PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1412671)

Clipboard (0)
None

Related Articles

1.  Developmental Maturation of Dynamic Causal Control Signals in Higher-Order Cognition: A Neurocognitive Network Model 
PLoS Computational Biology  2012;8(2):e1002374.
Cognitive skills undergo protracted developmental changes resulting in proficiencies that are a hallmark of human cognition. One skill that develops over time is the ability to problem solve, which in turn relies on cognitive control and attention abilities. Here we use a novel multimodal neurocognitive network-based approach combining task-related fMRI, resting-state fMRI and diffusion tensor imaging (DTI) to investigate the maturation of control processes underlying problem solving skills in 7–9 year-old children. Our analysis focused on two key neurocognitive networks implicated in a wide range of cognitive tasks including control: the insula-cingulate salience network, anchored in anterior insula (AI), ventrolateral prefrontal cortex and anterior cingulate cortex, and the fronto-parietal central executive network, anchored in dorsolateral prefrontal cortex and posterior parietal cortex (PPC). We found that, by age 9, the AI node of the salience network is a major causal hub initiating control signals during problem solving. Critically, despite stronger AI activation, the strength of causal regulatory influences from AI to the PPC node of the central executive network was significantly weaker and contributed to lower levels of behavioral performance in children compared to adults. These results were validated using two different analytic methods for estimating causal interactions in fMRI data. In parallel, DTI-based tractography revealed weaker AI-PPC structural connectivity in children. Our findings point to a crucial role of AI connectivity, and its causal cross-network influences, in the maturation of dynamic top-down control signals underlying cognitive development. Overall, our study demonstrates how a unified neurocognitive network model when combined with multimodal imaging enhances our ability to generalize beyond individual task-activated foci and provides a common framework for elucidating key features of brain and cognitive development. The quantitative approach developed is likely to be useful in investigating neurodevelopmental disorders, in which control processes are impaired, such as autism and ADHD.
Author Summary
The human brain undergoes significant maturational changes between childhood and adulthood that are thought to enable increasingly sophisticated thoughts and behaviors. One of the skills that we develop over time is the ability to problem solve, which relies in turn on the ability to control our attention and successfully direct our cognitive efforts. Using a novel multi-pronged neuroimaging approach, we identify for the first time the dynamic brain systems underlying the maturation of problem solving abilities. We find that the anterior insula, part of a larger network of regions previously shown to be important for salience processing and generating influential control signals, shows weaker influences over other key brain regions important for task performance in children compared to adults. In addition, structural connections between the anterior insula and other key regions were found to be weaker in children compared to adults. Importantly, measures of causal influences between key regions could be used to predict individual differences in behavioral performance. Our study is the first to show that the anterior insula, by virtue of its dynamic influences on other key brain regions, shows developmental differences in both structural and functional connectivity, which may contribute to more mature cognitive abilities in adulthood compared to childhood.
doi:10.1371/journal.pcbi.1002374
PMCID: PMC3271018  PMID: 22319436
2.  Decreased Brain Volume in Adults with Childhood Lead Exposure 
PLoS Medicine  2008;5(5):e112.
Background
Although environmental lead exposure is associated with significant deficits in cognition, executive functions, social behaviors, and motor abilities, the neuroanatomical basis for these impairments remains poorly understood. In this study, we examined the relationship between childhood lead exposure and adult brain volume using magnetic resonance imaging (MRI). We also explored how volume changes correlate with historic neuropsychological assessments.
Methods and Findings
Volumetric analyses of whole brain MRI data revealed significant decreases in brain volume associated with childhood blood lead concentrations. Using conservative, minimum contiguous cluster size and statistical criteria (700 voxels, unadjusted p < 0.001), approximately 1.2% of the total gray matter was significantly and inversely associated with mean childhood blood lead concentration. The most affected regions included frontal gray matter, specifically the anterior cingulate cortex (ACC). Areas of lead-associated gray matter volume loss were much larger and more significant in men than women. We found that fine motor factor scores positively correlated with gray matter volume in the cerebellar hemispheres; adding blood lead concentrations as a variable to the model attenuated this correlation.
Conclusions
Childhood lead exposure is associated with region-specific reductions in adult gray matter volume. Affected regions include the portions of the prefrontal cortex and ACC responsible for executive functions, mood regulation, and decision-making. These neuroanatomical findings were more pronounced for males, suggesting that lead-related atrophic changes have a disparate impact across sexes. This analysis suggests that adverse cognitive and behavioral outcomes may be related to lead's effect on brain development producing persistent alterations in structure. Using a simple model, we found that blood lead concentration mediates brain volume and fine motor function.
Using magnetic resonance imaging to assess brain volumes, Kim Cecil and colleagues find that inner-city children with higher blood lead levels showed regions of decreased gray matter as adults.
Editors' Summary
Background.
Lead is a highly toxic metal that is present throughout the environment because of various human activities. In particular, for many years, large amounts of lead were used in paint, in solder for water pipes, in gasoline, and in ceramic glazes. But, as the harmful health effects of lead have become clear, its use in these and other products has been gradually phased out. Breathing air, drinking water, or eating food that contains lead can damage almost every organ in the human body. The organ that is most sensitive to lead exposure is the brain, and children's brains are particularly vulnerable because they are still developing. Children who swallow large amounts of lead can develop widespread brain damage that causes convulsions and sometimes death. Children who are repeatedly exposed to low to moderate amounts of lead (e.g., through accidentally swallowing residues of old lead paint or contaminated soil) can develop learning or behavioral problems.
Why Was This Study Done?
