PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1116667)

Clipboard (0)
None

Related Articles

1.  Computerized Cognitive Training in Cognitively Healthy Older Adults: A Systematic Review and Meta-Analysis of Effect Modifiers 
PLoS Medicine  2014;11(11):e1001756.
Michael Valenzuela and colleagues systematically review and meta-analyze the evidence that computerized cognitive training improves cognitive skills in older adults with normal cognition.
Please see later in the article for the Editors' Summary
Background
New effective interventions to attenuate age-related cognitive decline are a global priority. Computerized cognitive training (CCT) is believed to be safe and can be inexpensive, but neither its efficacy in enhancing cognitive performance in healthy older adults nor the impact of design factors on such efficacy has been systematically analyzed. Our aim therefore was to quantitatively assess whether CCT programs can enhance cognition in healthy older adults, discriminate responsive from nonresponsive cognitive domains, and identify the most salient design factors.
Methods and Findings
We systematically searched Medline, Embase, and PsycINFO for relevant studies from the databases' inception to 9 July 2014. Eligible studies were randomized controlled trials investigating the effects of ≥4 h of CCT on performance in neuropsychological tests in older adults without dementia or other cognitive impairment. Fifty-two studies encompassing 4,885 participants were eligible. Intervention designs varied considerably, but after removal of one outlier, heterogeneity across studies was small (I2 = 29.92%). There was no systematic evidence of publication bias. The overall effect size (Hedges' g, random effects model) for CCT versus control was small and statistically significant, g = 0.22 (95% CI 0.15 to 0.29). Small to moderate effect sizes were found for nonverbal memory, g = 0.24 (95% CI 0.09 to 0.38); verbal memory, g = 0.08 (95% CI 0.01 to 0.15); working memory (WM), g = 0.22 (95% CI 0.09 to 0.35); processing speed, g = 0.31 (95% CI 0.11 to 0.50); and visuospatial skills, g = 0.30 (95% CI 0.07 to 0.54). No significant effects were found for executive functions and attention. Moderator analyses revealed that home-based administration was ineffective compared to group-based training, and that more than three training sessions per week was ineffective versus three or fewer. There was no evidence for the effectiveness of WM training, and only weak evidence for sessions less than 30 min. These results are limited to healthy older adults, and do not address the durability of training effects.
Conclusions
CCT is modestly effective at improving cognitive performance in healthy older adults, but efficacy varies across cognitive domains and is largely determined by design choices. Unsupervised at-home training and training more than three times per week are specifically ineffective. Further research is required to enhance efficacy of the intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
As we get older, we notice many bodily changes. Our hair goes grey, we develop new aches and pains, and getting out of bed in the morning takes longer than it did when we were young. Our brain may also show signs of aging. It may take us longer to learn new information, we may lose our keys more frequently, and we may forget people's names. Cognitive decline—developing worsened thinking, language, memory, understanding, and judgment—can be a normal part of aging, but it can also be an early sign of dementia, a group of brain disorders characterized by a severe, irreversible decline in cognitive functions. We know that age-related physical decline can be attenuated by keeping physically active; similarly, engaging in activities that stimulate the brain throughout life is thought to enhance cognition in later life and reduce the risk of age-related cognitive decline and dementia. Thus, having an active social life and doing challenging activities that stimulate both the brain and the body may help to stave off cognitive decline.
Why Was This Study Done?
“Brain training” may be another way of keeping mentally fit. The sale of computerized cognitive training (CCT) packages, which provide standardized, cognitively challenging tasks designed to “exercise” various cognitive functions, is a lucrative and expanding business. But does CCT work? Given the rising global incidence of dementia, effective interventions that attenuate age-related cognitive decline are urgently needed. However, the impact of CCT on cognitive performance in older adults is unclear, and little is known about what makes a good CCT package. In this systematic review and meta-analysis, the researchers assess whether CCT programs improve cognitive test performance in cognitively healthy older adults and identify the aspects of cognition (cognitive domains) that are responsive to CCT, and the CCT design features that are most important in improving cognitive performance. A systematic review uses pre-defined criteria to identify all the research on a given topic; meta-analysis uses statistical methods to combine the results of several studies.
What Did the Researchers Do and Find?
