PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1125087)

Clipboard (0)
None

Related Articles

1.  Functional and genetic analysis in type 2 diabetes of Liver X receptor alleles – a cohort study 
BMC Medical Genetics  2009;10:27.
Background
Liver X receptor alpha (LXRA) and beta (LXRB) regulate glucose and lipid homeostasis in model systems but their importance in human physiology is poorly understood. This project aimed to determine whether common genetic variations in LXRA and LXRB associate with type 2 diabetes (T2D) and quantitative measures of glucose homeostasis, and, if so, reveal the underlying mechanisms.
Methods
Eight common single nucleotide polymorphisms in LXRA and LXRB were analyzed for association with T2D in one French cohort (N = 988 cases and 941 controls), and for association with quantitative measures reflecting glucose homeostasis in two non-diabetic population-based samples comprising N = 697 and N = 1344 adults. Investigated quantitative phenotypes included fasting plasma glucose, serum insulin, and HOMAIR as measure of overall insulin resistance. An oral glucose tolerance test was performed in N = 1344 of adults. The two alleles of the proximal LXRB promoter, differing only at the SNP rs17373080, were cloned into reporter vectors and transiently transfected, whereupon allele-specific luciferase activity was measured. rs17373080 overlapped, according to in silico analysis, with a binding site for Nuclear factor 1 (NF1). Promoter alleles were tested for interaction with NF1 using direct DNA binding and transactivation assays.
Results
Genotypes at two LXRB promoter SNPs, rs35463555 and rs17373080, associated nominally with T2D (P values 0.047 and 0.026). No LXRA or LXRB SNP associated with quantitative measures reflecting glucose homeostasis. The rs17373080 C allele displayed higher basal transcription activity (P value < 0.05). The DNA-mobility shift assay indicated that oligonucleotides corresponding to either rs17373080 allele bound NF1 transcription factors in whole cell extracts to the same extent. Different NF1 family members showed different capacity to transactivate the LXRB gene promoter, but there was no difference between promoter alleles in NF1 induced transactivation activity.
Conclusion
Variations in the LXRB gene promoter may be part of the aetiology of T2D. However, the association between LXRB rs35463555 and rs17373080, and T2D are preliminary and needs to be investigated in additional larger cohorts. Common genetic variation in LXRA is unlikely to affect the risk of developing T2D or quantitative phenotypes related to glucose homeostasis.
doi:10.1186/1471-2350-10-27
PMCID: PMC2664799  PMID: 19292929
2.  Liver X Receptor Gene Polymorphisms in Tuberculosis: Effect on Susceptibility 
PLoS ONE  2014;9(5):e95954.
Objectives
The Liver X receptors (LXRs), Liver X receptor A (LXRA) and Liver X receptor B (LXRB), regulate lipid metabolism and antimicrobial response. LXRs have a crucial role in the control of Mycobacterium tuberculosis (M.tb). Lacking LXRs mice is more susceptibility to infection M.tb, developing higher bacterial burdens and an increase in the size and number of granulomatous lesions. We aimed to assess the associations between single nucleotide polymorphisms (SNPs) in LXRs and risk of tuberculosis.
Methods
We sequenced the LXRs genes to detect SNPs and to examine genotypic frequencies in 600 patients and 620 healthy controls to investigate for associations with tuberculosis (TB) in the Chinese Han population. DNA re-sequencing revealed eight common variants in the LXRs genes.
Results
The G allele of rs1449627 and the T allele of rs1405655 demonstrated an increased risk of developing TB (p<0.001, p = 0.002), and the T allele of rs3758673, the T allele of rs2279238, and the C allele of rs1449626 in LXRA and the C allele of rs17373080, the G allele of rs2248949, and the C allele of rs1052677 in LXRB were protective against TB patients compared to healthy controls (p = 0.0002, p = 0.006, p<0.001, p = 0.004, p = 0.008, p = 0.003, respectively). All SNP genotypes were significantly associated with TB. An estimation of the frequencies of haplotypes revealed two potential risk haplotypes,GGCG in LXRB (p = 0.004,) and TTCG in LXRA (p<0.001, p = 0.004). Moreover, three protective haplotypes, TTAT and CCAT in LXRA and CATC in LXRB, were significantly “protective” (p = 0.008, p<0.001, p = 0.031) for TB. Furthermore, we determined that the LXRs SNPs were nominally associated with the clinical pattern of disease.
Conclusions
Our study data supported that LXRs play a fundamental role in the genetic susceptibility to TB and to different clinical patterns of disease. Thus, further investigation is required in larger populations and in additional areas.
doi:10.1371/journal.pone.0095954
PMCID: PMC4006844  PMID: 24788534
3.  Liver X receptor β: maintenance of epidermal expression in intrinsic and extrinsic skin aging 
Age  2009;31(4):365-372.
Aging in human skin is the composite of time-dependent intrinsic aging plus photoaging induced by chronic exposure to ultraviolet radiation. Nuclear hormone receptors coordinate diverse processes including metabolic homeostasis. Liver X receptor β (LXRβ) is a close human homologue of daf-12, a regulator of nematode longevity. LXRβ is positively regulated by sirtuin-1 and resveratrol, while LXRβ-null mice show transcriptional profiles similar to those seen in aged human skin. In these studies, we examined LXRβ expression in aged and photoaged human skin. Volunteers were recruited to assess intrinsic aging and photoaging. Epidermal LXRβ mRNA was examined by in situ hybridization while protein was identified by immunofluorescence. No significant changes were observed in either LXRβ mRNA or protein expression between young and aged volunteers (mRNA p = 0.90; protein p = 0.26). Similarly, LXRβ protein expression was unaltered in photoaged skin (p = 0.75). Our data therefore suggest that, while not playing a major role in skin aging, robust cutaneous expression implies a fundamental role for LXRβ in epidermal biology.
doi:10.1007/s11357-009-9111-6
PMCID: PMC2813049  PMID: 19697157
Nuclear hormone receptors; Skin; Aging; Liver X receptor
4.  Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRβ-deficient mice 
Journal of Clinical Investigation  2001;107(5):565-573.
