PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1338776)

Clipboard (0)
None

Related Articles

1.  Elevated Serum Levels of Interferon-Regulated Chemokines Are Biomarkers for Active Human Systemic Lupus Erythematosus 
PLoS Medicine  2006;3(12):e491.
Background
Systemic lupus erythematosus (SLE) is a serious systemic autoimmune disorder that affects multiple organ systems and is characterized by unpredictable flares of disease. Recent evidence indicates a role for type I interferon (IFN) in SLE pathogenesis; however, the downstream effects of IFN pathway activation are not well understood. Here we test the hypothesis that type I IFN-regulated proteins are present in the serum of SLE patients and correlate with disease activity.
Methods and Findings
We performed a comprehensive survey of the serologic proteome in human SLE and identified dysregulated levels of 30 cytokines, chemokines, growth factors, and soluble receptors. Particularly striking was the highly coordinated up-regulation of 12 inflammatory and/or homeostatic chemokines, molecules that direct the movement of leukocytes in the body. Most of the identified chemokines were inducible by type I IFN, and their levels correlated strongly with clinical and laboratory measures of disease activity.
Conclusions
These data suggest that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed in human SLE. Furthermore, the levels of serum chemokines may serve as convenient biomarkers for disease activity in lupus.
A comprehensive survey of the serologic proteome in human SLE suggests that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed.
Editors' Summary
Background.
The term “lupus,” meaning wolf in Latin, is often used as an abbreviation for the disease systemic lupus erythematosus (SLE). The name may have been given because some people with SLE have a rash that slightly resembles a wolf's face. The condition affects around 50 to 100 people per 100,000, and is much more common in women than men. SLE is a complicated disease that comes about when antibodies inappropriately attack the body's own connective tissues, although it is not known why this happens. Symptoms vary between different people; the disease may get better and then worse, without explanation; and can affect many different organs including the skin, joints, kidneys, blood cells, and brain and nervous system. SLE is difficult for doctors to diagnose. Although the disease cannot be cured, patients who are diagnosed with SLE can be treated for their symptoms, and the right management can slow progress of the disease. One area of SLE research focuses on finding “molecular markers” (e.g., proteins or other compounds) that could be tested for in the blood. Researchers hope this would help doctors to more accurately diagnose SLE initially, and then also help to track progress in a patient's condition.
Why Was This Study Done?
“Gene expression” is a term meaning the process by which a gene's DNA sequence is converted into the structures and functions of a cell. These investigators had found in previous studies that certain genes were more “highly expressed” in the blood cells of patients with SLE. Some of these genes were already known to be regulated by interferons (a group of proteins, produced by certain blood cells, that are important in helping to defend against viral infections). The investigators performing this study wanted to understand more clearly the role of interferon in SLE and to see whether the genes that are more highly expressed in patients with SLE go on to produce higher levels of protein, which might then provide useful markers for monitoring the condition.
What Did the Researchers Do and Find?
This research project was a “case-control” study, in which the researchers compared the levels of certain proteins in the blood of people who had SLE with the levels in people who did not have the condition. Thirty people were recruited as cases, from a group of patients with SLE who have been under evaluation at Johns Hopkins School of Medicine since 1987. Fifteen controls were recruited from a group of healthy people of similar age and sex as the patients with SLE; everyone involved in the study gave their consent to take part. Blood samples were taken from each individual, and the serum (liquid component of blood) was separated out. The serum levels of 160 different blood proteins were then measured. When comparing levels of blood proteins between the groups, the researchers found that 30 specific proteins were present at higher or lower levels in the SLE-affected patients. Many of these proteins are cytokines, which are regulated by interferons and are involved in the process of “signaling” within the immune system. A few proteins were found at lower levels. Levels of the interferon-regulated proteins were, on average, seen at higher levels in people whose condition was more severe.
What Do These Findings Mean?
These results suggest that patients with SLE are likely to have a very different pattern of regulation of certain proteins within the blood, particularly the proteins involved in signaling within the immune system. The authors propose that these proteins may be involved in the progression of the disease. There is also the possibility that some of these proteins may prove useful in diagnostic tests, or in tests for monitoring how the disease progresses. However, before any such tests could be used in clinical practice, they would need to be further developed and then thoroughly tested in clinical trials.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030491
Patient information from the UK National Health Service on systemic lupus erythematosus
Patient handout from the US National Institutes of Health
MedlinePLUS encyclopedia entry on lupus
Information on lupus from the UK Arthritis Research Campaign
doi:10.1371/journal.pmed.0030491
PMCID: PMC1702557  PMID: 17177599
2.  Activation of the Interferon Pathway is Dependent Upon Autoantibodies in African-American SLE Patients, but Not in European-American SLE Patients 
Background: In systemic lupus erythematosus (SLE), antibodies directed at RNA-binding proteins (anti-RBP) are associated with high serum type I interferon (IFN), which plays an important role in SLE pathogenesis. African-Americans (AA) are more likely to develop SLE, and SLE is also more severe in this population. We hypothesized that peripheral blood gene expression patterns would differ between AA and European-American (EA) SLE patients, and between those with anti-RBP antibodies and those who lack these antibodies.
Methods: Whole blood RNA from 33 female SLE patients and 16 matched female controls from AA and EA ancestral backgrounds was analyzed on Affymetrix Gene 1.0 ST gene expression arrays. Ingenuity Pathway Analysis was used to compare the top differentially expressed canonical pathways amongst the sample groups. An independent cohort of 116 SLE patients was used to replicate findings using quantitative real-time PCR (qPCR).
Results: Both AA and EA patients with positive anti-RBP antibodies showed over-expression of similar IFN-related canonical pathways, such as IFN Signaling (P = 1.3 × 10−7 and 6.3 × 10−11 in AA vs. EA respectively), Antigen Presenting Pathway (P = 1.8 × 10−5 and 2.5 × 10−6), and a number of pattern recognition receptor pathways. In anti-RBP negative (RBP−) patients, EA subjects demonstrated similar IFN-related pathway activation, whereas no IFN-related pathways were detected in RBP−AA patients. qPCR validation confirmed similar results.
Conclusion: Our data show that IFN-induced gene expression is completely dependent on the presence of autoantibodies in AA SLE patients but not in EA patients. This molecular heterogeneity suggests differences in IFN-pathway activation between ancestral backgrounds in SLE. This heterogeneity may be clinically important, as therapeutics targeting this pathway are being developed.
doi:10.3389/fimmu.2013.00309
PMCID: PMC3787392  PMID: 24101921
systemic lupus erythematosus; interferon alpha; autoantibodies; ancestral background; interferon gamma
3.  Systemic Sclerosis and Lupus 
Arthritis and rheumatism  2010;62(2):589-598.
Objective
To investigate peripheral blood (PB) cell transcript profiles of systemic sclerosis (SSc) and its subtypes in direct comparison with systemic lupus erythematosus (SLE).
Methods
We investigated PB cell samples from 74 SSc patients, 21 healthy controls, and 17 SLE patients using Illumina Human Ref-8 BeadChips and quantitative polymerase chain reaction confirmation. None of the study participants were receiving immunosuppressive agents other than low-dose steroids and hydroxychloroquine. In addition to conventional statistical and modular analysis, a composite score for the interferon (IFN)–inducible genes was calculated. Within the group of patients with SSc, the correlation of the IFN score with the serologic and clinical subtypes was investigated, as were single-nucleotide polymorphisms in a selected number of IFN pathway genes.
