niche.
PMCID: PMC3782662  PMID: 23830949
Neurogenesis; Neural stem cells; Progenitors; Subependymal zone/subventricular zone; Stroke; Ischaemia; Proliferation
2.  Ank3-dependent SVZ niche assembly is required for the continued production of new neurons 
Neuron  2011;71(1):61-75.
The rodent subventricular/subependymal zone (SVZ/SEZ) houses neural stem cells (NSCs) that generate olfactory bulb interneurons. It is unclear how the SVZ environment sustains neuronal production into adulthood. We discovered that the adapter molecule Ankyrin-3 (Ank3) is specifically upregulated in radial glia destined to become SVZ ependymal niche cells, but not in NSCs, and is required for SVZ assembly through progenitor lateral adhesion. Furthermore, we found that Ank3 expression is controlled by Foxj1, a transcriptional regulator of multicilia formation, and genetic deletion of this pathway led to complete loss of SVZ niche structure. In its absence, radial glia continued to transition into postnatal NSCs. However, inducible ependymal deletion of Foxj1-Ank3 after SVZ niche assembly resulted in dramatic depletion of neurogenesis. Targeting a novel pathway regulating ependymal organization/assembly and showing its requirement for new neuron production, our results have important implications for environmental control of adult neurogenesis and harvesting NSCs for replacement therapy.
PMCID: PMC3134799  PMID: 21745638
3.  Neural Precursor Cells from Adult Mouse Cerebral Cortex Differentiate into Both Neurons and Oligodendrocytes 
Cytotechnology  2003;43(1-3):19-25.
Recent findings concerning adult neurogenesis in two selected structures of the mammalian brain, the olfactory bulb and dentate gyrus of the hippocampus, present the possibility that this mechanism of neurogenesis applies for all brain regions, including the cerebral neocortex. In this way, a small number of potential neural precursor cells may exist in the cerebral neocortex, but they do not normally differentiate into cortical neurons in vivo. It has, however, been reported recently that cycling cells isolated from non-neurogenic areas of adult rat cerebral cortex could generate neurons in vitro. In this study, we analyzed the lineage potential of cycling cells from the adult mouse neocortex. For the dissection of the cerebral cortex from the adult mouse, which is significantly smaller than that of the adult rat, we have modified the previous dissection protocol developed for the rat neocortex. As a result, cycling cells from adult mouse neocortex gave rise to neurons and oligodendrocytes, but not to astrocytes, whereas when the previous dissection method was used, cycling cells gave rise to neurons, oligodendrocytes and astrocytes. This discrepancy might stem from slight contamination of the dissected mouse neocortical tissue in the previous protocol used for the dissection of rat neocortex by cells from the surrounding subependymal zone, where typical adult neural stem cells exist. The results presented here will contribute to our understanding of the nature of cycling cells in the adult mammalian neocortex, and for which future stem cell research will provide new possibilities for cell replacement therapy to be used in the treatment of neurodegenerative conditions.
PMCID: PMC3449595  PMID: 19003203
adult mouse; brain dissection; lineage potential; neocortex; neural precursor cells
4.  Post-injury protective astrogenesis from SVZ niche is controlled by Notch modulator Thbs4 
Nature  2013;497(7449):369-373.
Postnatal/adult neural stem cells (NSCs) within the rodent subventricular/subependymal zone (SVZ/SEZ) generate Doublecortin (DCX)+ neuroblasts that migrate and integrate into olfactory bulb circuitry1,2. Continuous production of neuroblasts is controlled by SVZ microenvironmental niche3,4. It is generally believed that enhancing neurogenic activities of endogenous NSCs may provide needed therapeutic options for disease states and after brain injury. However, SVZ NSCs can also differentiate into astrocytes. It remains unclear if there are conditions that favor astrogenesis over neurogenesis in the SVZ niche, and if astrocytes produced there exhibit different properties from others in the brain. We have uncovered that SVZ-generated astrocytes express high levels of Thrombospondin-4 (Thbs4)5,6, a secreted homopentameric glycoprotein, in contrast to cortical astrocytes which are Thbs4low. We found that localized photothrombotic/ischemic cortical injury initiates a marked increase in Thbs4hi astrocyte production from the postnatal SVZ niche. Tamoxifen-inducible nestin-CreERtm4 lineage-tracing demonstrated that it is these SVZ-generated Thbs4hi astrocytes, and not DCX+ neuroblasts, that home-in on the injured cortex. This robust post-injury astrogenic response required SVZ Notch activation, modulated by Thbs4 via direct Notch1 receptor binding and endocytosis to activate downstream signals, including increased Nfia transcription factor expression important for glia production7. Consequently, Thbs4KO/KO animals showed severe defects in cortical injury-induced SVZ astrogenesis, instead producing cells expressing DCX from SVZ to the injury sites. These alterations in cellular responses resulted in abnormal glial scar formation after injury, and significantly increased microvascular hemorrhage into the brain parenchyma of Thbs4KO/KO animals. Taken together, these findings have significant implications for post-injury applications of endogenous and transplanted NSCs in the therapeutic setting, as well as disease states where Thbs family members play important roles8,9.