Lead exposure has been linked with various types of brain damage. These include problems with thinking (cognition); difficulties with organizing actions, decisions, and behaviors (executive functions); abnormal social behavior (including aggression); and difficulties in coordinating fine movements, such as picking up small objects (fine motor control). However, we know little about how lead damages the brain in this way and little about which brain regions are affected by exposure to low to moderate levels of lead during childhood. In this study, the researchers wanted to test the possibility that childhood lead exposure might lead to shrinking (“volume loss”) parts of the brain, particularly the parts that are crucial to cognition and behavior. They therefore studied the relationship between childhood lead exposure and adult brain volume. They also explored whether there is a relationship between brain volume and measures of brain functioning, such as fine motor control, memory, and learning assessed during adolescence.
What Did the Researchers Do and Find?
Between 1979 and 1984, the researchers recruited babies born in poor areas of Cincinnati, where there were many old, lead-contaminated houses, into the Cincinnati Lead Study. They measured their blood lead levels regularly from birth until they were 78 months old and calculated each child's average blood lead level over this period. They then used brain scans (known as magnetic resonance imaging, or MRI) to measure the brain volumes of the participants when they were 19–24 years old. The researchers found that exposure to lead as a child was linked with brain volume loss in adulthood, particularly in men. There was a “dose-response” effect—in other words, the greatest brain volume loss was seen in participants with the greatest lead exposure in childhood. The brain volume loss was most noticeable in a part of the brain called the prefrontal cortex—especially a region called the “anterior cingulate cortex.” When they examined the relationship between brain volume and measures of brain functioning, they found a link between brain volume and fine motor control, but not with the other measures.
What Do These Findings Mean?
These findings indicate that childhood lead exposure is associated with brain volume loss in adults, in specific regions of the brain. These brain regions are responsible for executive functions, regulating behavior, and fine motor control. Lead exposure has a larger effect on brain volumes in men than in women, which might help to explain the higher incidence of antisocial behaviors among men than women. Overall, these findings may explain why children and adults who have a history of lead exposure have behavioral and other problems, and support ongoing efforts to reduce childhood lead exposure in the US and other countries.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050112.
A PLoS Medicine Perspective article by David Bellinger further discusses this study and a related paper on child exposure to lead and criminal arrests in adulthood
Toxtown, an interactive site from the US National Library of Medicine, provides information on environmental health concerns including exposure to lead (in English and Spanish)
The US Environmental Protection Agency provides information on lead in paint, dust, and soil and on protecting children from lead poisoning (in English and Spanish)
Medline Plus and the US National Library of Medicine Specialized Information Services provide lists of links to information on lead and human health (in English and Spanish)
The US Centers for Disease Control and Prevention provides information about its Childhood Lead Poisoning Prevention Program
The UK Health Protection Agency also provides information about lead and its health hazards
doi:10.1371/journal.pmed.0050112
PMCID: PMC2689675  PMID: 18507499
3.  Functional brain imaging across development 
The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of “bottom-up” processing regions towards “top-down” fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to a more mature and controlled cognition.
doi:10.1007/s00787-012-0291-8
PMCID: PMC3853580  PMID: 22729957
fMRI; Development; Maturation; Cognitive control; Inhibition; Timing; Attention; Motivation; Decision making; Resting state; Default mode network (DMN); Attention; Functional connectivity
4.  Decreased frontal gyrification correlates with altered connectivity in children with autism 
The structural correlates of functional dysconnectivity in autism spectrum disorders (ASD) have been seldom explored, despite the fact that altered functional connectivity is one of the most frequent neuropathological observations in the disorder. We analyzed cerebral morphometry and structural connectivity using multi-modal imaging for 11 children/adolescents with ASD and 11 matched controls. We estimated regional cortical and white matter volumes, as well as vertex-wise measures of cortical thickness and local Gyrification Index (lGI). Diffusion Tensor Images (DTI) were used to measure Fractional Anisotropy (FA) and tractography estimates of short- and long-range connectivity. We observed four clusters of lGI reduction in patients with ASD, three were located in the right inferior frontal region extending to the inferior parietal lobe, and one was in the right medial parieto-occipital region. Reduced volume was found in the anterior corpus callosum, along with fewer inter-hemispheric frontal streamlines. Despite the spatial correspondence of decreased gyrification and reduced long connectivity, we did not observe any significant relationship between the two. However, a positive correlation between lGI and local connectivity was present in all four clusters in patients with ASD. Reduced gyrification in the inferior fronto-parietal and posterior medial cortical regions lends support for early-disrupted cortical growth in both the mirror neuron system and midline structures responsible for social cognition. Early impaired neurodevelopment in these regions may represent an initial substrate for altered maturation in the cerebral networks that support complex social skills. We also demonstrate that gyrification changes are related to connectivity. This supports the idea that an imbalance between short- and long-range white matter tracts not only impairs the integration of information from multiple neural systems, but also alters the shape of the brain early on in autism.
doi:10.3389/fnhum.2013.00750
PMCID: PMC3820980  PMID: 24265612
cortical folding; cerebral morphometry; tractography; neuroimaging; autism spectrum disorder
5.  Individual Differences in Brain Structure and Resting Brain Function Underlie Cognitive Styles: Evidence from the Embedded Figures Test 
PLoS ONE  2013;8(12):e78089.