The researchers identified 51 trials that investigated the effects of more than four hours of CCT on nearly 5,000 cognitively healthy older adults by measuring several cognitive functions before and after CCT. Meta-analysis of these studies indicated that the overall effect size for CCT (compared to control individuals who did not participate in CCT) was small but statistically significant. An effect size quantifies the difference between two groups; a statistically significant result is a result that is unlikely to have occurred by chance. So, the meta-analysis suggests that CCT slightly increased overall cognitive function. Notably, CCT also had small to moderate significant effects on individual cognitive functions. For example, some CCT slightly improved nonverbal memory (the ability to remember visual images) and working memory (the ability to remember recent events; short-term memory). However, CCT had no significant effect on executive functions (cognitive processes involved in planning and judgment) or attention (selective concentration on one aspect of the environment). The design of CCT used in the different studies varied considerably, and “moderator” analyses revealed that home-based CCT was not effective, whereas center-based CCT was effective, and that training sessions undertaken more than three times a week were not effective. There was also some weak evidence suggesting that CCT sessions lasting less than 30 minutes may be ineffective. Finally, there was no evidence for the effectiveness of working memory training by itself (for example, programs that ask individuals to recall series of letters).
What Do These Findings Mean?
These findings suggest that CCT produces small improvements in cognitive performance in cognitively healthy older adults but that the efficacy of CCT varies across cognitive domains and is largely determined by design aspects of CCT. The most important result was that “do-it-yourself” CCT at home did not produce improvements. Rather, the small improvements seen were in individuals supervised by a trainer in a center and undergoing sessions 1–3 times a week. Because only cognitively healthy older adults were enrolled in the studies considered in this systematic review and meta-analysis, these findings do not necessarily apply to cognitively impaired individuals. Moreover, because all the included studies measured cognitive function immediately after CCT, these findings provide no information about the durability of the effects of CCT or about how the effects of CCT on cognitive function translate into real-life outcomes for individuals such as independence and the long-term risk of dementia. The researchers call, therefore, for additional research into CCT, an intervention that might help to attenuate age-related cognitive decline and improve the quality of life for older individuals.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001756.
This study is further discussed in a PLOS Medicine Perspective by Druin Burch
The US National Institute on Aging provides information for patients and carers about age-related forgetfulness, about memory and cognitive health, and about dementia (in English and Spanish)
The UK National Health Service Choices website also provides information about dementia and about memory loss
MedlinePlus provides links to additional resources about memory, mild cognitive impairment, and dementia (in English and Spanish)
doi:10.1371/journal.pmed.1001756
PMCID: PMC4236015  PMID: 25405755
2.  Using Network Science to Evaluate Exercise-Associated Brain Changes in Older Adults 
Literature has shown that exercise is beneficial for cognitive function in older adults and that aerobic fitness is associated with increased hippocampal tissue and blood volumes. The current study used novel network science methods to shed light on the neurophysiological implications of exercise-induced changes in the hippocampus of older adults. Participants represented a volunteer subgroup of older adults that were part of either the exercise training (ET) or healthy aging educational control (HAC) treatment arms from the Seniors Health and Activity Research Program Pilot (SHARP-P) trial. Following the 4-month interventions, MRI measures of resting brain blood flow and connectivity were performed. The ET group's hippocampal cerebral blood flow (CBF) exhibited statistically significant increases compared to the HAC group. Novel whole-brain network connectivity analyses showed greater connectivity in the hippocampi of the ET participants compared to HAC. Furthermore, the hippocampus was consistently shown to be within the same network neighborhood (module) as the anterior cingulate cortex only within the ET group. Thus, within the ET group, the hippocampus and anterior cingulate were highly interconnected and localized to the same network neighborhood. This project shows the power of network science to investigate potential mechanisms for exercise-induced benefits to the brain in older adults. We show a link between neurological network features and CBF, and it is possible that this alteration of functional brain networks may lead to the known improvement in cognitive function among older adults following exercise.
doi:10.3389/fnagi.2010.00023
PMCID: PMC2893375  PMID: 20589103
hippocampus; exercise; fitness; aging; perfusion; networks; small-world; fMRI
3.  Effects of Aerobic Exercise on Mild Cognitive Impairment 
Archives of neurology  2010;67(1):71-79.
Objectives
To examine the effects of aerobic exercise on cognition and other biomarkers associated with Alzheimer disease pathology for older adults with mild cognitive impairment, and assess the role of sex as a predictor of response.
Design
Six-month, randomized, controlled, clinical trial.
Setting
Veterans Affairs Puget Sound Health Care System clinical research unit.
Participants
Thirty-three adults (17 women) with amnestic mild cognitive impairment ranging in age from 55 to 85 years (mean age,70 years).