PMCID: PMC3667629  PMID: 23615612
subventricular zone; astrogenesis; brain injury; Thbs4; Notch; tsp
5.  Quiescence and Activation of Stem and Precursor Cell Populations in the Subependymal Zone of the Mammalian Brain Are Associated with Distinct Cellular and Extracellular Matrix Signals 
The Journal of Neuroscience  2010;30(29):9771-9781.
The subependymal zone (SEZ) of the lateral ventricles is one of the areas of the adult brain where new neurons are continuously generated from neural stem cells (NSCs), via rapidly dividing precursors. This neurogenic niche is a complex cellular and extracellular microenvironment, highly vascularized compared to non-neurogenic periventricular areas, within which NSCs and precursors exhibit distinct behavior. Here, we investigate the possible mechanisms by which extracellular matrix molecules and their receptors might regulate this differential behavior. We show that NSCs and precursors proceed through mitosis in the same domains within the SEZ of adult male mice—albeit with NSCs nearer ependymal cells—and that distance from the ventricle is a stronger limiting factor for neurogenic activity than distance from blood vessels. Furthermore, we show that NSCs and precursors are embedded in a laminin-rich extracellular matrix, to which they can both contribute. Importantly, they express differential levels of extracellular matrix receptors, with NSCs expressing low levels of α6β1 integrin, syndecan-1, and lutheran, and in vivo blocking of β1 integrin selectively induced the proliferation and ectopic migration of precursors. Finally, when NSCs are activated to reconstitute the niche after depletion of precursors, expression of laminin receptors is upregulated. These results indicate that the distinct behavior of adult NSCs and precursors is not necessarily regulated via exposure to differential extracellular signals, but rather via intrinsic regulation of their interaction with their microenvironment.
PMCID: PMC3842479  PMID: 20660259
6.  Green Fluorescent Protein Bone Marrow Cells Express Hematopoietic and Neural Antigens in Culture and Migrate Within the Neonatal Rat Brain 
Journal of neuroscience research  2004;76(2):255-264.
Finding a reliable source of alternative neural stem cells for treatment of various diseases and injuries affecting the central nervous system is a challenge. Numerous studies have shown that hematopoietic and nonhematopoietic progenitors derived from bone marrow (BM) under specific conditions are able to differentiate into cells of all three germ layers. Recently, it was reported that cultured, unfractionated (whole) adult BM cells form nestin-positive spheres that can later initiate neural differentiation (Kabos et al., 2002). The identity of the sub-population of BM cells that contributes to neural differentiation remains unknown. We therefore analyzed the hematopoietic and neural features of cultured, unfractionated BM cells derived from a transgenic mouse that expresses green fluorescent protein (GFP) in all tissues. We also transplanted the BM cells into the subventricular zone (SVZ), a region known to support postnatal neuro-genesis. After injection of BM cells into the neurogenic SVZ in neonatal rats, we found surviving GFP+ BM cells close to the injection site and in various brain regions, including corpus callosum and subcortical white matter. Many of the grafted cells were detected within the rostral migratory stream (RMS), moving toward the olfactory bulb (OB), and some cells reached the subependymal zone of the OB. Our in vitro experiments revealed that murine GFP+ BM cells retained their proliferation and differentiation potential and predominantly preserved their hematopoietic identity (CD45, CD90, CD133), although a few expressed neural antigens (nestin, glial fibrillary acdiic protein, TuJ1).
PMCID: PMC2720828  PMID: 15048923
bone marrow; green mouse; grafting; subventricular zone; developing rat brain
7.  Essential role of BAF complex interacting with Pax6 in establishment of a core cross-regulatory neurogenic network 
Cell stem cell  2013;13(4):403-418.