Results
Many of the most prominently overexpressed genes in SSc and SLE were IFN-inducible genes. Forty-three of 47 overexpressed IFN-inducible genes in SSc (91%) were similarly altered in SLE. The IFN score was highest in the SLE patients, followed by the SSc patients, and then the controls. The difference in IFN score among all 3 groups was statistically significant (P < 0.001 for all 3 comparisons). SSc and SLE PB cell samples showed striking parallels to our previously reported SSc skin transcripts in regard to the IFN-inducible gene expression pattern. In SSc, the presence of antitopoisomerase and anti–U1 RNP antibodies and lymphopenia correlated with the higher IFN scores (P = 0.005, P = 0.001, and P = 0.004, respectively); a missense mutation in IFNAR2 was significantly associated with the IFN score.
Conclusion
SLE and SSc fit within the same spectrum of IFN-mediated diseases. A subset of SSc patients shows a “lupus-like” high IFN-inducible gene expression pattern that correlates with the presence of antitopoisomerase and anti–U1 RNP antibodies.
doi:10.1002/art.27224
PMCID: PMC2879587  PMID: 20112391
4.  Interferon-lambda1 induces peripheral blood mononuclear cell-derived chemokines secretion in patients with systemic lupus erythematosus: its correlation with disease activity 
Introduction
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organ systems. Previous studies have suggested that interferon-lambda 1 (IFN-λ1), a type III interferon, plays an immunomodulatory role. In this study we investigated its role in SLE, including its correlation with disease activity, organ disorder and production of chemokines.
Methods
We determined levels of IFN-λ1 mRNA in peripheral blood mononuclear cells (PBMC) and serum protein levels in patients with SLE using real-time polymerase chain reaction (real-time PCR) and enzyme-linked immunoassay (ELISA). Further, we detected the concentration of IFN-inducible protein-10 (IP-10), monokine induced by IFN-γ (MIG) and interleukin-8 (IL-8) secreted by PBMC under the stimulation of IFN-λ1 using ELISA.
Results
IFN-λ1 mRNA and serum protein levels were higher in patients with SLE compared with healthy controls. Patients with active disease showed higher IFN-λ1 mRNA and serum protein levels compared with those with inactive disease as well. Serum IFN-λ1 levels were positively correlated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), anti-dsDNA antibody, C-reactive protein (CRP) and negatively correlated with complement 3. Serum IFN-λ1 levels were higher in SLE patients with renal involvement and arthritis compared with patients without the above-mentioned manifestations. IFN-λ1 with different concentrations displayed different effects on the secretion of the chemokines IP-10, MIG and IL-8.
Conclusions
These findings indicate that IFN-λ1 is probably involved in the renal disorder and arthritis progression of SLE and associated with disease activity. Moreover, it probably plays an important role in the pathogenesis of SLE by stimulating secretion of the chemokines IP-10, MIG and IL-8. Thus, IFN-λ1 may provide a novel research target for the pathogenesis and therapy of SLE.
doi:10.1186/ar3363
PMCID: PMC3218903  PMID: 21679442
5.  Constitutive Phosphorylation of Interferon Receptor A-Associated Signaling Proteins in Systemic Lupus Erythematosus 
PLoS ONE  2012;7(7):e41414.
Background
Overexpression of type I interferon (IFN-I)-induced genes is a common feature of systemic lupus erythematosus (SLE) and its experimental models, but the participation of endogenous overproduction of IFN-I on it is not clear. To explore the possibility that abnormally increased IFN-I receptor (IFNAR) signaling could participate in IFN-I-induced gene overexpression of SLE, we examined the phosphorylation status of the IFNAR-associated signaling partners Jak1 and STAT2, and its relation with expression of its physiologic inhibitor SOCS1 and with plasma levels of IFNα and IFN-like activity.
Methodology/Principal Findings
Peripheral blood mononuclear cells (PBMC) from SLE patients with or without disease activity and healthy controls cultured in the presence or in the absence of IFNβ were examined by immunoprecipitation and/or western blotting for expression of the two IFNAR chains, Jak1, Tyk2, and STAT2 and their phosphorylated forms. In SLE but not in healthy control PBMC, Jak1 and STAT2 were constitutively phosphorylated, even in the absence of disease activity (basal pJak1: controls vs. active SLE p<0.0001 and controls vs. inactive SLE p = 0.0006; basal pSTAT2: controls vs. active and inactive SLE p<0.0001). Although SOCS1 protein was slightly but significantly decreased in SLE in the absence or in the presence of IFNβ (p = 0.0096 to p<0.0001), in SOCS1 mRNA levels were markedly decreased (p = 0.036 to p<0.0001). IFNβ induced higher levels of the IFN-I-dependent MxA protein mRNA in SLE than in healthy controls, whereas the opposite was observed for SOCS1. Although there was no relation to increased serum IFNα, active SLE plasma could induce expression of IFN-dependent genes by normal PBMC.
Conclusions/Significance
These findings suggest that in some SLE patients IFN-I dependent gene expression could be the result of a low IFNAR signaling threshold.
doi:10.1371/journal.pone.0041414
PMCID: PMC3408474  PMID: 22859983
6.  Use of type I interferon-inducible mRNAs as pharmacodynamic markers and potential diagnostic markers in trials with sifalimumab, an anti-IFNα antibody, in systemic lupus erythematosus 
Arthritis Research & Therapy  2010;12(Suppl 1):S6.
Type I interferons are implicated in the pathogenesis of systemic lupus erythematosus (SLE). Type I interferon-inducible mRNAs are widely and concordantly overexpressed in the periphery and involved tissues of a subset of SLE patients, and provide utility as pharmacodynamic biomarkers to aid dose selection, as well as potential indicators of patients who might respond favorably to anti-IFNα therapy in SLE. We implemented a three-tiered approach to identify a panel of type I interferon-inducible mRNAs to be used as potential pharmacodynamic biomarkers to aid dose selection in clinical trials of sifalimumab, an anti-IFNα monoclonal antibody under development for the treatment of SLE. In a single-dose escalation phase 1 trial, we observed a sifalimumab-specific and dose-dependent inhibition of the overexpression of type I interferon-inducible mRNAs in the blood of treated subjects. Inhibition of expression of type I interferon-inducible mRNAs and proteins was also observed in skin lesions of SLE subjects from the same trial. Inhibiting IFNα resulted in a profound downstream effect in these SLE subjects that included suppression of mRNAs of B-cell activating factor belonging to the TNF family and the signaling pathways of TNFα, IL-10, IL-1β, and granulocyte-macrophage colony-stimulating factor in both the periphery and skin lesions. A scoring method based on the expression of type I interferon-inducible mRNAs partitioned SLE patients into two distinct subpopulations, which suggests the possibility of using these type I interferon-inducible genes as predictive biomarkers to identify SLE patients who might respond more favorably to anti-type I interferon therapy.
doi:10.1186/ar2887
PMCID: PMC2991779  PMID: 20392292
7.  Association of Endogenous Anti–Interferon-α Autoantibodies With Decreased Interferon-Pathway and Disease Activity in Patients With Systemic Lupus Erythematosus 
Arthritis and rheumatism  2011;63(8):2407-2415.
Objective
Numerous observations implicate interferon-α (IFNα) in the pathophysiology of systemic lupus erythematosus (SLE); however, the potential impact of endogenous anti-IFNα autoantibodies (AIAAs) on IFN-pathway and disease activity is unclear. The aim of this study was to characterize IFN-pathway activity and the serologic and clinical profiles of AIAA-positive patients with SLE.
Methods
Sera obtained from patients with SLE (n = 49), patients with rheumatoid arthritis (n = 25), and healthy control subjects (n = 25) were examined for the presence of AIAAs, using a biosensor immunoassay. Serum type I IFN bioactivity and the ability of AIAA-positive sera to neutralize IFNα activity were determined using U937 cells. Levels of IFN-regulated gene expression in peripheral blood were determined by microarray, and serum levels of BAFF, IFN-inducible chemokines, and other autoantibodies were measured using immunoassays.