Cognitive styles can be characterized as individual differences in the way people perceive, think, solve problems, learn, and relate to others. Field dependence/independence (FDI) is an important and widely studied dimension of cognitive styles. Although functional imaging studies have investigated the brain activation of FDI cognitive styles, the combined structural and functional correlates with individual differences in a large sample have never been investigated. In the present study, we investigated the neural correlates of individual differences in FDI cognitive styles by analyzing the correlations between Embedded Figures Test (EFT) score and structural neuroimaging data [regional gray matter volume (rGMV) was assessed using voxel-based morphometry (VBM)] / functional neuroimaging data [resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF)] throughout the whole brain. Results showed that the increased rGMV in the left inferior parietal lobule (IPL) was associated with the EFT score, which might be the structural basis of effective local processing. Additionally, a significant positive correlation between ALFF and EFT score was found in the fronto-parietal network, including the left inferior parietal lobule (IPL) and the medial prefrontal cortex (mPFC). We speculated that the left IPL might be associated with superior feature identification, and mPFC might be related to cognitive inhibition of global processing bias. These results suggested that the underlying neuroanatomical and functional bases were linked to the individual differences in FDI cognitive styles and emphasized the important contribution of superior local processing ability and cognitive inhibition to field-independent style.
doi:10.1371/journal.pone.0078089
PMCID: PMC3862473  PMID: 24348991
6.  Brain Imaging Correlates of Verbal Working Memory in Children Following Traumatic Brain Injury 
Neural correlates of working memory (WM) based on the Sternberg Item Recognition Task (SIRT) were assessed in 40 children with moderate-to-severe traumatic brain injury (TBI) compared to 41 demographically-comparable children with orthopedic injury (OI). Multiple magnetic resonance imaging (MRI) methods assessed structural and functional brain correlates of WM, including volumetric and cortical thickness measures on all children; functional MRI (fMRI) and diffusion tensor imaging (DTI) were performed on a subset of children. Confirming previous findings, children with TBI had decreased cortical thickness and volume as compared to the OI group. Although the findings did not confirm the predicted relation of decreased frontal lobe cortical thickness and volume to SIRT performance, left parietal volume was negatively related to reaction time (RT). In contrast, cortical thickness was positively related to SIRT accuracy and RT in the OI group, particularly in aspects of the frontal and parietal lobes, but these relationships were less robust in the TBI group. We attribute these findings to disrupted fronto-parietal functioning in attention and WM. fMRI results from a subsample demonstrated fronto-temporal activation in the OI group, and parietal activation in the TBI group, and DTI findings reflected multiple differences in white matter tracts that engage fronto-parietal networks. Diminished white matter integrity of the frontal lobes and cingulum bundle as measured by DTI was associated with longer RT on the SIRT. Across modalities, the cingulate emerged as a common structure related to performance after TBI. These results are discussed in terms of how different imaging modalities tap different types of pathologic correlates of brain injury and their relationship with WM.
doi:10.1016/j.ijpsycho.2011.04.006
PMCID: PMC3277449  PMID: 21565227
7.  Disruption of structure–function coupling in the schizophrenia connectome 
NeuroImage : Clinical  2014;4:779-787.
Neuroimaging studies have demonstrated that the phenomenology of schizophrenia maps onto diffuse alterations in large-scale functional and structural brain networks. However, the relationship between structural and functional deficits remains unclear. To answer this question, patients with established schizophrenia and matched healthy controls underwent resting-state functional and diffusion weighted imaging. The network-based statistic was used to characterize between-group differences in whole-brain functional connectivity. Indices of white matter integrity were then estimated to assess the structural correlates of the functional alterations observed in patients. Finally, group differences in the relationship between indices of functional and structural brain connectivity were determined. Compared to controls, patients with schizophrenia showed decreased functional connectivity and impaired white matter integrity in a distributed network encompassing frontal, temporal, thalamic, and striatal regions. In controls, strong interregional coupling in neural activity was associated with well-myelinated white matter pathways in this network. This correspondence between structure and function appeared to be absent in patients with schizophrenia. In two additional disrupted functional networks, encompassing parietal, occipital, and temporal cortices, the relationship between function and structure was not affected. Overall, results from this study highlight the importance of considering not only the separable impact of functional and structural connectivity deficits on the pathoaetiology of schizophrenia, but also the implications of the complex nature of their interaction. More specifically, our findings support the core nature of fronto-striatal, fronto-thalamic, and fronto-temporal abnormalities in the schizophrenia connectome.
Highlights
•Relationship between functional and structural connectivity tested in schizophrenia•Convergent functional and structural deficits in fronto-temporo-subcortical network•Additional loss of association between function and structure defines this network.•Impaired structural integrity may lead to less constraint of functional activity.•Abnormal principles of brain organization may define core networks of pathology.
Graphical Abstract
doi:10.1016/j.nicl.2014.05.004
PMCID: PMC4055899  PMID: 24936428
Brain connectivity; fMRI; Diffusion; DTI; Psychosis; Resting-state; Structure–function
8.  Structural and Functional Cerebral Correlates of Hypnotic Suggestibility 
PLoS ONE  2014;9(3):e93187.
Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.
doi:10.1371/journal.pone.0093187
PMCID: PMC3966870  PMID: 24671130
9.  Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study 
NeuroImage : Clinical  2014;7:155-169.
Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD) can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI) or diffusion tensor imaging (DTI), and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA), to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM) volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA) in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder.
Highlights
•Structural alterations of gray (GM) and white matter (WM) in ASD were investigated.•Linked independent component analysis was used for multimodal data analysis.•Alterations of GM and WM in ASD co-occurred in cognitive and affective networks.•Results reveal an integrative view of multiple aspects of structural changes in ASD.
doi:10.1016/j.nicl.2014.11.019
PMCID: PMC4299973  PMID: 25610777
Autism spectrum disorder; Multimodal brain imaging; Linked independent component analysis; Voxel-based morphometry; Tract-based spatial statistics
10.  Fronto-parietal hypo-activation during working memory independent of structural abnormalities: Conjoint fMRI and sMRI analyses in adolescent offspring of schizophrenia patients 
NeuroImage  2011;58(1):234-241.