The molecular mechanisms of neurogenic fate determination are of particular importance in light of the need to regenerate neurons. Here we define the mechanisms of installing neurogenic fate by the transcription factor Pax6 acting together with the Brg1-containing BAF chromatin remodeling complex. We show that Pax6 physically interacts with Brg1-containing BAF complex and genetic deletion of either Pax6 or Brg1, in the neural stem cells in the adult mouse subependymal zone results in a strikingly similar fate conversion from neuronal progenitors to glia. The Pax6-BAF complex drives neurogenesis by directly activating transcription factors Sox11, Nfib and Pou3f4, which form a cross-regulatory network that maintains neurogenic fate downstream of the Pax6-BAF complex in neuroblasts. Our work identifies a novel concept of stratification in neural fate commitment with a strikingly specific role of the Pax6-BAF complex in initiating a cross-regulatory network essential for maintenance of the neurogenic lineage in the adult brain.
PMCID: PMC4098720  PMID: 23933087
Chromatin; Fate determinants; Neurogenesis; Fate conversion
8.  The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes 
Acta Neuropathologica  2010;119(6):755-770.
Autism is characterized by a broad spectrum of clinical manifestations including qualitative impairments in social interactions and communication, and repetitive and stereotyped patterns of behavior. Abnormal acceleration of brain growth in early childhood, signs of slower growth of neurons, and minicolumn developmental abnormalities suggest multiregional alterations. The aim of this study was to detect the patterns of focal qualitative developmental defects and to identify brain regions that are prone to developmental alterations in autism. Formalin-fixed brain hemispheres of 13 autistic (4–60 years of age) and 14 age-matched control subjects were embedded in celloidin and cut into 200-μm-thick coronal sections, which were stained with cresyl violet and used for neuropathological evaluation. Thickening of the subependymal cell layer in two brains and subependymal nodular dysplasia in one brain is indicative of active neurogenesis in two autistic children. Subcortical, periventricular, hippocampal and cerebellar heterotopias detected in the brains of four autistic subjects (31%) reflect abnormal neuronal migration. Multifocal cerebral dysplasia resulted in local distortion of the cytoarchitecture of the neocortex in four brains (31%), of the entorhinal cortex in two brains (15%), of the cornu Ammonis in four brains and of the dentate gyrus in two brains. Cerebellar flocculonodular dysplasia detected in six subjects (46%), focal dysplasia in the vermis in one case, and hypoplasia in one subject indicate local failure of cerebellar development in 62% of autistic subjects. Detection of flocculonodular dysplasia in only one control subject and of a broad spectrum of focal qualitative neuropathological developmental changes in 12 of 13 examined brains of autistic subjects (92%) reflects multiregional dysregulation of neurogenesis, neuronal migration and maturation in autism, which may contribute to the heterogeneity of the clinical phenotype.
PMCID: PMC2869041  PMID: 20198484
Autism; Developmental neuropathology; Subependymal nodular dysplasia; Heterotopia; Dysplasia
9.  Clinical and Morphological Aspects of Gray Matter Heterotopia Type Developmental Malformations 
Polish Journal of Radiology  2014;79:502-507.
Gray matter heterotopia (GMH) is a malformation of the central nervous system characterized by interruption of normal neuroblasts migration between the 7th and 16th week of fetal development.
The aim of the study was the analysis of clinical symptoms, prevalence rate and the most common concurrent central nervous system (CNS) developmental disorders as well as assessment of characteristic morphological changes of gray matter heterotopia in children hospitalized in our institution between the year 2001 and 2012.
We performed a retrospective analysis of patients’ data who were hospitalized in our institution between the year 2001 and 2012. We assessed clinical data and imaging exams in children diagnosed with gray matter heterotopia confirmed in MRI (magnetic resonance imaging).
GMH occurred in 26 children hospitalized in our institution between the year 2001 and 2012. Among children with gray matter heterotopia most common clinical symptoms were: epilepsy, intellectual disability and hemiparesis.
The commonest location of heterotopic gray matter were fronto-parietal areas of brain parenchyma, mostly subependymal region.
Gray matter heterotopia occurred with other developmental disorders of the central nervous system rather than solely and in most cases it was bilateral.
Schizencephaly and abnormalities of the corpus callosum were the most often developmental disorders accompanying GMH.
1. Subependymal gray matter heterotopia was more common than subcortical GMH. Subependymal GMH showed tendency to localize in the region of the bodies of the lateral ventricles. The least common was laminar GMH. 2. Gray matter heterotopia occurred more often with other developmental disorders of the central nervous system rather than solely. The most frequent concurrent disorders of the central nervous system were: schizencephaly, developmental abnormalities of the corpus callosum, arachnoid cyst, abnormalities of the septum pellucidum and the fornix. 3. GMH foci were more often bilateral than unilateral. 4. In the diagnostics of cell migration abnormalities, gray matter heterotopia included, MR imaging remains the method of choice.