Results
AIAAs were detected in 27% of the serum samples from patients with SLE, using a biosensor immunoassay. Unsupervised hierarchical clustering analysis identified 2 subgroups of patients, IFNlow and IFNhigh, that differed in the levels of serum type I IFN bioactivity, IFN-regulated gene expression, BAFF, anti-ribosomal P, and anti-chromatin autoantibodies, and in AIAA status. The majority of AIAA-positive patients had significantly lower levels of serum type I IFN bioactivity, reduced downstream IFN-pathway activity, and lower disease activity compared with the IFNhigh patients. AIAA-positive sera were able to effectively neutralize type I IFN activity in vitro.
Conclusion
Patients with SLE commonly harbor AIAAs. AIAA-positive patients have lower levels of serum type I IFN bioactivity and evidence for reduced downstream IFN-pathway and disease activity. AIAAs may influence the clinical course in SLE by blunting the effects produced by IFNα.
doi:10.1002/art.30399
PMCID: PMC4028124  PMID: 21506093
8.  Genetic Variation near IRF8 is Associated with Serologic and Cytokine Profiles in Systemic Lupus Erythematosus and Multiple Sclerosis 
Genes and immunity  2013;14(8):10.1038/gene.2013.42.
Alleles of IRF8 are associated with susceptibility to both systemic lupus erythematosus (SLE) and multiple sclerosis (MS). While high type I interferon (IFN) is thought to be causal in SLE, type I IFN is used as a therapy in MS. We investigated whether IRF8 alleles were associated with type I IFN levels or serologic profiles in SLE and MS. Alleles which have been previously associated with SLE or MS were genotyped in SLE and MS patients. The MS-associated rs17445836G allele was associated with anti-dsDNA autoantibodies in SLE patients (meta-analysis OR=1.92). The same allele was associated with decreased serum IFN activity in SLE patients with anti-dsDNA antibodies, and with decreased type I IFN-induced gene expression in PBMC from anti-dsDNA negative SLE patients. In secondary progressive MS patients, rs17445836G was associated with decreased serum type I IFN. Rs17445836G was associated with increased IRF8 expression in SLE patient B cells. In summary, IRF8 rs17445836G is associated with human autoimmune disease characterized by low type I IFN levels, and this may have pharmacogenetic relevance as type I IFN is modulated in SLE and MS. The association with autoantibodies and increased IRF8 expression in B cells supports a role for rs17445836G in humoral tolerance.
doi:10.1038/gene.2013.42
PMCID: PMC3856198  PMID: 23965942
systemic lupus erythematosus; type I interferon; autoantibodies; interferon regulatory factors
9.  Expression of an anti-RNA autoantibody in a mouse model of SLE is sufficient to increase neutrophil and monocyte numbers as well as the amount of IFN-I 
European journal of immunology  2013;44(1):215-226.
SUMMARY
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of anti-nucleic acid autoantibodies, high levels of circulating type I interferon (IFN-I), and an IFN-I-dependent elevated expression of activating FcγR. Increases in neutrophils and monocytes are often observed in clinical SLE, but how these contribute to autoantibody and IFN-I production is poorly understood. We are analyzing SLE pathogenesis in 564Igi mice, an SLE-model strain carrying gene-targeted heavy and light chain antibody genes encoding an anti-RNA autoantibody in a C57BL/6 background. Similar to human SLE patients, 564Igi mice produce anti-RNA autoantibodies and expanded neutrophil and monocyte populations. These myeloid cells produce IFN-I and exhibit increased FcγRIV expression induced via an IFN-I autocrine loop. A direct effect of IFN-I on 564Igi bone marrow B cells and neutrophils is supported by their up-regulation of “IFN-I signature genes”. In addition, 564Igi developing B cells show up-regulated TLR7 resulting in IgG2a/2b class switch recombination and autoantibody production. Our results indicate that the production of anti-RNA autoantibody is sufficient to induce an increase of bone marrow, blood and spleen IFN-I-producing neutrophils, and suggest a mechanism by which autoantibody and IFN-I contribute to SLE by activating B lymphocytes, neutrophils and monocyte effector cells in vivo.
doi:10.1002/eji.201343714
PMCID: PMC3947137  PMID: 24105635
Type I interferon; autoantibody; Fcγ receptors; myeloid cells; interferon signature genes; systemic lupus erythematosus
10.  Type I interferon correlates with serological and clinical manifestations of SLE 
Annals of the Rheumatic Diseases  2005;64(12):1692-1697.
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease affecting multiple organ systems triggered by the production of autoantibodies. Previous clinical studies in humans and murine models suggest that type I interferons (IFNs) are important for the initiation and potentiation of SLE activity.
Methods: 65 consecutive patients with SLE were identified from the University of California, San Francisco Lupus Clinic with moderate-severe disease activity. 94 serological samples were collected. Type I IFN levels and the ability of plasma to induce expression of several surface markers of dendritic cell maturation were measured.
Results: Type I IFN levels correlated with the presence of cutaneous manifestations, and there was a trend towards correlation with renal disease. No correlation was found between type I IFN levels and neurological disease. Type I IFN levels correlated positively with the SLEDAI score and anti-dsDNA levels and inversely with C3 levels. Interestingly, type I IFN levels were highest in African American patients. SLE plasma also induced the expression of MHC class I, CD38, and CD123 on monocytes, and was blocked by the addition of a monoclonal antibody to IFNAR1.
Conclusions: The pathogenic role of type I IFN is suggested by the induction of cell surface markers for dendritic cell maturation. The potential therapeutic utility of antibodies directed to either type I IFN or IFNAR1/IFNAR2 may be of interest in further studies.
doi:10.1136/ard.2004.033753
PMCID: PMC1755300  PMID: 15843451
11.  Type I interferon signature is high in lupus and neuromyelitis optica but low in multiple sclerosis 
Objective
Neuromyelitis optica (NMO) is characterized by selective inflammation of the spinal cord and optic nerves but is distinct from multiple sclerosis (MS). Interferon (IFN)-β mitigates disease activity in MS, but is controversial in NMO, with a few reports of disease worsening after IFN-β therapy in this highly active disease. In systemic lupus erythematosus (SLE), IFNs adversely affect disease activity. This study examines for the first time whether serum IFN-α/β activity and IFN-β-induced responses in peripheral blood mononuclear cells (MNC) are abnormally elevated in NMO, as they are in SLE, but contrast to low levels in MS.
Methods
Serum type I IFN-α/β activity was measured by a previously validated bioassay of 3 IFN-stimulated genes (RT-PCR sensitivity, 0.1 U/ml) rather than ELISA, which has lower sensitivity and specificity for measuring serum IFNs. IFN responses in PBMNC were assessed by in vitro IFN-β-induced activation of phospho-tyrosine-STAT1 and phospho-serine-STAT1 transcription factors, and MxA proteins using Western blots.
Results
Serum IFN-α/β activity was highest in SLE patients, followed by healthy subjects and NMO, but was surprisingly low in therapy-naïve MS. In functional assays in vitro, IFN-β-induced high levels of P-S-STAT1 in NMO and SLE, but not in MS and controls. IFN-β-induced MxA protein levels were elevated in NMO and SLE compared to MS.