Intervention
Participants were randomized either to a high-intensity aerobic exercise or stretching control group. The aerobic group exercised under the supervision of a fitness trainer at 75% to 85% of heart rate reserve for 45 to 60 min/d, 4 d/wk for 6 months. The control group carried out supervised stretching activities according to the same schedule but maintained their heart rate at or below 50% of their heart rate reserve. Before and after the study, glucometabolic and treadmill tests were performed and fat distribution was assessed using dual-energy x-ray absorptiometry. At baseline, month 3, and month 6, blood was collected for assay and cognitive tests were administered.
Main Outcome Measures
Performance measures on Symbol-Digit Modalities, Verbal Fluency, Stroop, Trails B, Task Switching, Story Recall, and List Learning. Fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulinlike growth factor-I, and β-amyloids 40 and 42.
Results
Six months of high-intensity aerobic exercise had sex-specific effects on cognition, glucose metabolism, and hypothalamic-pituitary-adrenal axis and trophic activity despite comparable gains in cardiorespiratory fitness and body fat reduction. For women, aerobic exercise improved performance on multiple tests of executive function, increased glucose disposal during the metabolic clamp, and reduced fasting plasma levels of insulin, cortisol, and brain-derived neurotrophic factor. For men, aerobic exercise increased plasma levels of insulinlike growth factor I and had a favorable effect only on Trails B performance.
Conclusions
This study provides support, using rigorous controlled methodology, for a potent nonpharma-cologic intervention that improves executive control processes for older women at high risk of cognitive decline. Moreover, our results suggest that a sex bias in cognitive response may relate to sex-based differences in glucometabolic and hypothalamic-pituitary-adrenal axis responses to aerobic exercise.
doi:10.1001/archneurol.2009.307
PMCID: PMC3056436  PMID: 20065132
4.  Beneficial effects of short-term combination exercise training on diverse cognitive functions in healthy older people: study protocol for a randomized controlled trial 
Trials  2012;13:200.
Background
Results of previous studies have shown that exercise training can improve cognitive functions in healthy older people. Some studies have demonstrated that long-term combination exercise training can facilitate memory function improvement better than either aerobic or strength exercise training alone. Nevertheless, it remains unclear whether short-term combination exercise training can improve diverse cognitive functions in healthy older people or not. We investigate the effects of four weeks of short-term combination exercise training on various cognitive functions (executive functions, episodic memory, short-term memory, working memory, attention, reading ability, and processing speed) of healthy older people.
Methods
A single-blinded intervention with two parallel groups (combination exercise training; waiting list control) is used. Testers are blind to the study hypothesis and the participants’ group membership. Through an advertisement in a local newspaper, 64 healthy older adults are recruited and then assigned randomly to a combination exercise training group or a waiting list control group. Participants in the combination exercise training group must participate in the short-term combination exercise training (aerobic and strength exercise training) three days per week during the four weeks (12 workouts in total). The waiting list group does not participate in the combination exercise training. The primary outcome measure is the Stroop test score: a measure of executive function. Secondary outcome measures are assessments including the Verbal Fluency Task, Logical Memory, First and Second Names, Digit Span Forward, Digit span backward, Japanese Reading Test, Digit Cancellation Task, Digit Symbol Coding, and Symbol Search. We assess these outcome measures before and after the intervention.
Discussion
This report is the first of a study that investigates the beneficial effects of short-term combination exercise training on diverse cognitive functions of older people. Our study is expected to provide sufficient evidence of short-term combination exercise’s effectiveness.
Trial registration
This trial was registered in The University Hospital Medical Information Network Clinical Trials Registry (Number UMIN000007828).
doi:10.1186/1745-6215-13-200
PMCID: PMC3495024  PMID: 23107038
5.  Physical Exercise as a Preventive or Disease-Modifying Treatment of Dementia and Brain Aging 
Mayo Clinic Proceedings  2011;86(9):876-884.
A rapidly growing literature strongly suggests that exercise, specifically aerobic exercise, may attenuate cognitive impairment and reduce dementia risk. We used PubMed (keywords exercise and cognition) and manuscript bibliographies to examine the published evidence of a cognitive neuroprotective effect of exercise. Meta-analyses of prospective studies documented a significantly reduced risk of dementia associated with midlife exercise; similarly, midlife exercise significantly reduced later risks of mild cognitive impairment in several studies. Among patients with dementia or mild cognitive impairment, randomized controlled trials (RCTs) documented better cognitive scores after 6 to 12 months of exercise compared with sedentary controls. Meta-analyses of RCTs of aerobic exercise in healthy adults were also associated with significantly improved cognitive scores. One year of aerobic exercise in a large RCT of seniors was associated with significantly larger hippocampal volumes and better spatial memory; other RCTs in seniors documented attenuation of age-related gray matter volume loss with aerobic exercise. Cross-sectional studies similarly reported significantly larger hippocampal or gray matter volumes among physically fit seniors compared with unfit seniors. Brain cognitive networks studied with functional magnetic resonance imaging display improved connectivity after 6 to 12 months of exercise. Animal studies indicate that exercise facilitates neuroplasticity via a variety of biomechanisms, with improved learning outcomes. Induction of brain neurotrophic factors by exercise has been confirmed in multiple animal studies, with indirect evidence for this process in humans. Besides a brain neuroprotective effect, physical exercise may also attenuate cognitive decline via mitigation of cerebrovascular risk, including the contribution of small vessel disease to dementia. Exercise should not be overlooked as an important therapeutic strategy.