PMCID: PMC4282845  PMID: 25574247
Brain Abscess; Developmental Disabilities; Magnetic Resonance Imaging
10.  Reduced Proliferation in the Adult Mouse Subventricular Zone Increases Survival of Olfactory Bulb Interneurons 
PLoS ONE  2012;7(2):e31549.
Neurogenesis in the adult brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle, olfactory bulb (OB) and the dentate subgranular zone, and survival of adult-born cells in the OB is influenced by factors including sensory experience. We examined, in mice, whether survival of adult-born cells is also regulated by the rate of precursor proliferation in the SVZ. Precursor proliferation was decreased by depleting the SVZ of dopamine after lesioning dopamine neurons in the substantia nigra compacta with 6-hydroxydopamine. Subsequently, we examined the effect of reduced SVZ proliferation on the generation, migration and survival of neuroblasts and mature adult-born cells in the SVZ, rostral migratory stream (RMS) and OB. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 47% or 36%, respectively, 7 days after dopamine depletion, and by 29% or 31% 42 days after dopamine depletion, compared to sham-treated animals. Neuroblast generation in the SVZ and their migration along the RMS were not affected, neither 7 nor 42 days after the 6-hydroxydopamine injection, since the number of doublecortin-immunoreactive neuroblasts in the SVZ and RMS, as well as the number of neuronal nuclei-immunoreactive cells in the OB, were stable compared to control. However, survival analysis 15 days after 6-hydroxydopamine and 6 days after BrdU injections showed that the number of BrdU+ cells in the SVZ was 70% higher. Also, 42 days after 6-hydroxydopamine and 30 days after BrdU injections, we found an 82% increase in co-labeled BrdU+/γ-aminobutyric acid-immunoreactive cell bodies in the granular cell layer, while double-labeled BrdU+/tyrosine hydroxylase-immunoreactive cell bodies in the glomerular layer increased by 148%. We conclude that the number of OB interneurons following reduced SVZ proliferation is maintained through an increased survival of adult-born precursor cells, neuroblasts and interneurons.
PMCID: PMC3283653  PMID: 22363671
11.  Hypothalamic Subependymal Niche: A Novel Site of the Adult Neurogenesis 
The discovery of undifferentiated, actively proliferating neural stem cells (NSCs) in the mature brain opened a brand new chapter in the contemporary neuroscience. Adult neurogenesis appears to occur in specific brain regions (including hypothalamus) throughout vertebrates’ life, being considered an important player in the processes of memory, learning, and neural plasticity. In the adult mammalian brain, NSCs are located mainly in the subgranular zone (SGZ) of the hippocampal dentate gyrus and in the subventricular zone (SVZ) of the lateral ventricle ependymal wall. Besides these classical regions, hypothalamic neurogenesis occurring mainly along and beneath the third ventricle wall seems to be especially well documented. Neurogenic zones in SGZ, SVZ, and in the hypothalamus share some particular common features like similar cellular cytoarchitecture, vascularization pattern, and extracellular matrix properties. Hypothalamic neurogenic niche is formed mainly by four special types of radial glia-like tanycytes. They are characterized by distinct expression of some neural progenitor and stem cell markers. Moreover, there are numerous suggestions that newborn hypothalamic neurons have a significant ability to integrate into the local neural pathways and to play important physiological roles, especially in the energy balance regulation. Newly formed neurons in the hypothalamus can synthesize and release food intake regulating neuropeptides and they are sensitive to the leptin. On the other hand, high-fat diet positively influences hypothalamic neurogenesis in rodents. The nature of this intriguing new site of adult neurogenesis is still so far poorly studied and requires further investigations.
PMCID: PMC4047487  PMID: 24744125
Adult neurogenesis; Hypothalamus; Stem cell niche; Energy balance
12.  In Vivo Targeting of Adult Neural Stem Cells in the Dentate Gyrus by a Split-Cre Approach 
Stem Cell Reports  2014;2(2):153-162.
We describe the labeling of adult neural stem cells (aNSCs) in the mouse and human dentate gyrus (DG) by the combinatorial expression of glial fibrillary acidic protein (GFAP) and Prominin1, as revealed by immunohistochemistry. Split-Cre-based genetic fate mapping of these double-positive cells in the adult murine DG reveals their NSC identity, as they are self-renewing and contribute to neurogenesis over several months. Their progeny reacts to stimuli such as voluntary exercise with increased neurogenesis. Prominin1+/GFAP+ cells also exist in the adult human DG, the only region in the human brain for which adult neurogenesis has been consistently reported. Our data, together with previous evidence of such double-positive NSCs in the developing murine brain and in neurogenic regions of vertebrates with widespread neurogenesis, suggest that Prominin1- and GFAP-expressing cells are NSCs in a wide range of species in development and adulthood.