Conclusions
Serum IFN activity and IFN-β-induced responses in PBMNC are elevated in SLE and NMO patients versus MS. This argues for similarities in pathophysiology between NMO and SLE and provides an explanation for IFN-induced disease worsening in NMO.
doi:10.1016/j.jns.2011.09.032
PMCID: PMC3910514  PMID: 22036215
NMO; MS; SLE; Interferon; STAT1; MxA
12.  Interferon-alpha: a therapeutic target in systemic lupus erythematosus 
Summary
The long history of elevated IFNα in association with disease activity in patients with SLE has taken on high significance in the past decade with accumulating data strongly supporting broad activation of the type I IFN pathway in cells of lupus patients, association of IFN pathway activation with significant clinical manifestations of SLE, and increased disease activity based on validated measures. In addition, a convincing association of IFN pathway activation with the presence of autoantibodies specific for RNA-binding proteins has contributed to delineation of an important role for TLR activation by RNA-containing immune complexes in amplifying innate immune system activation and IFN pathway activation. While the primary triggers of SLE and the IFN pathway remain undefined, rapid progress in lupus genetics is helping to define lupus – associated genetic variants with a functional relationship to IFN production or response in lupus patients. Together, the explosion of data and understanding related to the IFN pathway in SLE have readied the lupus community for translation of those insights to improved patient care. Patience will be needed to allow the required collection of clinical data and biologic specimens across multiple clinical centers that will support the required testing of IFN activity, IFN-inducible gene expression or target chemokine gene products as candidate biomarkers. Meanwhile, promising clinical trials are moving forward to test the safety and efficacy of monoclonal antibody inhibitors of IFNα. Other therapeutic approaches to target the IFN pathway may follow close behind.
doi:10.1016/j.rdc.2009.12.008
PMCID: PMC2843146  PMID: 20202598
Systemic lupus erythematosus; interferon-alpha;; innate immune response
13.  Expression and function of inducible co-stimulator in patients with systemic lupus erythematosus: possible involvement in excessive interferon-γ and anti-double-stranded DNA antibody production 
Inducible co-stimulator (ICOS) is the third member of the CD28/cytotoxic T-lymphocyte associated antigen-4 family and is involved in the proliferation and activation of T cells. A detailed functional analysis of ICOS on peripheral blood T cells from patients with systemic lupus erythematosus (SLE) has not yet been reported. In the present study we developed a fully human anti-human ICOS mAb (JTA009) with high avidity and investigated the immunopathological roles of ICOS in SLE. JTA009 exhibited higher avidity for ICOS than a previously reported mAb, namely SA12. Using JTA009, ICOS was detected in a substantial proportion of unstimulated peripheral blood T cells from both normal control individuals and patients with SLE. In CD4+CD45RO+ T cells from peripheral blood, the percentage of ICOS+ cells and mean fluorescence intensity with JTA009 were significantly higher in active SLE than in inactive SLE or in normal control individuals. JTA009 co-stimulated peripheral blood T cells in the presence of suboptimal concentrations of anti-CD3 mAb. Median values of [3H]thymidine incorporation were higher in SLE T cells with ICOS co-stimulation than in normal T cells, and the difference between inactive SLE patients and normal control individuals achieved statistical significance. ICOS co-stimulation significantly increased the production of IFN-γ, IL-4 and IL-10 in both SLE and normal T cells. IFN-γ in the culture supernatants of both active and inactive SLE T cells with ICOS co-stimulation was significantly higher than in normal control T cells. Finally, SLE T cells with ICOS co-stimulation selectively and significantly enhanced the production of IgG anti-double-stranded DNA antibodies by autologous B cells. These findings suggest that ICOS is involved in abnormal T cell activation in SLE, and that blockade of the interaction between ICOS and its receptor may have therapeutic value in the treatment of this intractable disease.
doi:10.1186/ar1928
PMCID: PMC1526621  PMID: 16563187
14.  Safety, Tolerability, and Immunogenicity of Interferons 
Pharmaceuticals  2010;3(4):1162-1186.
Interferons (IFNs) are class II cytokines that are key components of the innate immune response to virus infection. Three IFN sub-families, type I, II, and III IFNs have been identified in man, Recombinant analogues of type I IFNs, in particular IFNα2 and IFNβ1, have found wide application for the treatment of chronic viral hepatitis and remitting relapsing multiple sclerosis respectively. Type II IFN, or IFN gamma, is used principally for the treatment of chronic granulomatous disease, while the recently discovered type III IFNs, also known as IFN lambda or IL-28/29, are currently being evaluated for the treatment of chronic viral hepatitis. IFNs are in general well tolerated and the most common adverse events observed with IFNα or IFNβ therapy are “flu-like” symptoms such as fever, headache, chills, and myalgia. Prolonged treatment is associated with more serious adverse events including leucopenia, thrombocytopenia, increased hepatic transaminases, and neuropsychiatric effects. Type I IFNs bind to high-affinity cell surface receptors, composed of two transmembrane polypeptides IFNAR1 and IFNAR2, resulting in activation of the Janus kinases Jak1 and Tyk2, phosphorylation and activation of the latent cytoplasmic signal transducers and activators of transcription (STAT1) and STAT2, formation of a transcription complex together with IRF9, and activation of a specific set of genes that encode the effector molecules responsible for mediating the biological activities of type I IFNs. Systemic administration of type I IFN results in activation of IFN receptors present on essentially all types of nucleated cells, including neurons and hematopoietic stem cells, in addition to target cells. This may well explain the wide spectrum of IFN associated toxicities. Recent reports suggest that certain polymorphisms in type I IFN signaling molecules are associated with IFN-induced neutropenia and thrombocytopenia in patients with chronic hepatitis C. IFNγ binds to a cell-surface receptor composed of two transmembrane polypeptides IFGR1 and IFGR2 resulting in activation of the Janus kinases Jak1 and Jak2, phosphorylation of STAT1, formation of STAT1 homodimers, and activation of a specific set of genes that encode the effector molecules responsible for mediating its biological activity. In common with type I IFNs, IFNγ receptors are ubiquitous and a number of the genes activated by IFNγ are also activated by type I IFNs that may well account for a spectrum of toxicities similar to that associated with type I IFNs including “flu-like” symptoms, neutropenia, thrombocytopenia, and increased hepatic transaminases. Although type III IFNs share the major components of the signal transduction pathway and activate a similar set of IFN-stimulated genes (ISGs) as type I IFNs, distribution of the IFNλ receptor is restricted to certain cell types suggesting that IFNλ therapy may be associated with a reduced spectrum of toxicities relative to type I or type II IFNs. Repeated administration of recombinant IFNs can cause in a break in immune tolerance to self-antigens in some patients resulting in the production of neutralizing antibodies (NABs) to the recombinant protein homologue. Appearance of NABs is associated with reduced pharmacokinetics, pharmacodynamics, and a reduced clinical response. The lack of cross-neutralization of IFNβ by anti-IFNα NABs and vice versa, undoubtedly accounts for the apparent lack of toxicity associated with the presence of anti-IFN NABs with the exception of relatively mild infusion/injection reactions.
doi:10.3390/ph3041162
PMCID: PMC4034027
cytokines; interferons; interleukins; innate immunity; Toll-like receptors
15.  Dysfunctional interferon-α production by peripheral plasmacytoid dendritic cells upon Toll-like receptor-9 stimulation in patients with systemic lupus erythematosus 
Background
It is well known that interferon (IFN)-α is important to the pathogenesis of systemic lupus erythematosus (SLE). However, several reports have indicated that the number of IFN-α producing cells are decreased or that their function is defective in patients with SLE. We studied the function of plasmacytoid dendritic cells (pDCs) under persistent stimulation of Toll-like receptor (TLR)9 via a TLR9 ligand (CpG ODN2216) or SLE serum.