doi:10.4065/mcp.2011.0252
PMCID: PMC3258000  PMID: 21878600
6.  Disruptions in Brain Networks of Older Fallers Are Associated with Subsequent Cognitive Decline: A 12-Month Prospective Exploratory Study 
PLoS ONE  2014;9(4):e93673.
Cognitive impairment and impaired mobility are major public health concerns. There is growing recognition that impaired mobility is an early biomarker of cognitive impairment and dementia. The neural basis for this association is currently unclear. We propose disrupted functional connectivity as a potential mechanism. In this 12-month prospective exploratory study, we compared functional connectivity of four brain networks– the default mode network (DMN), fronto-executive network (FEN), fronto-parietal network (FPN), and the primary motor sensory network (SMN) – between community-dwelling older adults with ≥ two falls in the last 12 months and their non-falling counterparts (≤ one fall in the last 12 months). Functional connectivity was examined both at rest and during a simple motor tapping task. Compared with non-fallers, fallers showed more connectivity between the DMN and FPN during right finger tapping (p = 0.04), and significantly less functional connectivity between the SMN and FPN during rest (p≤0.05). Less connectivity between the SMN and FPN during rest was significantly associated with greater decline in both cognitive function and mobility over the12-month period (r = −0.32 and 0.33 respectively; p≤0.04). Thus, a recent history of multiple falls among older adults without a diagnosis of dementia may indicate sub-clinical changes in brain function and increased risk for subsequent decline.
doi:10.1371/journal.pone.0093673
PMCID: PMC3977422  PMID: 24699668
7.  The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention 
Human brain mapping  2012;34(11):2972-2985.
Cerebral white matter degeneration occurs with increasing age and is associated with declining cognitive function. Research has shown that cardiorespiratory fitness and exercise are effective as protective, even restorative, agents against cognitive and neurobiological impairments in older adults. In this study, we investigated whether the beneficial impact of aerobic fitness would extend to white matter integrity in the context of a one-year exercise intervention. Further, we examined the pattern of diffusivity changes to better understand the underlying biological mechanisms. Finally, we assessed whether training-induced changes in white matter integrity would be associated with improvements in cognitive performance independent of aerobic fitness gains. Results showed that aerobic fitness training did not affect group-level change in white matter integrity, executive function, or short-term memory, but that greater aerobic fitness derived from the walking program was associated with greater change in white matter integrity in the frontal and temporal lobes, and greater improvement in short-term memory. Increases in white matter integrity, however, were not associated with short-term memory improvement, independent of fitness improvements. Therefore, while not all findings are consistent with previous research, we provide novel evidence for correlated change in training-induced aerobic fitness, white matter integrity, and cognition among healthy older adults.
doi:10.1002/hbm.22119
PMCID: PMC4096122  PMID: 22674729
Diffusion tensor imaging; Anisotropy; Cerebrum; Cognition; Physical fitness; Aging
8.  An Eight Month Randomized Controlled Exercise Intervention Alters Resting State Synchrony in Overweight Children 
Neuroscience  2013;256:445-455.
Children with low aerobic fitness have altered brain function compared to higher-fit children. This study examined the effect of an 8-month exercise intervention on resting state synchrony. Twenty-two sedentary, overweight (body mass index ≥ 85th percentile) children 8–11 years old were randomly assigned to one of two after-school programs: aerobic exercise (n=13) or sedentary attention control (n=9). Before and after the 8-month programs, all subjects participated in resting state functional magnetic resonance imaging scans. Independent components analysis identified several networks, with four chosen for between-group analysis: salience, default mode, cognitive control, and motor networks. The default mode, cognitive control, and motor networks showed more spatial refinement over time in the exercise group compared to controls. The motor network showed increased synchrony in the exercise group with the right medial frontal gyrus compared to controls. Exercise behavior may enhance brain development in children.