•Prominin1 is expressed in radial and nonradial NSCs in the adult hippocampus•Fate mapping reveals the long-term neurogenic lineage of Prominin1+/hGFAP+ NSCs•Prominin1 labels GFAP+ radial glia processes in the adult human hippocampus
The combinatorial expression of GFAP and Prominin1 labels adult neural stem cells (NSCs) in the mouse dentate gyrus as revealed by immunohistochemistry and split-Cre-based fate mapping. Additionally, Prominin1+/GFAP+ cells exist in the adult human dentate gyrus. Such double-positive cells also represent NSCs in the embryonic forebrain and the adult subependymal zone, suggesting Prominin1+/GFAP+ expression as a general property of NSCs.
PMCID: PMC3923228  PMID: 24527389
13.  Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice 
Molecular Brain  2011;4:29.
Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood.
Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks.
Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development.
PMCID: PMC3148973  PMID: 21736737
fetal alcohol exposure; MRI; olfactory bulb; subependymal zone; odor discrimination; odor memory; neurospheres; neurogenesis
14.  A Dlx2- and Pax6-Dependent Transcriptional Code for Periglomerular Neuron Specification in the Adult Olfactory Bulb 
The Journal of Neuroscience  2008;28(25):6439-6452.
Distinct olfactory bulb (OB) interneurons are thought to become specified depending on from which of the different subregions lining the lateral ventricle wall they originate, but the role of region-specific transcription factors (TFs) in the generation of OB interneurons diversity is still poorly understood. Despite the crucial roles of the Dlx family of TFs for patterning and neurogenesis in the ventral telencephalon during embryonic development, their role in adult neurogenesis has not yet been addressed. Here we show that in the adult brain, Dlx 1 and Dlx2 are expressed in progenitors of the lateral but not the dorsal subependymal zone (SEZ), thus exhibiting a striking regional specificity. Using retroviral vectors to examine the function of Dlx2 in a cell-autonomous manner, we demonstrate that this TF is necessary for neurogenesis of virtually all OB interneurons arising from the lateral SEZ. Beyond its function in generic neurogenesis, Dlx2 also plays a crucial role in neuronal subtype specification in the OB, promoting specification of adult-born periglomerular neurons (PGNs) toward a dopaminergic fate. Strikingly, Dlx2 requires interaction with Pax6, because Pax6 deletion blocks Dlx2-mediated PGN specification. Thus, Dlx2 wields a dual function by first instructing generic neurogenesis from adult precursors and subsequently specifying PGN subtypes in conjunction with Pax6.
PMCID: PMC3844782  PMID: 18562615
neurogenesis; subependymal zone; olfactory bulb; transcription factor; tyrosine hydroxylase; stem cell
15.  Thoracic Rat Spinal Cord Contusion Injury Induces Remote Spinal Gliogenesis but Not Neurogenesis or Gliogenesis in the Brain 
PLoS ONE  2014;9(7):e102896.
After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis) in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC) or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn) of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU) to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord) and unaltered in neurogenic regions (dentate gyrus and SVZ) of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.
PMCID: PMC4106835  PMID: 25050623
16.  Midbrain–hindbrain involvement in lissencephalies 
Neurology  2009;72(5):410-418.
To determine the involvement of the midbrain and hindbrain (MHB) in the groups of classic (cLIS), variant (vLIS), and cobblestone complex (CBSC) lissencephalies and to determine whether a correlation exists between the cerebral malformation and the MHB abnormalities.
MRI scans of 111 patients (aged 1 day to 32 years; mean 5 years 4 months) were retrospectively reviewed. After reviewing the brain involvement on MRI, the cases were reclassified according to known mutation (LIS1, DCX, ARX, VLDLR, RELN, MEB, WWS) or mutation phenotype (LIS1-P, DCX-P, RELN-P, ARX-P, VLDLR-P) determined on the basis of characteristic MRI features. Abnormalities in the MHB were then recorded. For each structure, a score was assigned, ranging from 0 (normal) to 3 (severely abnormal). The differences between defined groups and the correlation between the extent of brain agyria/pachygyria and MHB involvement were assessed using Kruskal–Wallis and χ2 McNemar tests.