Methods
The concentrations of IFN-α were determined in serum and culture supernatant of peripheral blood mononuclear cells (PBMCs) from SLE patients and healthy controls after stimulation with CpG ODN2216 or SLE serum. The numbers of circulating pDCs were analyzed by fluoresence-activated cell sorting analysis. pDCs were treated with CpG ODN2216 and SLE serum repeatedly, and levels of produced IFN-α were measured. The expression of IFN-α signature genes and inhibitory molecules of TLR signaling were examined in PBMCs from SLE patients and healthy control individuals.
Results
Although there was no significant difference in serum concentration of IFN-α and number of circulating pDCs between SLE patients and healthy control individuals, the IFN-α producing capacity of PBMCs was significantly reduced in SLE patients. Interestingly, the degree which TLR9 ligand-induced IFN-α production in SLE PBMCs was inversely correlated with the SLE serum-induced production of IFN-α in healthy PMBCs. Because repeated stimulation pDCs with TLR9 ligands showed decreased level of IFN-α production, continuous TLR9 stimulation may lead to decreased production of IFN-α in SLE PBMCs. In addition, PBMCs isolated from SLE patients exhibited higher expression of IFN-α signature genes and inhibitory molecules of TLR signaling, indicating that these cells had already undergone IFN-α stimulation and had become desensitized to TLR signaling.
Conclusion
We suggest that the persistent presence of endogenous IFN-α inducing factors induces TLR tolerance in pDCs of SLE patients, leading to impaired production of IFN-α.
doi:10.1186/ar2382
PMCID: PMC2453773  PMID: 18321389
16.  Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression 
PLoS Genetics  2013;9(10):e1003870.
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Author Summary
Systemic lupus erythematosus (SLE), a debilitating autoimmune disease characterized by the production of pathogenic autoantibodies, has a strong genetic basis. Variants of the IL10 gene, which encodes cytokine interleukin-10 (IL-10) with known function of promoting B cell hyperactivity and autoantibody production, are associated with SLE and other autoimmune diseases, and serum IL-10 levels are elevated in SLE patients correlating with increased disease activity. In this study, to discover SLE-predisposing causal variant(s), we assessed variants within the genomic region containing IL10 and its gene family member IL19, IL20 and IL24 for association with SLE in case and control subjects from diverse ancestries. We identified SLE-associated SNP rs3122605 located at 9.2 kb upstream of IL10 as the most likely causal variant in subjects of European ancestry. The SLE-risk allele of rs3122605 was dose-dependently associated with elevated IL10 expression at both mRNA and protein levels in peripheral blood samples from SLE patients and controls, which could be explained, at least in part, by its preferential binding to Elk-1, a transcription factor activated in B cells during active disease of SLE patients. Elk-1-mediated IL-10 overexpression could be downregulated by inhibiting activation of mitogen-activated protein kinases, suggesting a potential therapeutic target for SLE.
doi:10.1371/journal.pgen.1003870
PMCID: PMC3794920  PMID: 24130510
17.  The innate immune system in SLE: type I interferons and dendritic cells 
Lupus  2008;17(5):394-399.
Patients with systemic lupus erythematosus (SLE) have an increased expression of type I interferon (IFN) regulated genes because of a continuous production of IFN-α. The cellular and molecular background to this IFN-α production has started to be elucidated during the last years, as well as the consequences for the innate and adaptive immune systems. Plasmacytoid dendritic cells (pDC) activated by immune complexes containing nucleic acids secrete type I IFN in SLE. Type I IFN causes differentiation of monocytes to myeloid-derived dendritic cell (mDC) and activation of auto-reactive T and B cells. A new therapeutic option in patients with SLE is, therefore, inhibition of IFN-α, and recent data from a phase I clinical trial suggests that administration of neutralizing monoclonal antibodies against anti-IFN-α can ameliorate disease activity.
doi:10.1177/0961203308090020
PMCID: PMC3694565  PMID: 18490415
18.  The IFN-regulated gene signature is elevated in SCLE and DLE and correlates with CLASI score 
The British Journal of Dermatology  2012;166(5):971-975.
Background
There is increased expression of type I interferon (IFN)-regulated proteins in the blood and target tissues of patients with cutaneous lupus erythematosus (CLE) and systemic lupus erythematosus (SLE). Patients with SLE have increased IFN-regulated gene expression pointing towards a possible underlying genetic defect.
Objectives
We measured expression levels of five type I IFN-regulated genes that are highly expressed in SLE in the peripheral blood of patients with CLE and correlated expression levels with cutaneous disease activity.
Methods
Peripheral blood was obtained from 10 healthy controls and 30 patients with CLE, including 8 with concomitant SLE. Total RNA was extracted and reverse transcribed into complimentary DNA. Gene expression levels were measured by real time PCR. Gene expression was normalized to GAPDH, standardized to healthy controls and then summed to calculate an IFN score for each patient. Disease activity was assessed with the Cutaneous Lupus Area and Severity Index (CLASI).
Results
Patients with subacute cutaneous lupus erythematosus (SCLE) and discoid lupus erythematosus (DLE) had elevated IFN scores compared to healthy controls regardless of concomitant SLE (p< 0.01 with SLE and p<0.05 without SLE). There was no difference between patients with tumid lupus erythematosus (TLE) and healthy controls. The IFN score correlated with CLASI scores (Spearman’s Rho (r) = 0.55, p = 0.0017).
Conclusions
Patients with SCLE and DLE have an IFN signature, as seen in SLE. The level of gene expression correlates with cutaneous disease activity. These findings support a shared pathogenesis between SLE and some subtypes of CLE.
doi:10.1111/j.1365-2133.2012.10825.x
PMCID: PMC3336025  PMID: 22242767
19.  Flow cytometry analysis of glucocorticoid receptor expression and binding in steroid-sensitive and steroid-resistant patients with systemic lupus erythematosus 
Arthritis Research & Therapy  2009;11(4):R108.
Introduction
Glucocorticoid (GC) therapy is the main treatment for systemic lupus erythematosus (SLE). However, some patients are resistant to these agents. Abnormalities of glucocorticoid receptor (GR) seem to be related to steroid resistance. This study evaluated GRs in T lymphocytes and monocytes of SLE patients by flow cytometry (FCM) using a monoclonal antibody (mAb) and FITC-Dex probes.
Methods
Thirty-five patients with SLE before treatment and 27 age- and sex-matched normal controls were studied. Disease activity scores were determined before and after treatment and used to divide the patients into steroid-resistant (SR) and steroid-sensitive (SS) groups. GRs in T lymphocytes (CD3+) and monocytes (CD14+) were examined by FCM with GR-mAb and FITC-Dex probes before treatment. Peripheral blood mononuclear cells (PBMCs) were isolated for in vitro GCs sensitivity assays. The validity of FCM analysis of intracellular staining for GR with GR-mAb and FITC-Dex probes was evaluated through comparison with western blot and radioligand binding assay (RLBA) in U937 and K562 cells in vitro. One-way ANOVA, student's t test, linear regression and spearman correlation were performed.
Results
A significant decrease in GR binding and the expression in K562 and U937 cells with 10-6 M dexamethasone (Dex) was found compared with those without Dex. In addition, a positive correlation was found between FCM and RLBA as well as FCM and Western blot. The expression and binding of both CD3/GR and CD14/GR in SR patients with SLE, detected by FCM, were all lower than those in SS patients with SLE, whereas there was no significant difference in SS patients and controls. In vitro corticosteroid sensitivity assay indicated that PHA-stimulated tumour necrosis factor-α (TNF-α), IL-12 and interferon-γ (IFN-γ) secretion was significantly inhibited by 10-6 M Dexamethasone in all controls and SS patients, compared with that in SR group, which confirms patient classification as SR and SS by disease activity index (SLEDAI) score.