Adolescent offspring of schizophrenia patients (HR-S) are an important group in whom to study impaired brain function and structure, particularly of the frontal cortices. Studies of working memory have suggested behavioral deficits and fMRI-measured hypoactivity in fronto-parietal regions in these subjects. Independent structural MRI (sMRI) studies have suggested exaggerated frontal gray matter decline. Therefore the emergent view is that fronto-parietal deficits in function and structure characterize HR-S. However, it is unknown if fronto-parietal sub-regions in which fMRI-measured hypo-activity might be observed are precisely those regions of the cortex in which gray matter deficits are also observed. To investigate this question we conducted conjoint analyses of fronto-parietal function and structure in HR-S (n=19) and controls (n=24) with no family history of psychoses using fMRI data during a continuous working memory task (2 Back), and sMRI collected in the same session. HR-S demonstrated significantly reduced BOLD activation in left dorso-lateral prefrontal cortex (BA 9/46) and bilateral parietal cortex (BA 7/40). Sub-regions of interest were created from the significant fronto-parietal functional clusters. Analyses of gray matter volume from volume-modulated gray matter segments in these clusters did not reveal significant gray matter differences between groups. The results suggest that functional impairments in adolescent HR-S can be independent of impairments in structure, suggesting that the relationship between impaired function and structure is complex. Further studies will be needed to more closely assess whether impairments in function and structure provide independent or interacting pathways of vulnerability in this population.
doi:10.1016/j.neuroimage.2011.06.033
PMCID: PMC3164159  PMID: 21729757
Schizophrenia; Adolescent Offspring; Working Memory; Vulnerability; fMRI; Structural MRI
11.  Anatomical Alterations of the Visual Motion Processing Network in Migraine with and without Aura 
PLoS Medicine  2006;3(10):e402.
Background
Patients suffering from migraine with aura (MWA) and migraine without aura (MWoA) show abnormalities in visual motion perception during and between attacks. Whether this represents the consequences of structural changes in motion-processing networks in migraineurs is unknown. Moreover, the diagnosis of migraine relies on patient's history, and finding differences in the brain of migraineurs might help to contribute to basic research aimed at better understanding the pathophysiology of migraine.
Methods and Findings
To investigate a common potential anatomical basis for these disturbances, we used high-resolution cortical thickness measurement and diffusion tensor imaging (DTI) to examine the motion-processing network in 24 migraine patients (12 with MWA and 12 MWoA) and 15 age-matched healthy controls (HCs). We found increased cortical thickness of motion-processing visual areas MT+ and V3A in migraineurs compared to HCs. Cortical thickness increases were accompanied by abnormalities of the subjacent white matter. In addition, DTI revealed that migraineurs have alterations in superior colliculus and the lateral geniculate nucleus, which are also involved in visual processing.
Conclusions
A structural abnormality in the network of motion-processing areas could account for, or be the result of, the cortical hyperexcitability observed in migraineurs. The finding in patients with both MWA and MWoA of thickness abnormalities in area V3A, previously described as a source in spreading changes involved in visual aura, raises the question as to whether a “silent” cortical spreading depression develops as well in MWoA. In addition, these experimental data may provide clinicians and researchers with a noninvasively acquirable migraine biomarker.
A structural abnormality in the network of motion-processing areas could account for, or be the result of, the cortical hyperexcitability seen in people who have migraine.
Editors' Summary
Background.
Migraine is a disabling brain disorder that affects more than one in ten people during their lifetimes. It is characterized by severe, recurrent headaches, often accompanied by nausea, vomiting, and light sensitivity. In some migraineurs (people who have migraines), the headaches are preceded by neurological disturbances known as “aura.” These usually affect vision, causing illusions of flashing lights, zig-zag lines, or blind spots. There are many triggers for migraine attacks—including some foods, stress, and bright lights—and every migraineur has to learn what triggers his or her attacks. There is no cure for migraine, although over-the-counter painkillers can ease the symptoms and doctors can prescribe stronger remedies or drugs to reduce the frequency of attacks. Exactly what causes migraine is unclear but scientists think that, for some reason, the brains of migraineurs are hyperexcitable. That is, some nerve cells in their brains overreact when they receive electrical messages from the body. This triggers a local disturbance of brain function called “cortical spreading depression,” which, in turn, causes aura, headache, and the other symptoms of migraine.
Why Was This Study Done?
Researchers need to know more about what causes migraine to find better treatments. One clue comes from the observation that motion perception is abnormal in migraineurs, even between attacks—they can be very sensitive to visually induced motion sickness, for example. Another clue is that aura are usually visual. So could brain regions that process visual information be abnormal in people who have migraines? In this study, the researchers investigated the structure of the motion processing parts of the brain in people who have migraine with aura, in people who have migraine without aura, and in unaffected individuals to see whether there were any differences that might help them understand migraine.
What Did the Researchers Do and Find?
The researchers used two forms of magnetic resonance imaging—a noninvasive way to produce pictures of internal organs—to examine the brains of migraineurs (when they weren't having a migraine) and healthy controls. They concentrated on two brain regions involved in motion processing known as the MT+ and V3A areas and first measured the cortical thickness of these areas—the cortex is the wrinkled layer of gray matter on the outside of the brain that processes information sent from the body. They found that the cortical thickness was increased in both of these areas in migraineurs when compared to healthy controls. There was no difference in cortical thickness between migraineurs who had aura and those who did not, but the area of cortical thickening in V3A corresponded to the source of cortical spreading depression previously identified in a person who had migraine with aura. The researchers also found differences between the white matter (the part of the brain that transfers information between different regions of the gray matter) immediately below the V3A and MT+ areas in the migraineurs and the controls but again not between the two groups of migraineurs.
What Do These Findings Mean?
This study provides new information about migraine. First, it identifies structural changes in the brains of people who have migraines. Until now, it has been thought that abnormal brain function causes migraine but that migraineurs have a normal brain structure. The observed structural differences might either account for or be caused by the hyperexcitability that triggers migraines. Because migraine runs in families, examining the brains of children of migraineurs as they grow up might indicate which of these options is correct, although it is possible that abnormalities in brain areas not examined here actually trigger migraines. Second, the study addresses a controversial question about migraine: Is migraine with aura the same as migraine without aura? The similar brain changes in both types of migraine suggest that they are one disorder. Third, the abnormalities in areas MT+ and V3A could help to explain why migraineurs have problems with visual processing even in between attacks. Finally, this study suggests that it might be possible to develop a noninvasive test to help doctors diagnose migraine.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030402.