The nuclear oxysterol-receptor paralogues LXRα and LXRβ share a high degree of amino acid identity and bind endogenous oxysterol ligands with similar affinities. While LXRα has been established as an important regulator of cholesterol catabolism in cholesterol-fed mice, little is known about the function of LXRβ in vivo. We have generated mouse lines with targeted disruptions of each of these LXR receptors and have compared their responses to dietary cholesterol. Serum and hepatic cholesterol levels and lipoprotein profiles of cholesterol-fed animals revealed no significant differences between LXRβ–/– and wild-type mice. Steady-state mRNA levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase, farnesyl diphosphate synthase, and squalene synthase were increased in LXRβ–/– mice compared with LXRβ+/+ mice, when fed standard chow. The mRNA levels for cholesterol 7α-hydroxylase, oxysterol 7α-hydroxylase, sterol 12α-hydroxylase, and sterol 27-hydroxylase, respectively, were comparable in these strains, both on standard and 2% cholesterol chow. Our results indicate that LXRβ–/– mice — in contrast to LXRα–/– mice — maintain their resistance to dietary cholesterol, despite subtle effects on the expression of genes coding for enzymes involved in lipid metabolism. Thus, our data indicate that LXRβ has no complete overlapping function compared with LXRα in the liver.
PMCID: PMC199420  PMID: 11238557
5.  Liver X receptors α and β regulate renin expression in vivo 
Journal of Clinical Investigation  2005;115(7):1913-1922.
The renin-angiotensin-aldosterone system controls blood pressure and salt-volume homeostasis. Renin, which is the first enzymatic step of the cascade, is critically regulated at the transcriptional level. In the present study, we investigated the role of liver X receptor α (LXRα) and LXRβ in the regulation of renin. In vitro, both LXRs could bind to a noncanonical responsive element in the renin promoter and regulated renin transcription. While LXRα functioned as a cAMP-activated factor, LXRβ was inversely affected by cAMP. In vivo, LXRs colocalized in juxtaglomerular cells, in which LXRα was specifically enriched, and interacted with the renin promoter. In mouse models, renin-angiotensin activation was associated with increased binding of LXRα to the responsive element. Moreover, acute administration of LXR agonists was followed by upregulation of renin transcription. In LXRα–/– mice, the elevation of renin triggered by adrenergic stimulation was abolished. Untreated LXRβ–/– mice exhibited reduced kidney renin mRNA levels compared with controls. LXRα–/–LXRβ–/– mice showed a combined phenotype of lower basal renin and blunted adrenergic response. In conclusion, we show herein that LXRα and LXRβ regulate renin expression in vivo by directly interacting with the renin promoter and that the cAMP/LXRα signaling pathway is required for the adrenergic control of the renin-angiotensin system.
doi:10.1172/JCI24594
PMCID: PMC1159146  PMID: 16007255
6.  Liver X Receptor Modulates Diabetic Retinopathy Outcome in a Mouse Model of Streptozotocin-Induced Diabetes 
Diabetes  2012;61(12):3270-3279.
Endothelial progenitor cells (EPCs), critical for mediating vascular repair, are dysfunctional in a hyperglycemic and/or hypercholesterolemic environment. Their dysfunction contributes to the progression of diabetic macro- and microvascular complications. Activation of “cholesterol-sensing” nuclear receptors, the liver X receptors (LXRα/LXRβ), protects against atherosclerosis by transcriptional regulation of genes important in promoting cholesterol efflux and inhibiting inflammation. We hypothesized that LXR activation with a synthetic ligand would correct diabetes-induced EPC dysfunction and improve diabetic retinopathy. Studies were performed in streptozotocin (STZ)-injected DBA/2J mice fed a high-fat Western diet (DBA/STZ/WD) and treated with the LXR agonist GW3965 and in LXRα−/−, LXRβ−/−, and LXRα/β−/− mice. Retinas were evaluated for number of acellular capillaries and glial fibrillary acidic protein (GFAP) immunoreactivity. Bone marrow EPCs were analyzed for migratory function and gene expression. Compared with vehicle-treated DBA/STZ/WD mice, GW3965 treated mice showed fewer acellular capillaries and reduced GFAP expression. These mice also exhibited enhanced EPC migration and restoration of inflammatory and oxidative stress genes toward nondiabetic levels. LXRα−/−, LXRβ−/−, and LXRα/β−/− mice developed acellular capillaries and EPC dysfunction similar to the DBA/STZ/WD mice. These studies support a key role for LXR in retinal and bone marrow progenitor dysfunction associated with type 1 diabetes. LXR agonists may represent promising pharmacologic targets for correcting retinopathy and EPC dysfunction.
doi:10.2337/db11-1596
PMCID: PMC3501845  PMID: 22891211
7.  Discovery and implementation of transcriptional biomarkers of synthetic LXR agonists in peripheral blood cells 
Background
LXRs (Liver X Receptor α and β) are nuclear receptors that act as ligand-activated transcription factors. LXR activation causes upregulation of genes involved in reverse cholesterol transport (RCT), including ABCA1 and ABCG1 transporters, in macrophage and intestine. Anti-atherosclerotic effects of synthetic LXR agonists in murine models suggest clinical utility for such compounds.
Objective
Blood markers of LXR agonist exposure/activity were sought to support clinical development of novel synthetic LXR modulators.