Conclusions
Abnormalities of expression and binding of the GR may be involved in tissue resistance to steroids in SLE patients. Determination of GR expression and binding by FCM may be useful in predicting the response to steroid treatment of SLE patients.
Trial registration
Clinical trial registration number NCT00600652.
doi:10.1186/ar2763
PMCID: PMC2745790  PMID: 19594946
20.  Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production 
PLoS Genetics  2011;7(3):e1001323.
Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti–dsDNA autoantibody production, a SLE–related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti–dsDNA autoantibody positive (anti–dsDNA +, n = 811) and anti–dsDNA autoantibody negative (anti–dsDNA –, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti–dsDNA + SLE. Far fewer and weaker associations were observed for anti–dsDNA – SLE. For example, rs7574865 in STAT4 had an OR for anti–dsDNA + SLE of 1.77 (95% CI 1.57–1.99, p = 2.0E-20) compared to an OR for anti–dsDNA – SLE of 1.26 (95% CI 1.12–1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti–dsDNA + SLE and were not associated with anti–dsDNA – SLE. In conclusion, we identified differential genetic associations with SLE based on anti–dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti–dsDNA – SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can involve virtually any organ system. SLE patients produce antibodies that bind to their own cells and proteins (autoantibodies) which can cause irreversible organ damage. One particular SLE–related autoantibody directed at double-stranded DNA (anti–dsDNA) is associated with kidney involvement and more severe disease. Previous genome-wide association studies (GWAS) in SLE have studied SLE itself, not particular SLE manifestations. Therefore, we conducted this GWAS of anti–dsDNA autoantibody production to identify genetic associations with this clinically important autoantibody. We found that many previously identified SLE–associated genes are more strongly associated with anti–dsDNA autoantibody production than SLE itself, and they may be more accurately described as autoantibody propensity genes. No strong genetic associations were observed for SLE patients who do not produce anti–dsDNA autoantibodies, suggesting that other factors may have more influence in developing this type of SLE. Further investigation of these autoantibody propensity genes may lead to greater insight into the causes of autoantibody production and organ damage in SLE.
doi:10.1371/journal.pgen.1001323
PMCID: PMC3048371  PMID: 21408207
21.  Inhibitor of IκB kinase activity, BAY 11-7082, interferes with interferon regulatory factor 7 nuclear translocation and type I interferon production by plasmacytoid dendritic cells 
Introduction
Plasmacytoid dendritic cells (pDCs) play not only a central role in the antiviral immune response in innate host defense, but also a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9. Thus, control of dysregulated pDC activation and type I IFN production provide an alternative treatment strategy for autoimmune diseases in which type I IFNs are elevated, such as systemic lupus erythematosus (SLE). Here we focused on IκB kinase inhibitor BAY 11-7082 (BAY11) and investigated its immunomodulatory effects in targeting the IFN response on pDCs.
Methods
We isolated human blood pDCs by flow cytometry and examined the function of BAY11 on pDCs in response to TLR ligands, with regards to pDC activation, such as IFN-α production and nuclear translocation of interferon regulatory factor 7 (IRF7) in vitro. Additionally, we cultured healthy peripheral blood mononuclear cells (PBMCs) with serum from SLE patients in the presence or absence of BAY11, and then examined the inhibitory function of BAY11 on SLE serum-induced IFN-α production. We also examined its inhibitory effect in vivo using mice pretreated with BAY11 intraperitonealy, followed by intravenous injection of TLR7 ligand poly U.
Results
Here we identified that BAY11 has the ability to inhibit nuclear translocation of IRF7 and IFN-α production in human pDCs. BAY11, although showing the ability to also interfere with tumor necrosis factor (TNF)-α production, more strongly inhibited IFN-α production than TNF-α production by pDCs, in response to TLR ligands. We also found that BAY11 inhibited both in vitro IFN-α production by human PBMCs induced by the SLE serum and the in vivo serum IFN-α level induced by injecting mice with poly U.
Conclusions
These findings suggest that BAY11 has the therapeutic potential to attenuate the IFN environment by regulating pDC function and provide a novel foundation for the development of an effective immunotherapeutic strategy against autoimmune disorders such as SLE.
doi:10.1186/ar3014
PMCID: PMC2911871  PMID: 20470398
22.  The Tolerogenic Peptide, hCDR1, Down-Regulates the Expression of Interferon-α in Murine and Human Systemic Lupus Erythematosus 
PLoS ONE  2013;8(3):e60394.
Background
The tolerogenic peptide, hCDR1, ameliorated manifestations of systemic lupus erythematosus (SLE) via the immunomodulation of pro-inflammatory and immunosuppressive cytokines and the induction of regulatory T cells. Because type I interferon (IFN-α) has been implicated to play a role in SLE pathogenesis, we investigated the effects of hCDR1 on IFN-α in a murine model of SLE and in human lupus.
Methodology/Principal Findings
(NZBxNZW)F1 mice with established SLE were treated with hCDR1 (10 weekly injections). Splenocytes were obtained for gene expression studies by real-time RT-PCR. hCDR1 down-regulated significantly IFN-α gene expression (73% inhibition compared to vehicle treated mice, p = 0.002) in association with diminished clinical manifestations. Further, hCDR1 reduced, in vitro, IFN-α gene expression in peripheral blood mononuclear cells (PBMC) of 10 lupus patients (74% inhibition compared to medium, p = 0.002) but had no significant effects on the expression levels of IFN-α in PBMC of primary anti-phospholipid syndrome patients or of healthy controls. Lupus patients were treated for 24 weeks with hCDR1 (5) or placebo (4) by weekly subcutaneous injections. Blood samples collected, before and after treatment, were frozen until mRNA isolation. A significant reduction in IFN-α was determined in hCDR1 treated patients (64.4% inhibition compared to pretreatment expression levels, p = 0.015). No inhibition was observed in the placebo treated patients. In agreement, treatment with hCDR1 resulted in a significant decrease of disease activity. IFN-α appears to play a role in the mechanism of action of hCDR1 since recombinant IFN-α diminished the immunomodulating effects of hCDR1 on IL-1β, TGFβ and FoxP3 gene expression.
Conclusions/Significance
We reported previously that hCDR1 affected various cell types and immune pathways in correlation to disease amelioration. The present studies demonstrate that hCDR1 is also capable of down-regulating significantly (and specifically to lupus) IFN-α gene expression. Thus, hCDR1 has a potential role as a novel, disease specific treatment for lupus.
doi:10.1371/journal.pone.0060394
PMCID: PMC3610660  PMID: 23555966
23.  Anti-Interferon Autoantibodies in Autoimmune Polyendocrinopathy Syndrome Type 1 
PLoS Medicine  2006;3(7):e289.
Background
The autoimmune regulator (AIRE) gene influences thymic self-tolerance induction. In autoimmune polyendocrinopathy syndrome type 1 (APS1; OMIM 240300), recessive AIRE mutations lead to autoimmunity targetting endocrine and other epithelial tissues, although chronic candidiasis usually appears first. Autoimmunity and chronic candidiasis can associate with thymomas as well. Patients with these tumours frequently also have high titre immunoglobulin G autoantibodies neutralising type I interferon (IFN)–α and IFN-ω, which are secreted signalling proteins of the cytokine superfamily involved in both innate and adaptive immunity.
Methods and Findings
We tested for serum autoantibodies to type I IFNs and other immunoregulatory cytokines using specific binding and neutralisation assays. Unexpectedly, in 60/60 Finnish and 16/16 Norwegian APS1 patients with both AIRE alleles mutated, we found high titre neutralising immunoglobulin G autoantibodies to most IFN-α subtypes and especially IFN-ω (60% homologous to IFN-α)—mostly in the earliest samples. We found lower titres against IFN-β (30% homologous to IFN-α) in 23% of patients; two-thirds of these (from Finland only) also had low titres against the distantly related “type III IFN” (IFN-λ1; alias interleukin-29). However, autoantibodies to the unrelated type II IFN, IFN-γ, and other immunoregulatory cytokines, such as interleukin-10 and interleukin-12, were much rarer and did not neutralise.