The MedlinePlus encyclopedia has several pages on migraine
The US National Institute of Neurological Disorders and Stroke offers patient information on migraine and other headaches
The NHS Direct Online contains patient information on migraine from the UK National Health Service
MAGNUM provides information from The US National Migraine Association
The Migraine Trust is a UK charity that supports research and provides support for patients
The Migraine Aura Foundation is a site about aura that includes a section on art and aura
doi:10.1371/journal.pmed.0030402
PMCID: PMC1609120  PMID: 17048979
12.  Post-adolescent developmental changes in cortical complexity 
Background
Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval.
Methods
Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension - FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal.
Results
The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females.
Conclusions
During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.
doi:10.1186/1744-9081-10-44
PMCID: PMC4289042  PMID: 25431294
Grey matter; Fractal dimension; Development; Dimorphism; Magnetic resonance imaging
13.  Sleep spindling and fluid intelligence across adolescent development: sex matters 
Evidence supports the intricate relationship between sleep electroencephalogram (EEG) spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ) with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males) with an age range of 15–22 years (mean: 18 years) and fluid IQ of 91–126 (mean: 104.12, Raven Progressive Matrices Test). Slow spindles (SSs) and fast spindles (FSs) were analyzed in 21 EEG derivations by using the individual adjustment method (IAM). A significant age-dependent increase in average FS density (r = 0.57; p = 0.005) was found. Moreover, fluid IQ correlated with FS density (r = 0.43; p = 0.04) and amplitude (r = 0.41; p = 0.049). The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = 0.80 (p = 0.002) and r = 0.67 (p = 0.012), for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = 0.60, p = 0.04). Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unraveling gender differences in adolescent brain maturation and perhaps cognitive strategy.
doi:10.3389/fnhum.2014.00952
PMCID: PMC4246682  PMID: 25506322
sleep spindling; EEG; adolescence; gender; IQ; Raven Progressive Matrices Test; sigma waves
14.  Functional Brain Networks Develop from a “Local to Distributed” Organization 
PLoS Computational Biology  2009;5(5):e1000381.
The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more “distributed” architecture in young adults. We argue that this “local to distributed” developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing “small-world”-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways.
Author Summary
The first two decades of life represent a period of extraordinary developmental change in sensory, motor, and cognitive abilities. One of the ultimate goals of developmental cognitive neuroscience is to link the complex behavioral milestones that occur throughout this time period with the equally intricate functional and structural changes of the underlying neural substrate. Achieving this goal would not only give us a deeper understanding of normal development but also a richer insight into the nature of developmental disorders. In this report, we use computational analyses, in combination with a recently developed MRI technique that measures spontaneous brain activity, to help us to understand the principles that guide the maturation of the human brain. We find that brain regions in children communicate with other regions more locally but that over age communication becomes more distributed. Interestingly, the efficiency of communication in children (measured as a ‘small world’ network) is comparable to that of the adult. We argue that these findings have important implications for understanding both the maturation and the function of neural systems in typical and atypical development.
doi:10.1371/journal.pcbi.1000381
PMCID: PMC2671306  PMID: 19412534
15.  Dynamic Changes in Phase-Amplitude Coupling Facilitate Spatial Attention Control in Fronto-Parietal Cortex 
PLoS Biology  2014;12(8):e1001936.
Electrocorticography reveals how coupling between two frequencies of neuronal oscillation allows the frontal and parietal areas of the cortex to control visual attention from moment to moment in the human brain.
Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n = 8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands.
Author Summary
The frontal and parietal areas of the cortex control the ability to focus visuospatial attention, and damage to these areas results in profound attentional disturbances. Although much research has concentrated on where these areas are located, little is known about how these areas may function in humans. Previous studies have demonstrated that neuronal spiking is more likely to occur in specific time windows based upon the phase of lower frequency neural oscillations – rhythmic or repetitive neuronal activity. These low-frequency rhythms are hypothesized to coordinate the timing of neuronal firing within local and across network regions. Here, we investigated how human frontal and parietal cortices use neural oscillations to control visuospatial attention. We identified a high-frequency component of electrical brain activity, broadband high gamma (70–250 Hz) amplitude, that became phase-locked to a slower rhythm, delta/theta (2–5 Hz), over frontal, parietal, and visual areas while the study subjects paid attention to the peripheral visual field. Changes in the strength of the coupling between delta/theta phase and high gamma amplitude predicted the attentional behavior of the subjects across single trials. From these results, we conclude that coupling between delta/theta phase and high gamma amplitude serves to coordinate information within – and perhaps between – frontal and parietal areas during allocation of visuospatial attention.
doi:10.1371/journal.pbio.1001936
PMCID: PMC4144794  PMID: 25157678
16.  Cortical gray-matter thinning is associated with age-related improvements on executive function tasks 
Developmental cognitive neuroscience  2013;6:10.1016/j.dcn.2013.07.002.
Across development children show marked improvement in their executive functions (EFs), including the ability to hold information in working memory and to deploy cognitive control, allowing them to ignore prepotent responses in favor of newly learned behaviors. How does the brain support these age-related improvements? Age-related cortical gray-matter thinning, thought to result from selective pruning of inefficient synaptic connections and increases in myelination, may support age-related improvements in EFs. Here we used structural MRI to measure cortical thickness. We investigate the association between cortical thickness in three cortical regions of interest (ROIs), and age-related changes in cognitive control and working memory in 5–10 year old children. We found significant associations between reductions in cortical thickness and age-related improvements in performance on both working memory and cognitive control tasks. Moreover, we observed a dissociation between ROIs typically thought to underlie changes in cognitive control (right Inferior Frontal gyrus and Anterior Cingulate cortex) and age-related improvements in cognitive control, and ROIs for working memory (superior parietal cortex), and age-related changes in a working memory task. These data add to our growing understanding of how structural maturation of the brain supports vast behavioral changes in executive functions observed across childhood.
doi:10.1016/j.dcn.2013.07.002
PMCID: PMC3876892  PMID: 23896579
Brain development; Executive functions; Cognitive control; Structural MRI
17.  Brain Mechanisms for Reading and Language Processing in Spina Bifida Meningomyelocele: A Combined Magnetic Source- and Structural Magnetic Resonance Imaging Study 
Neuropsychology  2011;25(5):590-601.