Methods
Transcript levels of LXR target genes ABCA1 and ABCG1 were measured using quantitative reverse transcriptase/polymerase chain reaction assays (qRT-PCR) in peripheral blood from mice and rats (following a single oral dose) and monkeys (following 7 daily oral doses) of synthetic LXR agonists. LXRα, LXRβ, ABCA1, and ABCG1 mRNA were measured by qRT-PCR in human peripheral blood mononuclear cells (PBMC), monocytes, T- and B-cells treated ex vivo with WAY-252623 (LXR-623), and protein levels in human PBMC were measured by Western blotting. ABCA1/G1 transcript levels in whole-blood RNA were measured using analytically validated assays in human subjects participating in a Phase 1 SAD (Single Ascending Dose) clinical study of LXR-623.
Results
A single oral dose of LXR agonists induced ABCA1 and ABCG1 transcription in rodent peripheral blood in a dose- and time-dependent manner. Induction of gene expression in rat peripheral blood correlated with spleen expression, suggesting LXR gene regulation in blood has the potential to function as a marker of tissue gene regulation. Transcriptional response to LXR agonist was confirmed in primates, where peripheral blood ABCA1 and ABCG1 levels increased in a dose-dependent manner following oral treatment with LXR-623. Human PBMC, monocytes, T- and B cells all expressed both LXRα and LXRβ, and all cell types significantly increased ABCA1 and ABCG1 expression upon ex vivo LXR-623 treatment. Peripheral blood from a representative human subject receiving a single oral dose of LXR-623 showed significant time-dependent increases in ABCA1 and ABCG1 transcription.
Conclusion
Peripheral blood cells express LXRα and LXRβ, and respond to LXR agonist treatment by time- and dose-dependently inducing LXR target genes. Transcript levels of LXR target genes in peripheral blood are relevant and useful biological indicators for clinical development of synthetic LXR modulators.
doi:10.1186/1479-5876-6-59
PMCID: PMC2576083  PMID: 18925943
8.  LXRβ/estrogen receptor-α signaling in lipid rafts preserves endothelial integrity 
The Journal of Clinical Investigation  2013;123(8):3488-3497.
Liver X receptors (LXR) are stimulated by cholesterol-derived oxysterols and serve as transcription factors to regulate gene expression in response to alterations in cholesterol. In the present study, we investigated the role of LXRs in vascular endothelial cells (ECs) and discovered that LXRβ has nonnuclear function and stimulates EC migration by activating endothelial NOS (eNOS). This process is mediated by estrogen receptor-α (ERα). LXR activation promoted the direct binding of LXRβ to the ligand-binding domain of ERα and initiated an extranuclear signaling cascade that requires ERα Ser118 phosphorylation by PI3K/AKT. Further studies revealed that LXRβ and ERα are colocalized and functionally coupled in EC plasma membrane caveolae/lipid rafts. In isolated aortic rings, LXR activation of NOS caused relaxation, while in mice, LXR activation stimulated carotid artery reendothelialization via LXRβ- and ERα-dependent processes. These studies demonstrate that LXRβ has nonnuclear function in EC caveolae/lipid rafts that entails crosstalk with ERα, which promotes NO production and maintains endothelial monolayer integrity in vivo.
doi:10.1172/JCI66533
PMCID: PMC3726156  PMID: 23867501
9.  Identification of Liver X Receptor-Retinoid X Receptor as an Activator of the Sterol Regulatory Element-Binding Protein 1c Gene Promoter 
Molecular and Cellular Biology  2001;21(9):2991-3000.
In an attempt to identify transcription factors which activate sterol-regulatory element-binding protein 1c (SREBP-1c) transcription, we screened an expression cDNA library from adipose tissue of SREBP-1 knockout mice using a reporter gene containing the 2.6-kb mouse SREBP-1 gene promoter. We cloned and identified the oxysterol receptors liver X receptor (LXRα) and LXRβ as strong activators of the mouse SREBP-1c promoter. In the transfection studies, expression of either LXRα or -β activated the SREBP-1c promoter-luciferase gene in a dose-dependent manner. Deletion and mutation studies, as well as gel mobility shift assays, located an LXR response element complex consisting of two new LXR-binding motifs which showed high similarity to an LXR response element recently found in the ABC1 gene promoter, a reverse cholesterol transporter. Addition of an LXR ligand, 22(R)-hydroxycholesterol, increased the promoter activity. Coexpression of retinoid X receptor (RXR), a heterodimeric partner, and its ligand 9-cis-retinoic acid also synergistically activated the SREBP-1c promoter. In HepG2 cells, SREBP-1c mRNA and precursor protein levels were induced by treatment with 22(R)-hydroxycholesterol and 9-cis-retinoic acid, confirming that endogenous LXR-RXR activation can induce endogenous SREBP-1c expression. The activation of SREBP-1c by LXR is associated with a slight increase in nuclear SREBP-1c, resulting in activation of the gene for fatty acid synthase, one of its downstream genes, as measured by the luciferase assay. These data demonstrate that LXR-RXR can modify the expression of genes for lipogenic enzymes by regulating SREBP-1c expression, providing a novel link between fatty acid and cholesterol metabolism.
doi:10.1128/MCB.21.9.2991-3000.2001
PMCID: PMC86928  PMID: 11287605
10.  LXRα is uniquely required for maximal reverse cholesterol transport and atheroprotection in ApoE-deficient mice[S] 
Journal of Lipid Research  2012;53(6):1126-1133.