Neutralising titres against type I IFNs averaged even higher in patients with APS1 than in patients with thymomas. Anti–type I IFN autoantibodies preceded overt candidiasis (and several of the autoimmune disorders) in the informative patients, and persisted for decades thereafter. They were undetectable in unaffected heterozygous relatives of APS1 probands (except for low titres against IFN-λ1), in APS2 patients, and in isolated cases of the endocrine diseases most typical of APS1, so they appear to be APS1-specific.
Looking for potentially autoimmunising cell types, we found numerous IFN-α+ antigen-presenting cells—plus strong evidence of local IFN secretion—in the normal thymic medulla (where AIRE expression is strongest), and also in normal germinal centres, where it could perpetuate these autoantibody responses once initiated. IFN-α2 and IFN-α8 transcripts were also more abundant in antigen-presenting cells cultured from an APS1 patient's blood than from age-matched healthy controls.
Conclusions
These apparently spontaneous autoantibody responses to IFNs, particularly IFN-α and IFN-ω, segregate like a recessive trait; their high “penetrance” is especially remarkable for such a variable condition. Their apparent restriction to APS1 patients implies practical value in the clinic, e.g., in diagnosing unusual or prodromal AIRE-mutant patients with only single components of APS1, and possibly in prognosis if they prove to predict its onset. These autoantibody responses also raise numerous questions, e.g., about the rarity of other infections in APS1. Moreover, there must also be clues to autoimmunising mechanisms/cell types in the hierarchy of preferences for IFN-ω, IFN-α8, IFN-α2, and IFN-β and IFN-λ1.
Almost all of nearly 100 APS1 patients studied made large amounts of auto-antibodies that blocked the function of IFN-α and IFN-ω. The antibodies appeared early during development of the disease and may play a role in its etiology.
Editors' Summary
Background.
The human body is under constant attack by viruses, bacteria, fungi, and parasites, but the immune system usually prevents these pathogens from causing disease. To be effective, the immune system has to respond rapidly to foreign antigens (bits of protein specific to pathogens) while ignoring self-antigens. If tolerance to self-antigens breaks down, autoimmunity develops, often causing disease. There are many common autoimmune diseases—type I diabetes and multiple sclerosis, for example—but because these involve defects in many genes as well as environmental factors, the details of how autoimmunity develops remain unclear. Autoimmune polyendocrinopathy syndrome type 1 (APS1), however, is caused by defects in a single gene. Patients with this rare disease characteristically have defects (or mutations) in both copies of a gene called AIRE (for autoimmune regulator). In normal people, the protein product of this gene helps to establish tolerance to a subset of self-antigens. People carrying AIRE mutations make an autoimmune response against some of their own tissues, typically the endocrine (hormone-producing) tissues that control body metabolism. A major component of this autoimmune response are “autoantibodies” (antibodies are immune molecules that normally recognize and attack foreign substances, whereas autoantibodies are directed against the body's own molecules).
Why Was This Study Done?
For a diagnosis of APS1, a patient must have at least two of the following symptoms: recurrent, localized yeast infections (usually the first symptom of the disease to appear in early childhood), hypoparathyroidism (failure of the gland that controls calcium levels in the body), and Addison disease (failure of the steroid-producing adrenal glands, which help the body respond to stress). The researchers who did this study had previously noticed that these yeast infections and autoimmunity (usually against muscle) can also occur in patients with tumors of the thymus (thymomas). The thymus is the organ that generates immune cells called T cells. Generation of the T cell repertoire in the thymus involves selection of those T cells that recognize only foreign substances. T cells that can react against self-antigens are eliminated, and the AIRE gene is thought to be involved in this “education process.” Like those with APS1, patients with thymomas make autoantibodies not only against target organs (especially muscle in their case), but also against interferon alpha (IFN-α) and interferon omega (IFN-ω), two secreted immune regulators. The researchers wanted to know if patients with APS1 also make autoantibodies against interferons, because this could provide insights into how autoimmunity develops in APS1 and other autoimmune diseases.
What Did the Researchers Do and Find?
The researchers tested blood from nearly 100 APS1 patients for antibodies to IFN-α, IFN-ω, and other immunoregulatory cytokines. They found that almost all patients made large amounts of antibodies that blocked the function of IFN-α and IFN-ω; some also made lower amounts of antibodies against two related interferons, but none made blocking antibodies against unrelated interferons or other immune regulators. For many patients, serum samples were available at different times during their disease, which allowed the researchers to show that the antibodies appeared early in disease development, before the onset of yeast infections or damage to endocrine tissues, and their production continued for decades as the patient aged. Furthermore, only patients with APS1 made these antibodies—they were absent in patients with Addison disease alone, for example.
What Do These Findings Mean?
The discovery that autoantibodies to IFN-α and IFN-ω are made persistently in patients with APS1 suggests ways in which autoimmunity develops in these patients. These can now be investigated further both in patients and in animal models of the disease. The discovery also has practical implications. Measurement of these autoantibodies might help some APS1 patients by allowing earlier diagnosis—and prompter treatment—than in current practice. The levels of these autoantibodies might also help to predict the time course of APS1 in individual patients, although more studies will be needed to check this out. Finally, if future studies show that interferon autoantibodies are responsible for the patients' susceptibility to yeast infections (which seems plausible), treatment with IFN-γ, an interferon to which APS1 patients do not make autoantibodies, might provide an alternative way to deal with this problem.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030289.
• MedlinePlus pages on autoimmune diseases
• Online Mendelian Inheritance in Man page on APS1
• Links to patient information on APS1 from the Stanford Health Library
• Wikipedia page on autoendocrine polyendocrinopathy (note: Wikipedia is a free online encyclopedia that anyone can edit)
• Information on autoimmunity from the American Autoimmune Related Diseases Association
doi:10.1371/journal.pmed.0030289
PMCID: PMC1475653  PMID: 16784312
24.  Exhausted Cytotoxic Control of Epstein-Barr Virus in Human Lupus 
PLoS Pathogens  2011;7(10):e1002328.
Systemic Lupus Erythematosus (SLE) pathology has long been associated with an increased Epstein-Barr Virus (EBV) seropositivity, viremia and cross-reactive serum antibodies specific for both virus and self. It has therefore been postulated that EBV triggers SLE immunopathology, although the mechanism remains elusive. Here, we investigate whether frequent peaks of EBV viral load in SLE patients are a consequence of dysfunctional anti-EBV CD8+ T cell responses. Both inactive and active SLE patients (n = 76 and 42, respectively), have significantly elevated EBV viral loads (P = 0.003 and 0.002, respectively) compared to age- and sex-matched healthy controls (n = 29). Interestingly, less EBV-specific CD8+ T cells are able to secrete multiple cytokines (IFN-γ, TNF-α, IL-2 and MIP-1β) in inactive and active SLE patients compared to controls (P = 0.0003 and 0.0084, respectively). Moreover, EBV-specific CD8+ T cells are also less cytotoxic in SLE patients than in controls (CD107a expression: P = 0.0009, Granzyme B release: P = 0.0001). Importantly, cytomegalovirus (CMV)-specific responses were not found significantly altered in SLE patients. Furthermore, we demonstrate that EBV-specific CD8+ T cell impairment is a consequence of their Programmed Death 1 (PD-1) receptor up-regulation, as blocking this pathway reverses the dysfunctional phenotype. Finally, prospective monitoring of lupus patients revealed that disease flares precede EBV reactivation. In conclusion, EBV-specific CD8+ T cell responses in SLE patients are functionally impaired, but EBV reactivation appears to be an aggravating consequence rather than a cause of SLE immunopathology. We therefore propose that autoimmune B cell activation during flares drives frequent EBV reactivation, which contributes in a vicious circle to the perpetuation of immune activation in SLE patients.