Objective
The development of the ability to process spoken and written language depends upon a network of left hemisphere temporal, parietal, and frontal regions. The present study explored features of brain organization in children with spina bifida meningomyelocele (SBM) and shunted hydrocephalus, who commonly present with precocious development of word reading skills and preservation of vocabulary and grammar skills.
Method
Eight children with SBM were compared with 15 IQ and reading-level matched, typically developing controls on MRI-based morphometric and Magnetic Source Imaging-derived neurophysiological profiles.
Results
Children with SBM showed reduced magnetic activity in left inferior parietal regions during spoken word recognition and pseudoword reading tasks. We also noted reduced surface area/volume in inferior parietal and posterior temporal regions in SBM and increased gray matter volumes in left middle frontal regions and gyral complexity in left posterior temporal and inferior parietal regions.
Conclusions
A complex pattern of changes in cortical morphology and activation may serve as evidence for structural and functional brain reorganization ensuring preservation of language and decoding abilities in children with SBM.
doi:10.1037/a0023694
PMCID: PMC3175695  PMID: 21574714
phonological decoding; word recognition; hydrocephalus; magnetoencephalography; functional brain imaging
18.  Functional Development of Fronto-Striato-Parietal Networks Associated with Time Perception 
Compared to our understanding of the functional maturation of executive functions, little is known about the neurofunctional development of perceptive functions. Time perception develops during late adolescence, underpinning many functions including motor and verbal processing, as well as late maturing higher order cognitive skills such as forward planning and future-related decision making. Nothing, however, is known about the neurofunctional changes associated with time perception from childhood to adulthood. Using functional magnetic resonance imaging we explored the effects of age on the brain activation and functional connectivity of 32 male participants from 10 to 53 years of age during a time discrimination task that required the discrimination of temporal intervals of seconds differing by several hundred milliseconds. Increasing development was associated with progressive activation increases within left lateralized dorsolateral and inferior fronto-parieto-striato-thalamic brain regions. Furthermore, despite comparable task performance, adults showed increased functional connectivity between inferior/dorsolateral interhemispheric fronto-frontal activation as well as between inferior fronto-parietal regions compared with adolescents. Activation in caudate, specifically, was associated with both increasing age and better temporal discrimination. Progressive decreases in activation with age were observed in ventromedial prefrontal cortex, limbic regions, and cerebellum. The findings demonstrate age-dependent developmentally dissociated neural networks for time discrimination. With increasing age there is progressive recruitment of later maturing left hemispheric and lateralized fronto-parieto-striato-thalamic networks, known to mediate time discrimination in adults, while earlier developing brain regions such as ventromedial prefrontal cortex, limbic and paralimbic areas, and cerebellum subserve fine-temporal processing functions in children and adolescents.
doi:10.3389/fnhum.2011.00136
PMCID: PMC3213530  PMID: 22087089
development; time discrimination; functional magnetic resonance imaging
19.  Mapping the Structural Core of Human Cerebral Cortex 
PLoS Biology  2008;6(7):e159.
Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration.
Author Summary
In the human brain, neural activation patterns are shaped by the underlying structural connections that form a dense network of fiber pathways linking all regions of the cerebral cortex. Using diffusion imaging techniques, which allow the noninvasive mapping of fiber pathways, we constructed connection maps covering the entire cortical surface. Computational analyses of the resulting complex brain network reveal regions of cortex that are highly connected and highly central, forming a structural core of the human brain. Key components of the core are portions of posterior medial cortex that are known to be highly activated at rest, when the brain is not engaged in a cognitively demanding task. Because we were interested in how brain structure relates to brain function, we also recorded brain activation patterns from the same participant group. We found that structural connection patterns and functional interactions between regions of cortex were significantly correlated. Based on our findings, we suggest that the structural core of the brain may have a central role in integrating information across functionally segregated brain regions.
Mapping of major structural connections of the human cortex reveals a core of brain regions that are highly interconnected and highly central with respect to the rest of the brain.
doi:10.1371/journal.pbio.0060159
PMCID: PMC2443193  PMID: 18597554
20.  Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity 
PLoS ONE  2011;6(9):e25532.
Recently, much scientific attention has been focused on resting brain activity and its investigation through such methods as the analysis of functional connectivity during rest (the temporal correlation of brain activities in different regions). However, investigation of the magnitude of brain activity during rest has focused on the relative decrease of brain activity during a task, rather than on the absolute resting brain activity. It is thus necessary to investigate the association between cognitive factors and measures of absolute resting brain activity, such as cerebral blood flow (CBF), during rest (rest-CBF). In this study, we examined this association using multiple regression analyses. Rest-CBF was the dependent variable and the independent variables included two essential components of cognitive functions, psychometric general intelligence and creativity. CBF was measured using arterial spin labeling and there were three analyses for rest-CBF; namely mean gray matter rest-CBF, mean white matter rest-CBF, and regional rest-CBF. The results showed that mean gray and white matter rest-CBF were significantly and positively correlated with individual psychometric intelligence. Furthermore, mean white matter rest-CBF was significantly and positively correlated with creativity. After correcting the effect of mean gray matter rest-CBF the significant and positive correlation between regional rest-CBF in the perisylvian anatomical cluster that includes the left superior temporal gyrus and insula and individual psychometric intelligence was found. Also, regional rest-CBF in the precuneus was significantly and negatively correlated with individual creativity. Significance of these results of regional rest-CBF did not change when the effect of regional gray matter density was corrected. The findings showed mean and regional rest-CBF in healthy young subjects to be correlated with cognitive functions. The findings also suggest that, even in young cognitively intact subjects, resting brain activity (possibly underlain by default cognitive activity or metabolic demand from developed brain structures) is associated with cognitive functions.
doi:10.1371/journal.pone.0025532
PMCID: PMC3183028  PMID: 21980485
21.  The Relation between Gray Matter Morphology and Divergent Thinking in Adolescents and Young Adults 
PLoS ONE  2014;9(12):e114619.
Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15–17 and 20 young adults aged 25–30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted.
doi:10.1371/journal.pone.0114619
PMCID: PMC4267782  PMID: 25514366
22.  A Neural Circuit Covarying with Social Hierarchy in Macaques 
PLoS Biology  2014;12(9):e1001940.
A neural circuit that covaries with social hierarchy A neuroimaging study reveals that individual variation in brain circuits in structures below the cerebral cortex of macaques is associated with experience at different ends of the social hierarchy.
Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.
Author Summary
Social status is an important feature of group life in many primates. Position in the dominance hierarchy influences access to food and mates and is correlated with both general and mental health. Discovering how the brain is organized with respect to individual social status is an important first step for understanding the neural mechanisms that might drive social status and mediate its consequences. We performed a neuroimaging study in non-human primates and our findings suggest that brain organization reflects at least two aspects of dominance. First, we identified neural circuits in brain regions that appear to have a relatively simple and direct relationship with social status—one circuit in which gray matter volume tended to be greater in socially dominant individuals and another in which gray matter volume was greater in those with a more subordinate social position. We also showed that the degree of connectivity within each circuit was associated with experiences at each end of the social hierarchy. Second, given that social status in male macaques depends not only on successful engagement in agonistic behavior but also on success in forming social bonds that promote coalitions, we explored regions where gray matter relates to both social status and social network size. This second neural circuit may mediate the way in which dominance is dependent on social bond formation, which is in turn dependent on social cognition.
doi:10.1371/journal.pbio.1001940
PMCID: PMC4151964  PMID: 25180883
23.  Neuroanatomical correlates of cognitive functioning in prodromal Huntington disease 
Brain and Behavior  2013;4(1):29-40.
Introduction
The brain mechanisms of cognitive impairment in prodromal Huntington disease (prHD) are not well understood. Although striatal atrophy correlates with some cognitive abilities, few studies of prHD have investigated whether cortical gray matter morphometry correlates in a regionally specific manner with functioning in different cognitive domains. This knowledge would inform the selection of cognitive measures for clinical trials that would be most sensitive to the target of a treatment intervention.
Method
In this study, random forest analysis was used to identify neuroanatomical correlates of functioning in five cognitive domains including attention and information processing speed, working memory, verbal learning and memory, negative emotion recognition, and temporal processing. Participants included 325 prHD individuals with varying levels of disease progression and 119 gene-negative controls with a family history of HD. In intermediate analyses, we identified brain regions that showed significant differences between the prHD and the control groups in cortical thickness and striatal volume. Brain morphometry in these regions was then correlated with cognitive functioning in each of the domains in the prHD group using random forest methods. We hypothesized that different regional patterns of brain morphometry would be associated with performances in distinct cognitive domains.
Results
The results showed that performances in different cognitive domains that are vulnerable to decline in prHD were correlated with regionally specific patterns of cortical and striatal morphometry. Putamen and/or caudate volumes were top-ranked correlates of performance across all cognitive domains, as was cortical thickness in regions related to the processing demands of each domain.
Conclusions
The results underscore the importance of identifying structural magnetic resonance imaging (sMRI) markers of functioning in different cognitive domains, as their relative sensitivity depends on the extent to which processing is called upon by different brain networks. The findings have implications for identifying neuroimaging and cognitive outcome measures for use in clinical trials.
doi:10.1002/brb3.185
PMCID: PMC3937704  PMID: 24653952
Cognition; magnetic resonance imaging; prodromal Huntington disease
24.  Breastfeeding and early white matter development: A cross-sectional study☆ 
Neuroimage  2013;82(100):77-86.
Does breastfeeding alter early brain development? The prevailing consensus from large epidemiological studies posits that early exclusive breastfeeding is associated with improved measures of IQ and cognitive functioning in later childhood and adolescence. Prior morphometric brain imaging studies support these findings, revealing increased white matter and sub-cortical gray matter volume, and parietal lobe cortical thickness, associated with IQ, in adolescents who were breastfed as infants compared to those who were exclusively formula-fed. Yet it remains unknown when these structural differences first manifest and when developmental differences that predict later performance improvements can be detected. In this study, we used quiet magnetic resonance imaging (MRI) scans to compare measures of white matter microstructure (mcDESPOT measures of myelin water fraction) in 133 healthy children from 10 months through 4 years of age, who were either exclusively breastfed a minimum of 3 months; exclusively formula-fed; or received a mixture of breast milk and formula. We also examined the relationship between breastfeeding duration and white matter microstructure. Breastfed children exhibited increased white matter development in later maturing frontal and association brain regions. Positive relationships between white matter microstructure and breastfeeding duration are also exhibited in several brain regions, that are anatomically consistent with observed improvements in cognitive and behavioral performance measures. While the mechanisms underlying these structural differences remains unclear, our findings provide new insight into the earliest developmental advantages associated with breastfeeding, and support the hypothesis that breast milk constituents promote healthy neural growth and white matter development.