The liver X receptor (LXR) signaling pathway is an important modulator of atherosclerosis, but the relative importance of the two LXRs in atheroprotection is incompletely understood. We show here that LXRα, the dominant LXR isotype expressed in liver, plays a particularly important role in whole-body sterol homeostasis. In the context of the ApoE−/− background, deletion of LXRα, but not LXRβ, led to prominent increases in atherosclerosis and peripheral cholesterol accumulation. However, combined loss of LXRα and LXRβ on the ApoE−/− background led to an even more severe cholesterol accumulation phenotype compared to LXRα−/−ApoE−/− mice, indicating that LXRβ does contribute to reverse cholesterol transport (RCT) but that this contribution is quantitatively less important than that of LXRα. Unexpectedly, macrophages did not appear to underlie the differential phenotype of LXRα−/−ApoE−/− and LXRβ−/−ApoE−/− mice, as in vitro assays revealed no difference in the efficiency of cholesterol efflux from isolated macrophages. By contrast, in vivo assays of RCT using exogenously labeled macrophages revealed a marked defect in fecal sterol efflux in LXRα−/−ApoE−/− mice. Mechanistically, this defect was linked to a specific requirement for LXRα−/− in the expression of hepatic LXR target genes involved in sterol transport and metabolism. These studies reveal a previously unrecognized requirement for hepatic LXRα for optimal reverse cholesterol transport in mice.
doi:10.1194/jlr.M022061
PMCID: PMC3351819  PMID: 22454476
atherosclerosis; nuclear receptor; cholesterol metabolism; apoliporotein
11.  miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages 
Biochimica et Biophysica Acta  2014;1841(6):827-835.
Liver X receptors (LXRα and LXRβ) are key transcription factors in cholesterol metabolism that regulate cholesterol biosynthesis/efflux and bile acid metabolism/excretion in the liver and numerous organs. In macrophages, LXR signaling modulates cholesterol handling and the inflammatory response, pathways involved in atherosclerosis. Since regulatory pathways of LXR transcription control are well understood, in the present study we aimed at identifying post-transcriptional regulators of LXR activity. MicroRNAs (miRs) are such post-transcriptional regulators of genes that in the canonical pathway mediate mRNA inactivation. In silico analysis identified miR-206 as a putative regulator of LXRα but not LXRβ. Indeed, as recently shown, we found that miR-206 represses LXRα activity and expression of LXRα and its target genes in hepatic cells. Interestingly, miR-206 regulates LXRα differently in macrophages. Stably overexpressing miR-206 in THP-1 human macrophages revealed an up-regulation and miR-206 knockdown led to a down-regulation of LXRα and its target genes. In support of these results, bone marrow-derived macrophages (BMDMs) from miR-206 KO mice also exhibited lower expression of LXRα target genes. The physiological relevance of these findings was proven by gain- and loss-of-function of miR-206; overexpression of miR-206 enhanced cholesterol efflux in human macrophages and knocking out miR-206 decreased cholesterol efflux from MPMs. Moreover, we show that miR-206 expression in macrophages is repressed by LXRα activation, while oxidized LDL and inflammatory stimuli profoundly induced miR-206 expression. We therefore propose a feed-back loop between miR-206 and LXRα that might be part of an LXR auto-regulatory mechanism to fine tune LXR activity.
Graphical abstract
Highlights
•Functional differences of miR-206 in the liver and macrophages•In the liver, miR-206 suppresses LXRα expression and signaling.•In macrophages, miR-206 increases LXRα abundance and promotes cholesterol efflux.•In macrophages, LXRα activation represses miR-206 expression.•In macrophages, pro-inflammatory stimuli increase miR-206 expression.
doi:10.1016/j.bbalip.2014.02.006
PMCID: PMC3996726  PMID: 24603323
miR, Micro-RNA; LXRs, liver X receptors; ApoE, apolipoprotein E; ABCs, ATP-binding cassette transporters; KO, knockout; SREBP, sterol regulatory element-binding protein; Micro-RNA; ox-LDL; LXR target gene; ABC; ApoA-I; HDL
12.  miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages 
Biochimica et biophysica acta  2014;1841(6):827-835.
Liver X receptors (LXRα and LXRβ) are key transcription factors in cholesterol metabolism that regulate cholesterol biosynthesis/efflux and bile acid metabolism/excretion in the liver and numerous organs. In macrophages, LXR signaling modulates cholesterol handling and the inflammatory response, pathways involved in atherosclerosis. Since regulatory pathways of LXR transcription control are well understood, in the present study we aimed at identifying post-transcriptional regulators of LXR activity. MicroRNAs (miRs) are such post-transcriptional regulators of genes that in the canonical pathway mediate mRNA inactivation. In silico analysis identified miR-206 as a putative regulator of LXRα but not LXRβ. Indeed, as recently shown, we found that miR-206 represses LXRα activity and expression of LXRα and its target genes in hepatic cells. Interestingly, miR-206 regulates LXRα differently in macrophages. Stably overexpressing miR-206 in THP-1 human macrophages revealed an up-regulation and miR-206 knockdown led to a down-regulation of LXRα and its target genes. In support of these results, bone marrow-derived macrophages (BMDMs) from miR-206 KO mice also exhibited lower expression of LXRα target genes. The physiological relevance of these findings was proven by gain- and loss-of-function of miR-206; overexpression of miR-206 enhanced cholesterol efflux in human macrophages and knocking out miR-206 decreased cholesterol efflux from MPMs. Moreover, we show that miR-206 expression in macrophages is repressed by LXRα activation, while oxidized LDL and inflammatory stimuli profoundly induced miR-206 expression. We therefore propose a feed-back loop between miR-206 and LXRα that might be part of an LXR auto-regulatory mechanism to fine tune LXR activity.
doi:10.1016/j.bbalip.2014.02.006
PMCID: PMC3996726  PMID: 24603323
Micro-RNA; ox-LDL; LXR target gene; ABC; ApoA-I; HDL
13.  Extract of Kuding Tea Prevents High-Fat Diet-Induced Metabolic Disorders in C57BL/6 Mice via Liver X Receptor (LXR) β Antagonism 
PLoS ONE  2012;7(12):e51007.
Objective
To investigate the effects of ilex kudingcha C. J. Tseng (kuding tea), a traditional beverage in China, on the metabolic disorders in C57BL/6 mice induced by high-fat diets.