doi:10.1016/j.neuroscience.2013.09.052
PMCID: PMC3995346  PMID: 24096138
Resting state fMRI; aerobic exercise; obesity; development; default mode; cognitive control
9.  Cardiovascular and Coordination Training Differentially Improve Cognitive Performance and Neural Processing in Older Adults 
Recent studies revealed a positive influence of physical activity on cognitive functioning in older adults. Studies that investigate the behavioral and neurophysiological effects of type and long term duration of physical training, however, are missing. We performed a 12-month longitudinal study to investigate the effects of cardiovascular and coordination training (control group: relaxation and stretching) on cognitive functions (executive control and perceptual speed) in older adults. We analyzed data of 44 participants aged 62–79 years. Participants were trained three times a week for 12 months. Their physical and cognitive performance was tested prior to training, and after 6 and 12 months. Changes in brain activation patterns were investigated using functional MRI. On the behavioral level, both experimental groups improved in executive functioning and perceptual speed but with differential effects on speed and accuracy. In line with the behavioral findings, neurophysiological results for executive control also revealed changes (increases and reductions) in brain activity for both interventions in frontal, parietal, and sensorimotor cortical areas. In contrast to the behavioral findings, neurophysiological changes were linear without indication of a plateau. In both intervention groups, prefrontal areas showed decreased activation after 6 and 12 months when performing an executive control task, as compared to the control group, indicating more efficient information processing. Furthermore, cardiovascular training was associated with an increased activation of the sensorimotor network, whereas coordination training was associated with increased activation in the visual–spatial network. Our data suggest that besides cardiovascular training also other types of physical activity improve cognition of older adults. The mechanisms, however, that underlie the performance changes seem to differ depending on the intervention.
doi:10.3389/fnhum.2011.00026
PMCID: PMC3062100  PMID: 21441997
physical training; cognition; older adults; brain aging; functional MRI; fitness
10.  The Cerebral Cost of Breathing: An fMRI Case-Study in Congenital Central Hypoventilation Syndrome 
PLoS ONE  2014;9(9):e107850.
Certain motor activities - like walking or breathing - present the interesting property of proceeding either automatically or under voluntary control. In the case of breathing, brainstem structures located in the medulla are in charge of the automatic mode, whereas cortico-subcortical brain networks - including various frontal lobe areas - subtend the voluntary mode. We speculated that the involvement of cortical activity during voluntary breathing could impact both on the “resting state” pattern of cortical-subcortical connectivity, and on the recruitment of executive functions mediated by the frontal lobe. In order to test this prediction we explored a patient suffering from central congenital hypoventilation syndrome (CCHS), a very rare developmental condition secondary to brainstem dysfunction. Typically, CCHS patients demonstrate efficient cortically-controlled breathing while awake, but require mechanically-assisted ventilation during sleep to overcome the inability of brainstem structures to mediate automatic breathing. We used simultaneous EEG-fMRI recordings to compare patterns of brain activity between these two types of ventilation during wakefulness. As compared with spontaneous breathing (SB), mechanical ventilation (MV) restored the default mode network (DMN) associated with self-consciousness, mind-wandering, creativity and introspection in healthy subjects. SB on the other hand resulted in a specific increase of functional connectivity between brainstem and frontal lobe. Behaviorally, the patient was more efficient in cognitive tasks requiring executive control during MV than during SB, in agreement with her subjective reports in everyday life. Taken together our results provide insight into the cognitive and neural costs of spontaneous breathing in one CCHS patient, and suggest that MV during waking periods may free up frontal lobe resources, and make them available for cognitive recruitment. More generally, this study reveals how the active maintenance of cortical control over a continuous motor activity impacts on brain functioning and cognition.
doi:10.1371/journal.pone.0107850
PMCID: PMC4182437  PMID: 25268234
11.  Functional neural correlates of reduced physiological falls risk 
Background
It is currently unclear whether the function of brain regions associated with executive cognitive processing are independently associated with reduced physiological falls risk. If these are related, it would suggest that the development of interventions targeted at improving executive neurocognitive function would be an effective new approach for reducing physiological falls risk in seniors.
Methods
We performed a secondary analysis of 73 community-dwelling senior women aged 65 to 75 years old who participated in a 12-month randomized controlled trial of resistance training. Functional MRI data were acquired while participants performed a modified Eriksen Flanker Task - a task of selective attention and conflict resolution. Brain volumes were obtained using MRI. Falls risk was assessed using the Physiological Profile Assessment (PPA).
Results
After accounting for baseline age, experimental group, baseline PPA score, and total baseline white matter brain volume, baseline activation in the left frontal orbital cortex extending towards the insula was negatively associated with reduced physiological falls risk over the 12-month period. In contrast, baseline activation in the paracingulate gyrus extending towards the anterior cingulate gyrus was positively associated with reduced physiological falls risk.