There was a significant difference in MHB appearance among the three major groups of cLIS, vLIS, and CBSC. The overall score showed a severity gradient of MHB involvement: cLIS (0 or 1), vLIS (7), and CBSC (11 or 12). The extent of cerebral lissencephaly was significantly correlated with the severity of MHB abnormalities (p = 0.0029).
Our study focused on posterior fossa anomalies, which are an integral part of cobblestone complex lissencephalies but previously have not been well categorized for other lissencephalies. According to our results and the review of the literature, we propose a new classification of human lissencephalies.
= autosomal;
= agenesis of corpus callosum;
= autosomal dominant;
= anteroposterior;
= autosomal recessive;
= cerebellar;
= cobblestone complex;
= classic lissencephaly;
= congenital muscular dystrophy;
= cell-sparse zone;
= dorsal–ventral;
= Fukuyama congenital muscular dystrophy;
= inferior vermis hypoplasia;
= lateral ventricle;
= medulla;
= midbrain;
= Miller–Dieker syndrome;
= muscle–eye–brain;
= midbrain and hindbrain;
= magnetic resonance;
= not determined;
= pons;
= rostrocaudal;
= subcortical band heterotopia;
= subependymal linear heterotopia;
= vermis;
= variant lissencephaly;
= weighted image;
= Walker–Warburg syndrome;
= X-linked dominant;
= X-linked recessive.
PMCID: PMC2677533  PMID: 19020296
17.  Neurogenic and non-neurogenic functions of endogenous neural stem cells 
Adult neurogenesis is a lifelong process that occurs in two main neurogenic niches of the brain, namely in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus. In the 1960s, studies on adult neurogenesis have been hampered by the lack of established phenotypic markers. The precise tracing of neural stem/progenitor cells (NPCs) was therefore, not properly feasible. After the (partial) identification of those markers, it was the lack of specific tools that hindered a proper experimental elimination and tracing of those cells to demonstrate their terminal fate and commitment. Nowadays, irradiation, cytotoxic drugs as well as genetic tracing/ablation procedures have moved the field forward and increased our understanding of neurogenesis processes in both physiological and pathological conditions. Newly formed NPC progeny from the SVZ can replace granule cells in the olfactory bulbs of rodents, thus contributing to orchestrate sophisticated odor behavior. SGZ-derived new granule cells, instead, integrate within the DG where they play an essential role in memory functions. Furthermore, converging evidence claim that endogenous NPCs not only exert neurogenic functions, but might also have non-neurogenic homeostatic functions by the release of different types of neuroprotective molecules. Remarkably, these non-neurogenic homeostatic functions seem to be necessary, both in healthy and diseased conditions, for example for preventing or limiting tissue damage. In this review, we will discuss the neurogenic and the non-neurogenic functions of adult NPCs both in physiological and pathological conditions.
PMCID: PMC4010760  PMID: 24808821
neural stem cells; neurogenesis; inflammation; transplantation; germinal niches; bystander effect
18.  Existence of a potential neurogenic system in the adult human brain 
Prevailingly, adult mammalian neurogenesis is thought to occur in discrete, separate locations known as neurogenic niches that are best characterized in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ). The existence of adult human neurogenic niches is controversial.
The existence of neurogenic niches was investigated with neurogenesis marker immunostaining in histologically normal human brains obtained from autopsies. Twenty-eight adult temporal lobes, specimens from limbic structures and the hypothalamus of one newborn and one adult were examined.
The neural stem cell marker nestin stained circumventricular organ cells and the immature neuronal marker doublecortin (DCX) stained hypothalamic and limbic structures adjacent to circumventricular organs; both markers stained a continuous structure running from the hypothalamus to the hippocampus. The cell proliferation marker Ki-67 was detected predominately in structures that form the septo-hypothalamic continuum. Nestin-expressing cells were located in the fimbria-fornix at the insertion of the choroid plexus; ependymal cells in this structure expressed the putative neural stem cell marker CD133. From the choroidal fissure in the temporal lobe, a nestin-positive cell layer spread throughout the SVZ and subpial zone. In the subpial zone, a branch of this layer reached the hippocampal sulcus and ended in the SGZ (principally in the newborn) and in the subiculum (principally in the adults). Another branch of the nestin-positive cell layer in the subpial zone returned to the optic chiasm. DCX staining was detected in the periventricular and middle hypothalamus and more densely from the mammillary body to the subiculum through the fimbria-fornix, thus running through the principal neuronal pathway from the hippocampus to the hypothalamus. The column of the fornix forms part of this pathway and appears to coincide with the zone previously identified as the human rostral migratory stream. Partial co-labeling with DCX and the neuronal marker βIII-tubulin was also observed.