Design
For the preventive experiment, the female C57BL/6 mice were fed with a standard diet (Chow), high-fat diet (HF), and high-fat diet mixed with 0.05% ethanol extract of kuding tea (EK) for 5 weeks. For the therapeutic experiment, the C57BL/6 mice were fed high-fat diet for 3 months, and then mice were split and EK was given with oral gavages for 2 weeks at 50 mg/day/kg. Body weight and daily food intake amounts were measured. At the end of treatment, the adipocyte images were assayed with a scanning electron microscope, and the fasting blood glucose, glucose tolerance test, serum lipid profile and lipids in the livers were analyzed. A reporter gene assay system was used to test the whether EK could act on nuclear receptor transcription factors, and the gene expression analysis was performed with a quantitative PCR assay.
Results
In the preventive treatment, EK blocked the body weight gain, reduced the size of the adipocytes, lowered serum triglyceride, cholesterol, LDL-cholesterol, fasting blood glucose levels and glucose tolerance in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, EK reduced the size of the white adipocytes, serum TG and fasting blood glucose levels in obese mice. With the reporter assay, EK inhibited LXRβ transactivity and mRNA expression of LXRβ target genes.
Conclusion
We observed that EK has both preventive and therapeutic roles in metabolic disorders in mice induced with high-fat diets. The effects appear to be mediated through the antagonism of LXRβ transactivity. Our data indicate that kuding tea is a useful dietary therapy and a potential source for the development of novel anti-obesity and lipid lowering drugs.
doi:10.1371/journal.pone.0051007
PMCID: PMC3514219  PMID: 23226556
14.  LXRβ is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice 
Although widely prescribed for their potent antiinflammatory actions, glucocorticoid drugs (e.g., dexamethasone) cause undesirable side effects that are features of the metabolic syndrome, including hyperglycemia, fatty liver, insulin resistance, and type II diabetes. Liver x receptors (LXRs) are nuclear receptors that respond to cholesterol metabolites and regulate the expression of a subset of glucocorticoid target genes. Here, we show LXRβ is required to mediate many of the negative side effects of glucocorticoids. Mice lacking LXRβ (but not LXRα) were resistant to dexamethasone-induced hyperglycemia, hyperinsulinemia, and hepatic steatosis, but remained sensitive to dexamethasone-dependent repression of the immune system. In vivo, LXRα/β knockout mice demonstrated reduced dexamethasone-induced expression of the key hepatic gluconeogenic gene, phosphoenolpyruvate carboxykinase (PEPCK). In perfused liver and primary mouse hepatocytes, LXRβ was required for glucocorticoid-induced recruitment of the glucocorticoid receptor to the PEPCK promoter. These findings suggest a new avenue for the design of safer glucocorticoid drugs through a mechanism of selective glucocorticoid receptor transactivation.
doi:10.1172/JCI41681
PMCID: PMC3007136  PMID: 21123945
15.  Calcitriol and TO-901317 Interact in Human Prostate Cancer LNCaP Cells 
Vitamin D receptor (VDR) and liver X receptor (LXR) are nuclear receptors, which regulate gene transcription upon binding of their specific ligands. VDR seems to play a role in the regulation of prostate cancer cell proliferation. ATP-binding cassette transporter A1 (ABCA1) is known to be a target gene of LXR and it has been reported to be inhibited by androgen and to be involved in the regulation of LNCaP proliferation. We find that calcitriol (1α,25(OH)2D3) inhibits both basal and a LXR agonist, TO-901317, induced ABCA1 mRNA expression but has no effect on the mRNA expression of ATP-binding cassette transporter G1 (ABCG1), LXRα nor LXRβ. TO-901317 increases both basal and calcitriol induced 25-hydroxyvitamin D3-24-hydroxylase (CYP24) mRNA expression and it slightly but significantly inhibits VDR mRNA expression. The inhibition of ABCA1 by calcitriol appears to be androgen-independent. Cell growth assay shows that when each of calcitriol and 5α-dihydrotestosterone (DHT) was co-treated with ABCA1 blocker, glybenclamide, cell-growth is significantly decreased compared to their own treatments respectively. Our study suggests a possible interaction between calcitriol and TO-901317 in LNCaP cells. Alike DHT, the inhibition of ABCA1 by calcitriol may be involved in its regulation of LNCaP growth.
PMCID: PMC2733103  PMID: 19787078
mRNA regulation; ABCA1; CYP24; calcitriol; LXR agonist; interaction; cell proliferation
16.  Liver X Receptor β and Peroxisome Proliferator-Activated Receptor δ regulate cholesterol transport in cholangiocytes 
Hepatology (Baltimore, Md.)  2012;56(6):2288-2296.
Nuclear receptors (NRs) play crucial roles in regulation of hepatic cholesterol synthesis, metabolism and conversion to bile acids, but their actions in cholangiocytes have not been examined. In this study, we investigated the roles of NRs in cholangiocyte physiology and cholesterol metabolism and flux. We examined the expression of NRs and other genes involved in cholesterol homeostasis in freshly isolated and cultured rodent cholangiocytes and found that these cells express a specific subset of NRs which includes Liver X Receptor β (LXRβ) and Peroxisome Proliferator-Activated Receptor δ (PPARδ). Activation of LXRβ and/or PPARδ in cholangiocytes induces ATP-binding cassette cholesterol transporter A1 (ABCA1) and increases cholesterol export at the basolateral compartment in polarized cultured cholangiocytes. In addition, PPARδ induces Niemann Pick C1 Like L1 (NPC1L1), which imports cholesterol into cholangiocytes and is expressed on the apical cholangiocyte membrane, via specific interaction with a PPRE within the NPC1L1 promoter. Based on these studies, we propose that (i) LXRβ and PPARδ coordinate NPC1L1/ABCA1 dependent vectorial cholesterol flux from bile through cholangiocytes and (ii) manipulation of these processes may influence bile composition with important applications in cholestatic liver disease and gallstone disease, serious health concerns for humans.
doi:10.1002/hep.25919
PMCID: PMC3469731  PMID: 22729460
Cholangiocyte; LXRβ; PPARδ; ABCA1; NPC1L1
17.  The Phospholipid Transfer Protein Gene Is a Liver X Receptor Target Expressed by Macrophages in Atherosclerotic Lesions 
Molecular and Cellular Biology  2003;23(6):2182-2191.