Conclusions
Baseline activation levels of brain regions underlying response inhibition and selective attention were independently associated with reduced physiological falls risk. This suggests that falls prevention strategies may be facilitated by incorporating intervention components - such as aerobic exercise - that are specifically designed to induce neurocognitive plasticity.
Trial Registration
ClinicalTrials.gov Identifier: NCT00426881
doi:10.1186/1744-9081-7-37
PMCID: PMC3178476  PMID: 21846395
12.  Impairment of functional integration of the default mode network correlates with cognitive outcome at three months after stroke 
Human Brain Mapping  2014;36(2):577-590.
Resting-state studies conducted with stroke patients are scarce. The study of brain activity and connectivity at rest provides a unique opportunity for the investigation of brain rewiring after stroke and plasticity changes. This study sought to identify dynamic changes in the functional organization of the default mode network (DMN) of stroke patients at three months after stroke. Eleven patients (eight male and three female; age range: 48–72) with right cortical and subcortical ischemic infarctions and 17 controls (eleven males and six females; age range: 57–69) were assessed by neurological and neuropsychological examinations and scanned with resting-state functional magnetic ressonance imaging. First, we explored group differences in functional activity within the DMN by means of probabilistic independent component analysis followed by a dual regression approach. Second, we estimated functional connectivity between 11 DMN nodes both locally by means of seed-based connectivity analysis, as well as globally by means of graph-computation analysis. We found that patients had greater DMN activity in the left precuneus and the left anterior cingulate gyrus when compared with healthy controls (P < 0.05 family-wise error corrected). Seed-based connectivity analysis showed that stroke patients had significant impairment (P = 0.014; threshold = 2.00) in the connectivity between the following five DMN nodes: left superior frontal gyrus (lSFG) and posterior cingulate cortex (t = 2.01); left parahippocampal gyrus and right superior frontal gyrus (t = 2.11); left parahippocampal gyrus and lSFG (t = 2.39); right parietal and lSFG (t = 2.29). Finally, mean path length obtained from graph-computation analysis showed positive correlations with semantic fluency test (rs = 0.454; P = 0.023), phonetic fluency test (rs = 0.523; P = 0.007) and the mini mental state examination (rs = 0.528; P = 0.007). In conclusion, the ability to regulate activity of the DMN appears to be a central part of normal brain function in stroke patients. Our study expands the understanding of the changes occurring in the brain after stroke providing a new avenue for investigating lesion-induced network plasticity. Hum Brain Mapp 36:577–590, 2015. © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
doi:10.1002/hbm.22648
PMCID: PMC4312977  PMID: 25324040
default mode network; probabilistic independent component analysis; seed-based connectivity analysis; graph-computation analysis
13.  Promotion of the mind through exercise (PROMoTE): a proof-of-concept randomized controlled trial of aerobic exercise training in older adults with vascular cognitive impairment 
BMC Neurology  2010;10:14.
Background
Sub-cortical vascular ischaemia is the second most common etiology contributing to cognitive impairment in older adults, and is frequently under-diagnosed and under-treated. Although evidence is mounting that exercise has benefits for cognitive function among seniors, very few randomized controlled trials of exercise have been conducted in populations at high-risk for progression to dementia. Aerobic-based exercise training may be of specific benefit in delaying the progression of cognitive decline among seniors with vascular cognitive impairment by reducing key vascular risk factors associated with metabolic syndrome. Thus, we aim to carry out a proof-of-concept single-blinded randomized controlled trial primarily designed to provide preliminary evidence of efficacy aerobic-based exercise training program on cognitive and everyday function among older adults with mild sub-cortical ischaemic vascular cognitive impairment.
Methods/Design
A proof-of-concept single-blinded randomized trial comparing a six-month, thrice-weekly, aerobic-based exercise training group with usual care on cognitive and everyday function. Seventy older adults who meet the diagnostic criteria for sub-cortical ischaemic vascular cognitive impairment as outlined by Erkinjuntti and colleagues will be recruited from a memory clinic of a metropolitan hospital. The aerobic-based exercise training will last for 6 months. Participants will be followed for an additional six months after the cessation of exercise training.
Discussion
This research will be an important first step in quantifying the effect of an exercise intervention on cognitive and daily function among seniors with sub-cortical ischaemic vascular cognitive impairment, a recognized risk state for progression to dementia. Exercise has the potential to be an effective, inexpensive, and accessible intervention strategy with minimal adverse effects. Reducing the rate of cognitive decline among seniors with sub-cortical ischaemic vascular cognitive impairment could preserve independent functioning and health related quality of life in this population. This, in turn, could lead to reduced health care resource utilization costs and avoidance of early institutional care.