Collectively, these findings suggest the existence of an adult human neurogenic system that rises from the circumventricular organs and follows, at minimum, the circuitry of the hypothalamus and limbic system.
PMCID: PMC3998109  PMID: 24655332
Neurogenic niche; Neurogenesis; Neural stem cell; Adult human brain; Limbic system; Temporal lobe; Hippocampus; Hypothalamus; Nestin; Doublecortin
19.  An Organotypic Slice Assay for High-Resolution Time-Lapse Imaging of Neuronal Migration in the Postnatal Brain 
Neurogenesis in the postnatal brain depends on maintenance of three biological events: proliferation of progenitor cells, migration of neuroblasts, as well as differentiation and integration of new neurons into existing neural circuits. For postnatal neurogenesis in the olfactory bulbs, these events are segregated within three anatomically distinct domains: proliferation largely occurs in the subependymal zone (SEZ) of the lateral ventricles, migrating neuroblasts traverse through the rostral migratory stream (RMS), and new neurons differentiate and integrate within the olfactory bulbs (OB). The three domains serve as ideal platforms to study the cellular, molecular, and physiological mechanisms that regulate each of the biological events distinctly. This paper describes an organotypic slice assay optimized for postnatal brain tissue, in which the extracellular conditions closely mimic the in vivo environment for migrating neuroblasts. We show that our assay provides for uniform, oriented, and speedy movement of neuroblasts within the RMS. This assay will be highly suitable for the study of cell autonomous and non-autonomous regulation of neuronal migration by utilizing cross-transplantation approaches from mice on different genetic backgrounds.
PMCID: PMC3145313  PMID: 21206461
20.  Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb 
Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle and subgranular zone (SGZ) of the dentate gyrus (DG). We examined whether cholecystokinin (CCK) through actions mediated by CCK1 receptors (CCK1R) is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 h prior to death or by immunoreactivity against Ki67, were reduced by 37 and 42%, respectively, in female (but not male) mice lacking CCK1Rs (CCK1R−/−) compared to wild-type (WT). Generation of neuroblasts in the SVZ and rostral migratory stream (RMS) was also affected, since the number of doublecortin (DCX)-immunoreactive (ir) neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R−/− mice, BrdU-positive (+), and Ki67-ir cells were reduced by 38 and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R−/− mice was examined. In the OB granule cell layer (GCL), the number of neuronal nuclei (NeuN)-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI) was similar. Compared to WT, the granule cell layer of the DG in female CCK1R−/− mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL) of CCK1R−/− female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is altered.
PMCID: PMC3584826  PMID: 23459364
cholecystokinin 1 receptor; neurogenesis; subventricular zone; rostral migratory stream; olfactory bulb; subgranular zone; interneurons; survival
21.  Developmental cues and persistent neurogenic potential within an in vitro neural niche 
Neurogenesis, the production of neural cell-types from neural stem cells (NSCs), occurs during development as well as within select regions of the adult brain. NSCs in the adult subependymal zone (SEZ) exist in a well-categorized niche microenvironment established by surrounding cells and their molecular products. The components of this niche maintain the NSCs and their definitive properties, including the ability to self-renew and multipotency (neuronal and glial differentiation).
We describe a model in vitro NSC niche, derived from embryonic stem cells, that produces many of the cells and products of the developing subventricular zone (SVZ) and adult SEZ NSC niche. We demonstrate a possible role for apoptosis and for components of the extracellular matrix in the maintenance of the NSC population within our niche cultures. We characterize expression of genes relevant to NSC self-renewal and the process of neurogenesis and compare these findings to gene expression produced by an established neural-induction protocol employing retinoic acid.
The in vitro NSC niche shows an identity that is distinct from the neurally induced embryonic cells that were used to derive it. Molecular and cellular components found in our in vitro NSC niche include NSCs, neural progeny, and ECM components and their receptors. Establishment of the in vitro NSC niche occurs in conjunction with apoptosis. Applications of this culture system range from studies of signaling events fundamental to niche formation and maintenance as well as development of unique NSC transplant platforms to treat disease or injury.
PMCID: PMC2824744  PMID: 20074373
22.  Notch Receptor Expression in Neurogenic Regions of the Adult Zebrafish Brain 
PLoS ONE  2013;8(9):e73384.
The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.