The liver X receptors (LXRs) are members of the nuclear receptor superfamily that are activated by oxysterols. In response to ligand binding, LXRs regulate a variety of genes involved in the catabolism, transport, and uptake of cholesterol and its metabolites. Here we demonstrate that LXRs also regulate plasma lipoprotein metabolism through control of the phospholipid transfer protein (PLTP) gene. LXR ligands induce the expression of PLTP in cultured HepG2 cells and mouse liver in vivo in a coordinate manner with known LXR target genes. Moreover, plasma phospholipid transfer activity is increased in mice treated with the synthetic LXR ligand GW3965. Unexpectedly, PLTP expression was also highly inducible by LXR in macrophages, a cell type not previously recognized to express this enzyme. The ability of synthetic and oxysterol ligands to regulate PLTP mRNA in macrophages and liver is lost in animals lacking both LXRα and LXRβ, confirming the critical role of these receptors. We further demonstrate that the PLTP promoter contains a high-affinity LXR response element that is bound by LXR/RXR heterodimers in vitro and is activated by LXR/RXR in transient-transfection studies. Finally, immunohistochemistry studies reveal that PLTP is highly expressed by macrophages within human atherosclerotic lesions, suggesting a potential role for this enzyme in lipid-loaded macrophages. These studies outline a novel pathway whereby LXR and its ligands may modulate lipoprotein metabolism.
doi:10.1128/MCB.23.6.2182-2191.2003
PMCID: PMC149472  PMID: 12612088
18.  Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice  
The Journal of Clinical Investigation  2009;119(6):1626-1637.
Liver X receptors (LXRs) are key regulators of macrophage function, controlling transcriptional programs involved in lipid homeostasis and inflammation. However, exactly how LXRs modulate inflammation during infection remains unknown. To explore this, we used a mouse model of Mycobacterium tuberculosis infection. Upon intratracheal infection with M. tuberculosis, LXRs and LXR target genes were induced in CD11c+ lung and alveolar cells. Furthermore, mice deficient in both LXR isoforms, LXRα and LXRβ (Lxra–/–Lxrb–/– mice), were more susceptible to infection, developing higher bacterial burdens and an increase in the size and number of granulomatous lesions. Interestingly, mice solely deficient in LXRα, but not those lacking only LXRβ, mirrored the susceptibility of the Lxra–/–Lxrb–/– animals. Lxra–/–Lxrb–/– mice failed to mount an effective early neutrophilic airway response to infection and showed dysregulation of both pro- and antiinflammatory factors in CD11c+ lung cells. T cell responses were strongly affected in Lxra–/–Lxrb–/– mice, showing near-complete abrogation of the infection-induced Th1 function — and even more so Th17 function — in the lungs. Treatment of WT mice with the LXR agonists TO901317 and GW3965 resulted in a 10-fold decrease of the pulmonary bacterial burden and a comparable increase of Th1/Th17 function in the lungs. The dependence of LXR signaling on the neutrophil IL-17 axis represents what we believe to be a novel function for these nuclear receptors in resistance to M. tuberculosis infection and may provide a new target for therapeutics.
doi:10.1172/JCI35288
PMCID: PMC2689129  PMID: 19436111
19.  EXTRA-HEPATIC CANCER SUPPRESSES NUCLEAR RECEPTOR REGULATED DRUG METABOLISM 
Purpose
To determine the mechanisms by which tumors situated in extra-hepatic sites can cause profound changes in hepatic drug clearance, contributing to altered drug response and chemotherapy resistance.
Experimental Design
We studied in wild type or transgenic CYP3A4 reporter mice implanted with the murine Engelbreth–Holm–Swarm sarcoma, changes in nuclear receptor and hepatic transcription factor expression and/or function, particularly related to CYP3A gene regulation.
Results
Repression of hepatic CYP3A induction was dramatic and associated with reduced levels of C/EBPβ isoforms and impaired PXR and CAR function. Unexpectedly, extra-hepatic tumors strongly reduced nuclear accumulation of RXRα in hepatocytes, providing a potential explanation for impaired function of nuclear receptors that rely on RXRα dimerization. Profiling revealed 38 nuclear receptors were expressed in liver with 14 showing between 1.5 and 4 fold reduction in expression in livers of tumour-bearing animals, including Car, Trβ, Lxrβ, Pparα, Errα/β, Reverbα/β and Shp. Altered Pparα and γ induction of target genes provided additional evidence of perturbed hepatic metabolic control elicited by extra-hepatic tumors.
Conclusions
Extra-hepatic malignancy can affect hepatic drug metabolism by nuclear receptor re-localization and decreased receptor expression and function. These findings could aid the design of intervention strategies to normalize drug clearance and metabolic pathways in cancer patients at risk of chemotherapy-induced toxicity or cancer cachexia.
doi:10.1158/1078-0432.CCR-10-3289
PMCID: PMC3096719  PMID: 21498392
drug metabolism; cancer; CYP3A; nuclear receptors
20.  Polymorphisms in NF-κB, PXR, LXR, PPARγ and risk of inflammatory bowel disease 
AIM: To investigate the contribution of polymorphisms in nuclear receptors to risk of inflammatory bowel disease (IBD).
METHODS: Genotypes of nuclear factor (NF)-κB (NFKB1) NFκB -94ins/del (rs28362491); peroxisome proliferator-activated receptor (PPAR)-γ (PPARγ) PPARγ Pro12Ala (rs 1801282) and C1431T (rs 3856806); pregnane X receptor (PXR) (NR1I2) PXR A-24381C (rs1523127), C8055T (2276707), and A7635G (rs 6785049); and liver X receptor (LXR) (NR1H2) LXR T-rs1405655-C and T-rs2695121-C were assessed in a Danish case-control study of 327 Crohn’s disease patients, 495 ulcerative colitis (UC) patients, and 779 healthy controls. Odds ratio (OR) and 95% CI were estimated by logistic regression models.