Author Summary
Systemic Lupus Erythematosus (SLE) has been associated with Epstein-Barr Virus (EBV) infection for decades, however the mechanistic links have remained elusive. Most human adults are infected by EBV and carry the virus for life without clinical symptoms. However, for unknown reasons EBV induces infectious mononucleosis in some individuals, during which cross-reactive antibodies specific for both virus and self have been detected. Interestingly, such cross-reactive antibodies are also frequently found in SLE patients. Since, EBV seropositivity and viremia are more frequent in SLE patients than in healthy individuals, it has been postulated that EBV trigger autoimmunity. Here we show that SLE patients are indeed less capable of controlling EBV viremia, since their EBV-specific CD8+ T cells have diminished capacity to secrete effector molecules (e.g. cytokines and chemokines) and to kill EBV-infected targets as a consequence of their Programmed Death 1 (PD-1) receptor up-regulation. Longitudinal studies further reveal that disease flares precede EBV viremia. Thus, contrary to expectations, EBV reactivation appears to be an aggravating consequence, rather than a cause, of SLE immunopathology. Our results pave the way for immunological interventions that restore the host-EBV balance, which may result in decreased levels of aggravating cross-reactive antibodies and ultimately be beneficial to SLE patients.
doi:10.1371/journal.ppat.1002328
PMCID: PMC3197610  PMID: 22028659
25.  Selective Involvement of the Amygdala in Systemic Lupus Erythematosus 
PLoS Medicine  2006;3(12):e499.
Background
Antibodies specifically affect the amygdala in a mouse model of systemic lupus erythematosus (SLE). The aim of our study was to investigate whether there is also specific involvement of the amygdala in human SLE.
Methods and Findings
We analyzed a group of 37 patients with neuropsychiatric SLE (NP-SLE), 21 patients with SLE, and a group of 12 healthy control participants with diffusion weighted imaging (DWI). In addition, in a subset of eight patients, plasma was available to determine their anti-NMDAR antibody status. From the structural magnetic resonance imaging data, the amygdala and the hippocampus were segmented, as well as the white and gray matter, and the apparent diffusion coefficient (ADC) was retrieved. ADC values between controls, patients with SLE, and patients with NP-SLE were tested using analysis of variance with post-hoc Bonferroni correction. No differences were found in the gray or white matter segments. The average ADC in the amygdala of patients with NP-SLE and SLE (940 × 10−6 mm2/s; p = 0.006 and 949 × 10−6 mm2/s; p = 0.019, respectively) was lower than in healthy control participants (1152 × 10−6 mm2/s). Mann-Whitney analysis revealed that the average ADC in the amygdala of patients with anti-NMDAR antibodies (n = 4; 802 × 10−6 mm2/s) was lower (p = 0.029) than the average ADC of patients without anti-NMDAR antibodies (n = 4; 979 × 10−6 mm2/s) and also lower (p = 0.001) than in healthy control participants.
Conclusions
This is the first study to our knowledge to observe damage in the amygdala in patients with SLE. Patients with SLE with anti-NMDAR antibodies had more severe damage in the amygdala compared to SLE patients without anti-NMDAR antibodies.
Patients with SLE who also had antibodies against the NMDA receptor had more severe damage in the amygdala as compared with patients with SLE without these antibodies.
Editors' Summary
Background.
The human body is continually attacked by viruses, bacteria, fungi, and parasites, but the immune system usually prevents these pathogens from causing disease. To be effective, the immune system has to respond rapidly to foreign antigens (bits of proteins that are unique to the pathogen) but ignore self-antigens. In autoimmune diseases, this ability to discriminate between self and nonself fails for unknown reasons, and the immune system begins to destroy human tissues. In the chronic autoimmune disease systemic lupus erythematosus (SLE or lupus), the immune system attacks the skin, joints, nervous system, and many other organs. Patients with SLE make numerous “autoantibodies” (antibodies are molecules made by the immune system that recognize and attack antigens; autoantibodies attack self-antigens). These autoantibodies start the attack on the body; then other parts of the immune system join in, causing inflammation and forming deposits of immune cells, both of which damage tissues. Common symptoms of SLE include skin rashes and arthritis, but some patients develop NP-SLE, a form of SLE that includes neuropsychiatric symptoms such as amnesia, dementia, mood disorders, strokes, and seizures. There is no cure for SLE, but mild cases are controlled with ibuprofen and other non-steroidal anti-inflammatory drugs; severe cases are kept in check with corticosteroids and other powerful immunosuppressants.
Why Was This Study Done?
In most of the tissues affected by SLE, the damage done by autoantibodies and immune cells can be seen when the tissues are examined with a microscope. But there is little microscopic damage visible in the brains of patients with NP-SLE. More generally, it is unclear how or even whether the immune system affects mental functions and emotion. In this study, researchers used magnetic resonance imaging (MRI) to investigate whether there are any structural changes in the brains of patients with NP-SLE that could explain their neuropsychiatric symptoms. They have also examined whether any changes in the brain can be linked to the presence of autoantibodies that recognize a protein called the NMDA receptor (anti-NMDAR antibodies) that is present on brain cells.
What Did the Researchers Do and Find?
The researchers used an MRI technique called diffusion weighted imaging to examine the brains of several patients with NP-SLE or SLE and the brains of several healthy individuals. Using this technique, it is possible to quantify the amount of structural damage in different regions of the brain. The researchers found no differences in most areas of the brain between the two groups of patients and the healthy controls. However, there were clear signs of damage in the amygdala (the part of the brain that regulates emotions and triggers responses to danger) in the patients with SLE or NP-SLE when compared to the control individuals. The researchers also found that the damage was more severe in the patients who had anti-NMDAR autoantibodies than in those that did not have these autoantibodies.
What Do These Findings Mean?
These findings suggest that autoantibodies produced by patients with SLE specifically damage the amygdala, a discovery that helps to explain some of the neuropsychiatric symptoms of this condition. Previous work has shown that the treatment of mice with anti-NMDAR antibodies and epinephrine, a stress hormone that causes leaks in the blood-brain barrier (antibodies can't usually get into the brain because of this barrier), results in damage to the amygdala and a deficient response to dangerous stimuli. The researchers suggest that a similar series of events might happen in SLE—patients often mention that a period of major stress precedes the development of symptoms. To provide stronger evidence for such a scenario, a detailed study of how stress relates to neuropsychiatric symptoms is needed. The damage to the amygdala (and the lack of damage elsewhere in the brain) and the possible association between brain damage and anti-NMDAR antibodies seen in this small study also need to be confirmed in more patients. Nevertheless, these findings provide an intriguing glimpse into the interplay between the immune system and the brain and into how stress might lead to physical damage in the brain.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030499.
MedlinePlus encyclopedia pages on autoimmunity and on systemic lupus erythematosus
US National Institute of Arthritis and Musculoskeletal and Skin Diseases booklet for patients with SLE
American College of Rheumatology information for patients on SLE
NHS Direct Online Health Encyclopedia pages on SLE
The Lupus Foundation of America information and support for patients with SLE
doi:10.1371/journal.pmed.0030499
PMCID: PMC1702559  PMID: 17177602

Results 1-25 (1338776)