PMCID: PMC3767821  PMID: 24039926
23.  Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain 
Post-embryonic neurogenesis is a fundamental feature of the vertebrate brain. However, the level of adult neurogenesis decreases significantly with phylogeny. In the first part of this review, a comparative analysis of adult neurogenesis and its putative roles in vertebrates are discussed. Adult neurogenesis in mammals is restricted to two telencephalic constitutively active zones. On the contrary, non-mammalian vertebrates display a considerable amount of adult neurogenesis in many brain regions. The phylogenetic differences in adult neurogenesis are poorly understood. However, a common feature of vertebrates (fish, amphibians and reptiles) that display a widespread adult neurogenesis is the substantial post-embryonic brain growth in contrast to birds and mammals. It is probable that the adult neurogenesis in fish, frogs and reptiles is related to the coordinated growth of sensory systems and corresponding sensory brain regions. Likewise, neurons are substantially added to the olfactory bulb in smell-oriented mammals in contrast to more visually oriented primates and songbirds, where much fewer neurons are added to the olfactory bulb. The second part of this review focuses on the differences in brain plasticity and regeneration in vertebrates. Interestingly, several recent studies show that neurogenesis is suppressed in the adult mammalian brain. In mammals, neurogenesis can be induced in the constitutively neurogenic brain regions as well as ectopically in response to injury, disease or experimental manipulations. Furthermore, multipotent progenitor cells can be isolated and differentiated in vitro from several otherwise silent regions of the mammalian brain. This indicates that the potential to recruit or generate neurons in non-neurogenic brain areas is not completely lost in mammals. The level of adult neurogenesis in vertebrates correlates with the capacity to regenerate injury, for example fish and amphibians exhibit the most widespread adult neurogenesis and also the greatest capacity to regenerate central nervous system injuries. Studying these phenomena in non-mammalian vertebrates may greatly increase our understanding of the mechanisms underlying regeneration and adult neurogenesis. Understanding mechanisms that regulate endogenous proliferation and neurogenic permissiveness in the adult brain is of great significance in therapeutical approaches for brain injury and disease.
PMCID: PMC2605489  PMID: 17282988
neural stem cell; adult neurogenesis; glia; zebrafish; CNS
24.  Impaired Neurogenesis is an early event in the etiology of Familial Alzheimer’s disease in transgenic mice 
Journal of neuroscience research  2010;88(10):2103-2117.
Formation of new neurons in the adult brain takes place in the subventricular zone and in the subgranule layer of the dentate gyrus throughout life. Neurogenesis is thought to play a role in hippocampus- and olfaction-dependent learning and memory. However, whether impairments in neurogenesis take place in learning and memory disorders, such as Alzheimer’s disease, is yet to be established. More importantly, it remains to be elucidated whether neurogenic impairments play a role in the course of the disease or are the result of extensive neuropathology. We now report that transgenic mice harboring Familial Alzheimer’s disease-linked mutant APPswe/PS1ΔE9 exhibit severe impairments in neurogenesis that are evident as early as two months of age. These mice exhibit a significant reduction in the proliferation of neural progenitor cells and their neuronal differentiation. Interestingly, levels of hyperphosphorylated tau, the cytotoxic precursor of the Alzheimer’s disease hallmark neurofibrillary tangles, are particularly high in the neurogenic niches. Isolation of neural progenitor cells in culture reveals that APPswe/PS1ΔE9-expressing neurospheres exhibit impaired proliferation and tau hyperphosphorylation compared to wild type neurospheres isolated from nontransgenic littermates. This study suggests that impaired neurogenesis is an early critical event in the course of Alzheimer’s disease that may underlie memory impairments, at least in part, and exacerbate neuronal vulnerability in the hippocampal formation and olfaction circuits. Furthermore, impaired neurogenesis is the result of both intrinsic pathology in neural progenitor cells and extrinsic neuropathology in the neurogenic niches. Finally, hyperphosphorylation of the microtubule-associated protein tau, a critical player in cell proliferation, neuronal maturation and axonal transport is a major contributor to impaired neurogenesis in Alzheimer’s disease.
PMCID: PMC3696038  PMID: 20209626
Neurogenesis; Alzheimer’s disease; tau; amyloid; stem cells
25.  Cytoarchitecture and Ultrastructure of Neural Stem Cell Niches and Neurogenic Complexes Maintaining Adult Neurogenesis in the Olfactory Midbrain of Spiny Lobsters, Panulirus argus 
The Journal of comparative neurology  2011;519(12):10.1002/cne.22657.
New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a “neurogenic complex.” Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast’s microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements.
PMCID: PMC3870465  PMID: 21523781
proliferation; decapod crustacean; arthropod; brain; glia

Results 1-25 (1046685)