RESULTS: The PXR A7635G variant, the PPARγ Pro12Ala and LXR T-rs2695121-C homozygous variant genotypes were associated with risk of UC (OR: 1.31, 95% CI: 1.03-1.66, P = 0.03, OR: 2.30, 95% CI: 1.04-5.08, P = 0.04, and OR: 1.41, 95% CI: 1.00-1.98, P = 0.05, respectively) compared to the corresponding homozygous wild-type genotypes. Among never smokers, PXR A7635G and the LXR T-rs1405655-C and T-rs2695121-C variant genotypes were associated with risk of IBD (OR: 1.41, 95% CI: 1.05-1.91, P = 0.02, OR: 1.63, 95% CI: 1.21-2.20, P = 0.001, and OR: 2.02, 95% CI: 1.36-2.99, P = 0.0005, respectively) compared to the respective homozygous variant genotypes. PXR A7635G (rs6785049) variant genotype was associated with a higher risk of UC diagnosis before the age of 40 years and with a higher risk of extensive disease (OR: 1.34, 95% CI: 1.03-1.75 and OR: 2.49, 95% CI: 1.24-5.03, respectively).
CONCLUSION: Common PXR and LXR polymorphisms may contribute to risk of IBD, especially among never smokers.
doi:10.3748/wjg.v17.i2.197
PMCID: PMC3020373  PMID: 21245992
Crohn’s disease; Genetic susceptibility; Single nucleotide polymorphisms; Smoking status; Transcription factors; Ulcerative colitis
21.  A common polymorphism in NR1H2 (LXRbeta) is associated with preeclampsia 
BMC Medical Genetics  2011;12:145.
Background
Preeclampsia is a frequent complication of pregnancy and a leading cause of perinatal mortality. Both genetic and environmental risk factors have been identified. Lipid metabolism, particularly cholesterol metabolism, is associated with this disease. Liver X receptors alpha (NR1H3, also known as LXRalpha) and beta (NR1H2, also known as LXRbeta) play a key role in lipid metabolism. They belong to the nuclear receptor superfamily and are activated by cholesterol derivatives. They have been implicated in preeclampsia because they modulate trophoblast invasion and regulate the expression of the endoglin (CD105) gene, a marker of preeclampsia. The aim of this study was to investigate associations between the NR1H3 and NR1H2 genes and preeclampsia.
Methods
We assessed associations between single nucleotide polymorphisms of NR1H3 (rs2279238 and rs7120118) and NR1H2 (rs35463555 and rs2695121) and the disease in 155 individuals with preeclampsia and 305 controls. Genotypes were determined by high-resolution melting analysis. We then used a logistic regression model to analyze the different alleles and genotypes for those polymorphisms as a function of case/control status.
Results
We found no association between NR1H3 SNPs and the disease, but the NR1H2 polymorphism rs2695121 was found to be strongly associated with preeclampsia (genotype C/C: adjusted odds ratio, 2.05; 95% CI, 1.04-4.05; p = 0.039 and genotype T/C: adjusted odds ratio, 1.85; 95% CI, 1.01-3.42; p = 0.049).
Conclusions
This study provides the first evidence of an association between the NR1H2 gene and preeclampsia, adding to our understanding of the links between cholesterol metabolism and this disease.
doi:10.1186/1471-2350-12-145
PMCID: PMC3214159  PMID: 22029530
22.  Adaptive responses induced by 24S-hydroxycholesterol through liver X receptor pathway reduce 7-ketocholesterol-caused neuronal cell death☆ 
Redox Biology  2013;2:28-35.
Lipid peroxidation products have been known to induce cellular adaptive responses and enhance tolerance against subsequent oxidative stress through up-regulation of antioxidant compounds and enzymes. 24S-hydroxycholesterol (24SOHC) which is endogenously produced oxysterol in the brain plays an important role in maintaining brain cholesterol homeostasis. In this study, we evaluated adaptive responses induced by brain-specific oxysterol 24SOHC in human neuroblastoma SH-SY5Y cells. Cells treated with 24SOHC at sub-lethal concentrations showed significant reduction in cell death induced by subsequent treatment with 7-ketocholesterol (7KC) in both undifferentiated and retinoic acid-differentiated SH-SY5Y cells. These adaptive responses were also induced by other oxysterols such as 25-hydroxycholesterol and 27-hydroxycholesterol which are known to be ligands of liver X receptor (LXR). Co-treatment of 24SOHC with 9-cis retinoic acid, a retinoid X receptor ligand, enhanced the adaptive responses. Knockdown of LXRβ by siRNA diminished the adaptive responses induced by 24SOHC almost completely. The treatment with 24SOHC induced the expression of LXR target genes, such as ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1). The 24SOHC-induced adaptive responses were significantly attenuated by siRNA for ABCG1 but not by siRNA for ABCA1. Taken together, these results strongly suggest that 24SOHC at sub-lethal concentrations induces adaptive responses via transcriptional activation of LXR signaling pathway, thereby protecting neuronal cells from subsequent 7KC-induced cytotoxicity.
Graphical abstract
Highlights
•24SOHC induces adaptive responses against 7KC-induced cell death in neuronal cells.•Co-treatment of 24SOHC with 9cRA, an RXR ligand enhances adaptive responses.•Knockdown of LXRβ suppresses 24SOHC-induced adaptive responses.•ABCG1 is involved in LXR-mediated adaptive responses by 24SOHC.
doi:10.1016/j.redox.2013.11.007
PMCID: PMC3871289  PMID: 24371802
ABCA1, ATP-binding cassette transporter A1; ABCG1, ATP-binding cassette transporter G1; AD, Alzheimer's disease; atRA, all-trans retinoic acid; CYP46A1, cholesterol 24-hydroxylase; FITC, fluorescein isothiocyanate; HDL, high-density lipoprotein; LDH, lactate dehydrogenase; LXR, liver X receptor; MAP2, microtubule-associated protein 2; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NC, negative control; PI, propidium iodide; RXR, retinoid X receptor; 24SOHC, 24S-hydroxycholesterol; 7KC, 7-ketocholesterol; 9cRA, 9-cis retinoic acid; Cell death; Adaptive responses; Liver X receptor; 24S-hydroxycholesterol; 7-ketocholesterol; ATP-binding cassette transporter G1
23.  Regulation of thyroid hormone activation via the liver X-receptor/retinoid X-receptor pathway 
The Journal of endocrinology  2010;205(2):179-186.