Highlights
•First investigation of breast-feeding and early infant brain myelination.•Breastfed infants shown improved brain development by 2 years of age.•Duration of breastfeeding is positively associated with behavioral performance.
doi:10.1016/j.neuroimage.2013.05.090
PMCID: PMC3777218  PMID: 23721722
MCR, Multicomponent Relaxometry; MRI, Magnetic Resonance Imaging; MWF, Myelin Water Fraction; VFM, mcDESPOT Derived Myelin Water Fraction; T1, Longitudinal Relaxation Time; T2, Transverse Relation Time; Brain development; Breastfeeding; Myelin maturation; White matter development; Infant imaging; Myelin; Myelin water fraction; Magnetic resonance imaging
25.  How Well Do Clinical Pain Assessment Tools Reflect Pain in Infants? 
PLoS Medicine  2008;5(6):e129.
Background
Pain in infancy is poorly understood, and medical staff often have difficulty assessing whether an infant is in pain. Current pain assessment tools rely on behavioural and physiological measures, such as change in facial expression, which may not accurately reflect pain experience. Our ability to measure cortical pain responses in young infants gives us the first opportunity to evaluate pain assessment tools with respect to the sensory input and establish whether the resultant pain scores reflect cortical pain processing.
Methods and Findings
Cortical haemodynamic activity was measured in infants, aged 25–43 wk postmenstrual, using near-infrared spectroscopy following a clinically required heel lance and compared to the magnitude of the premature infant pain profile (PIPP) score in the same infant to the same stimulus (n = 12, 33 test occasions). Overall, there was good correlation between the PIPP score and the level of cortical activity (regression coefficient = 0.72, 95% confidence interval [CI] limits 0.32–1.11, p = 0.001; correlation coefficient = 0.57). Of the different PIPP components, facial expression correlated best with cortical activity (regression coefficient = 1.26, 95% CI limits 0.84–1.67, p < 0.0001; correlation coefficient = 0.74) (n = 12, 33 test occasions). Cortical pain responses were still recorded in some infants who did not display a change in facial expression.
Conclusions
While painful stimulation generally evokes parallel cortical and behavioural responses in infants, pain may be processed at the cortical level without producing detectable behavioural changes. As a result, an infant with a low pain score based on behavioural assessment tools alone may not be pain free.
Rebeccah Slater and colleagues show that although painful stimulation generally evokes parallel cortical and behavioral responses in infants, pain may produce cortical responses without detectable behavioral changes.
Editors' Summary
Background.
Pain is a sensory and emotional experience. It is normally triggered by messages transmitted from specialized receptors (nociceptors) in the body to integrative centers in the spinal cord and brainstem and on to the brain, where it undergoes higher sensory and cognitive analysis, allowing the body to respond appropriately to the stimuli. While the experience of pain may be considered to be unpleasant, it is a useful tool in communicating to us and to others that there is something wrong with our bodies. Ultimately, these responses help restrict further damage to the body and start the process of healing.
In a clinical setting, the ability to communicate about pain allows an individual to seek strategies to ease the pain, such as taking analgesics. Being unable to effectively communicate one's experience of pain leaves the individual vulnerable to prolonged suffering. One such vulnerable group is infants.
Ignored and untreated pain in infants has been shown to have immediate and long-term effects as a result of structural and physiological changes within the nervous system. For example, the body responds to untreated pain by increased release of stress hormones, which may be associated with increased morbidity and mortality in the short term. Long-term effects of pain may include altered pain perception, chronic pain syndromes, and somatic complaints such as sleep disturbances, feeding problems, and inability to self-regulate in response to internal and external stressors. It has been proposed that attention deficit disorders, learning disorders, and behavioral problems in later childhood may be linked to repetitive pain in the preterm infant.
Why Was This Study Done?
Until as recently as the 1990s, newborns in some clinical centres underwent surgery with minimal anesthesia. Also, newborns received little or no pain management postoperatively or for painful procedures such as lumbar punctures or circumcisions. Since then, there has been growing awareness amongst clinicians that pain may be experienced from the earliest stages of postnatal life and that inadequate analgesia may lead to the type of long-term consequences mentioned above. However, gauging how much pain infants and young children are experiencing remains a substantial challenge. The researchers in this study wanted to assess the association between cortical pain responses in young infants and currently used tools for the assessment of pain in these infants. These current tools are based on behavioral and physiological measures, such as change in facial expression, and it is possible that these tools do not give an adequate measure of pain especially in infants born preterm.
What Did the Researchers Do and Find?
Twelve clinically stable infants were studied on 33 occasions when they required a heel lance to obtain a blood sample for a clinical reason. The researchers examined the relationship between brain activity and a clinical pain score, calculated using the premature infant pain profile (PIPP) in response to a painful event. Activity in the somatosensory cortex was measured noninvasively by near-infrared spectroscopy, which measures brain regional changes in oxygenated and deoxygenated hemoglobin concentration. The PIPP is a well-established pain score that ascribes a value to infant behavior such as change in facial expression.
They found that changes in brain activity in response to a painful stimulus were related to the PIPP scores. These changes were more strongly linked to the behavioral components of the PIPP, e.g., facial expression, than physiological components, e.g., heart rate. They also found that a positive brain response could occur in the absence of any facial expression.
What Do These Findings Mean?
Behaviors to communicate pain require motor responses to sensory and emotional stimuli. The maturity of this complex system in infants is not clearly understood. The results of this study raise further awareness of the ability of infants to experience pain and highlight the possibility that pain assessment based on behavioral tools alone may underestimate the pain response in infants.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050129.
Important papers on pain in human neonates are discussed in the open access Paediatric Pain Letter with links to original articles
The Institute of Child Health in London has a Web site describing a three-year international project on improving the assessment of pain in hospitalized children, with many useful links
The International Association for the Study of Pain (IASP) provides accurate and up-to-date information and links about pain mechanisms and treatment
doi:10.1371/journal.pmed.0050129
PMCID: PMC2504041  PMID: 18578562

Results 1-25 (1412671)