Trial Registration
ClinicalTrials.gov Protocol Registration System: NCT01027858.
doi:10.1186/1471-2377-10-14
PMCID: PMC2830197  PMID: 20158920
14.  Regional functional connectivity predicts distinct cognitive impairments in Alzheimer’s disease spectrum 
NeuroImage : Clinical  2014;5:385-395.
Understanding neural network dysfunction in neurodegenerative disease is imperative to effectively develop network-modulating therapies. In Alzheimer’s disease (AD), cognitive decline associates with deficits in resting-state functional connectivity of diffuse brain networks. The goal of the current study was to test whether specific cognitive impairments in AD spectrum correlate with reduced functional connectivity of distinct brain regions. We recorded resting-state functional connectivity of alpha-band activity in 27 patients with AD spectrum − 22 patients with probable AD (5 logopenic variant primary progressive aphasia, 7 posterior cortical atrophy, and 10 early-onset amnestic/dysexecutive AD) and 5 patients with mild cognitive impairment due to AD. We used magnetoencephalographic imaging (MEGI) to perform an unbiased search for regions where patterns of functional connectivity correlated with disease severity and cognitive performance. Functional connectivity measured the strength of coherence between a given region and the rest of the brain. Decreased neural connectivity of multiple brain regions including the right posterior perisylvian region and left middle frontal cortex correlated with a higher degree of disease severity. Deficits in executive control and episodic memory correlated with reduced functional connectivity of the left frontal cortex, whereas visuospatial impairments correlated with reduced functional connectivity of the left inferior parietal cortex. Our findings indicate that reductions in region-specific alpha-band resting-state functional connectivity are strongly correlated with, and might contribute to, specific cognitive deficits in AD spectrum. In the future, MEGI functional connectivity could be an important biomarker to map and follow defective networks in the early stages of AD.
Highlights
•Magnetoencephalographic imaging (MEGI) measures brain functional connectivity.•We investigated MEGIalpha-band connectivity in a cohort with Alzheimer’s disease spectrum.•Decreased connectivity of multiple brain regions correlates with disease severity.•Decreased connectivity of focal brain regions correlates with cognitive deficits.•MEGI is a novel, unbiased approach to map neural network defects in dementia.
doi:10.1016/j.nicl.2014.07.006
PMCID: PMC4145532  PMID: 25180158
Alzheimer’s disease spectrum; Magnetoencephalography (MEG); Resting-state functional connectivity; Network dysfunction; Posterior cortical atrophy; Logopenic variant PPA; CDR-SOB, Clinical Dementia Rating Sum of Boxes; CVLT, California Verbal Learning Test; fMRI, functional magnetic resonance imaging; lvPPA, logopenic variant primary progressive aphasia; MCI, mild cognitive impairment; MEGI, magnetoencephalographic imaging; MMSE, Mini-Mental State Exam; PCA, posterior cortical atrophy; VOSP, Visual Object and Space Perception
15.  Comparing interventions and exploring neural mechanisms of exercise in Parkinson disease: a study protocol for a randomized controlled trial 
BMC Neurology  2015;15:9.
Background
Effective treatment of locomotor dysfunction in Parkinson disease (PD) is essential, as gait difficulty is an early and major contributor to disability. Exercise is recommended as an adjunct to traditional treatments for improving gait, balance, and quality of life. Among the exercise approaches known to improve walking, tango and treadmill training have recently emerged as two promising therapies for improving gait, disease severity and quality of life, yet these two interventions have not been directly compared to each other. Prior studies have been helpful in identifying interventions effective in improving gait function, but have done little to elucidate the neural mechanisms underlying functional improvements. The primary objective of the proposed work is to compare the effects of three community-based exercise programs, tango, treadmill training and stretching, on locomotor function in individuals with PD. In addition, we aim to determine whether and how these interventions alter functional connectivity of locomotor control networks in the brain.
Methods/Design
One hundred and twenty right-handed individuals with idiopathic PD who are at least 30 years of age will be assigned in successive waves to one of three community-based exercise groups: tango dancing, treadmill training or stretching (control). Each group will receive three months of exercise training with twice weekly one-hour group classes. Each participant will be evaluated at three time points: pre-intervention (baseline), post-intervention (3 months), and follow-up (6 months). All evaluations will include assessment of gait, balance, disease severity, and quality of life. Baseline and post-intervention evaluations will also include task-based functional magnetic resonance imaging (fMRI) and resting state functional connectivity MRI. All MRI and behavioral measures will be conducted with participants OFF anti-Parkinson medication, with behavioral measures also assessed ON medication.