Thyroid hormone receptor (TR) and liver X-receptor (LXR) are the master regulators of lipid metabolism. Remarkably, a mouse with a targeted deletion of both LXRα and LXRβ is resistant to western diet-induced obesity, and exhibits ectopic liver expression of the thyroid hormone activating type 2 deiodinase (D2). We hypothesized that LXR/retinoid X-receptor (RXR) signaling inhibits hepatic D2 expression, and studied this using a luciferase reporter containing the human DIO2 (hDIO2) promoter in HepG2 cells. Given that, in contrast to mammals, the chicken liver normally expresses D2, the chicken DIO2 (cDIO2) promoter was also studied. 22(R)-OH-cholesterol negatively regulated hDIO2 in a dose-dependent manner (100 μM, approximately twofold), while it failed to affect the cDIO2 promoter. Truncations in the hDIO2 promoter identified the region −901 to −584 bp as critical for negative regulation. We also investigated if 9-cis retinoic acid (9-cis RA), the ligand for the heterodimeric partner of TR and LXR, RXR, could regulate the hDIO2 promoter. Notably, 9-cis RA repressed the hDIO2 luciferase reporter (1 μM, approximately fourfold) in a dose-dependent manner, while coexpression of an inactive mutant RXR abolished this effect. However, it is unlikely that RXR homodimers mediate the repression of hDIO2 since mutagenesis of a DR-1 at −506 bp did not interfere with 9-cis RA-mediated repression. Our data indicate that hDIO2 transcription is negatively regulated by both 22(R)-OH-cholesterol and 9-cis RA, which is consistent with LXR/RXR involvement. In vivo, the inhibition of D2-mediated tri-iodothyronine (T3) production by cholesterol/9-cis RA could function as a feedback loop, given that T3 decreases hepatic cholesterol levels.
doi:10.1677/JOE-09-0448
PMCID: PMC3133926  PMID: 20176747
24.  Genetic Linkage and Association of the Growth Hormone Secretagogue Receptor (Ghrelin Receptor) Gene in Human Obesity 
Diabetes  2005;54(1):259-267.
The growth hormone secretagogue receptor (GHSR) (ghrelin receptor) plays an important role in the regulation of food intake and energy homeostasis. The GHSR gene lies on human chromosome 3q26 within a quantitative trait locus strongly linked to multiple phenotypes related to obesity and the metabolic syndrome. Because the biological function and location of the GHSR gene make it an excellent candidate gene, we tested the relation between common single nucleotide polymorphisms (SNPs) in the GHSR gene and human obesity. We performed a comprehensive analysis of SNPs, linkage disequilibrium (LD), and haplotype structure across the entire GHSR gene region (99.3 kb) in 178 pedigrees with multiple obese members (DNA of 1,095 Caucasians) and in an independent sample of the general population (MONICA Augsburg left ventricular hypertrophy substudy; DNA of 1,418 Caucasians). The LD analysis revealed a disequilibrium block consisting of five SNPs, consistent in both study cohorts. We found linkage among all five SNPs, their haplotypes, and BMI. Further, we found suggestive evidence for transmission disequilibrium for the minor SNP alleles (P < 0.05) and the two most common haplotypes with the obesity affection status (“susceptible” P = 0.025, “nonsusceptible” P = 0.045) in the family cohort using the family-based association test program. Replication of these findings in the general population resulted in stronger evidence for an association of the SNPs (best P = 0.00001) and haplotypes with the disease (“susceptible” P = 0.002, “nonsusceptible” P = 0.002). To our knowledge, these data are the first to demonstrate linkage and association of SNPs and haplotypes within the GHSR gene region and human obesity. This linkage, together with significant transmission disequilibrium in families and replication of this association in an independent population, provides evidence that common SNPs and haplotypes within the GHSR region are involved in the pathogenesis of human obesity.
PMCID: PMC2793077  PMID: 15616037
25.  Liver X Receptor: Crosstalk Node for the Signaling of Lipid Metabolism, Carbohydrate Metabolism, and Innate Immunity 
Liver X Receptor-α (LXRα, also known as NR1H3) and LXRβ (NR1H2) are members of the nuclear receptor superfamily of ligand-activated transcription factors, a superfamily which includes the more widely known glucocorticoid receptor, estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptors. The LXRs are activated by physiologic sterol ligands (e.g., oxysterols) and by synthetic agonists. In recent years, our understanding of the importance of LXRs has expanded across several fields of (patho-)physiology. Perhaps best known from a sizeable literature as homeostatic ‘cholesterol sensors’ that drive transcriptional programs promoting cellular cholesterol efflux, ‘reverse cholesterol transport,’ and bile acid synthesis, more recent roles for LXRs in glucose homeostasis, atherosclerosis, and innate immunity have also been identified. These discoveries complement an emerging literature that continues to draw surprisingly intimate connections between host metabolism and host defense. The present review will discuss the roles of LXR in the signaling of metabolism and innate immunity, and the potential for synthetic LXR agonists as novel therapeutics in dyslipidemia, atherosclerosis, disordered glucose metabolism, and inflammation.
PMCID: PMC3931522  PMID: 24563635
Liver X Receptor; Innate Immunity; Cholesterol; Inflammation

Results 1-25 (1125087)