Discussion
This study will provide important insights regarding the effects of different modes of exercise on locomotor function in PD. The protocol is innovative because it: 1) uses group exercise approaches for all conditions including treadmill training, 2) directly compares tango to treadmill training and stretching, 3) tests participants OFF medication, and 4) utilizes two distinct neuroimaging approaches to explore mechanisms of the effects of exercise on the brain.
Trial registration
ClinicalTrials.gov NCT01768832.
doi:10.1186/s12883-015-0261-0
PMCID: PMC4326476  PMID: 25652002
Parkinson disease; Gait; Exercise; Magnetic resonance imaging; Functional connectivity; Rehabilitation
16.  Altered intrinsic functional coupling between core neurocognitive networks in Parkinson's disease 
NeuroImage : Clinical  2015;7:449-455.
Parkinson's disease (PD) is largely attributed to disruptions in the nigrostriatal dopamine system. These neurodegenerative changes may also have a more global effect on intrinsic brain organization at the cortical level. Functional brain connectivity between neurocognitive systems related to cognitive processing is critical for effective neural communication, and is disrupted across neurological disorders. Three core neurocognitive networks have been established as playing a critical role in the pathophysiology of many neurological disorders: the default-mode network (DMN), the salience network (SN), and the central executive network (CEN). In healthy adults, DMN–CEN interactions are anti-correlated while SN–CEN interactions are strongly positively correlated even at rest, when individuals are not engaging in any task. These intrinsic between-network interactions at rest are necessary for efficient suppression of the DMN and activation of the CEN during a range of cognitive tasks. To identify whether these network interactions are disrupted in individuals with PD, we used resting state functional magnetic resonance imaging (rsfMRI) to compare between-network connectivity between 24 PD participants and 20 age-matched controls (MC). In comparison to the MC, individuals with PD showed significantly less SN–CEN coupling and greater DMN–CEN coupling during rest. Disease severity, an index of striatal dysfunction, was related to reduced functional coupling between the striatum and SN. These results demonstrate that individuals with PD have a dysfunctional pattern of interaction between core neurocognitive networks compared to what is found in healthy individuals, and that interaction between the SN and the striatum is even more profoundly disrupted in those with greater disease severity.
Highlights
•Functional coupling is altered between the default-mode network and the salience and central executive networks in PD.•Functional coupling between the striatum and the salience network diminishes as disease severity increases in PD.•These disruptions to intrinsic functional coupling provide a framework for PD disease progression at the cortical level.
doi:10.1016/j.nicl.2015.01.012
PMCID: PMC4320252
Parkinson's disease; fMRI; Functional connectivity; DMN; SN; CEN
17.  Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging 
Physical exercise, particularly aerobic exercise, is documented as providing a low cost regimen to counter well-documented cognitive declines including memory, executive function, visuospatial skills, and processing speed in normally aging adults. Prior aging studies focused largely on the effects of medium to long term (>6 months) exercise training; however, the shorter term effects have not been studied. In the present study, we examined changes in brain blood flow, cognition, and fitness in 37 cognitively healthy sedentary adults (57–75 years of age) who were randomized into physical training or a wait-list control group. The physical training group received supervised aerobic exercise for 3 sessions per week 1 h each for 12 weeks. Participants' cognitive, cardiovascular fitness and resting cerebral blood flow (CBF) were assessed at baseline (T1), mid (T2), and post-training (T3). We found higher resting CBF in the anterior cingulate region in the physical training group as compared to the control group from T1 to T3. Cognitive gains were manifested in the exercise group's improved immediate and delayed memory performance from T1 to T3 which also showed a significant positive association with increases in both left and right hippocampal CBF identified earlier in the time course at T2. Additionally, the two cardiovascular parameters, VO2 max and rating of perceived exertion (RPE) showed gains, compared to the control group. These data suggest that even shorter term aerobic exercise can facilitate neuroplasticity to reduce both the biological and cognitive consequences of aging to benefit brain health in sedentary adults.
doi:10.3389/fnagi.2013.00075
PMCID: PMC3825180  PMID: 24282403
aging; CBF; exercise; memory; MRI
18.  Exercise, Fitness, and Neurocognitive Function in Older Adults: The “Selective Improvement” and “Cardiovascular Fitness” Hypotheses 
Background
Although basic research has uncovered biological mechanisms by which exercise could maintain and enhance adult brain health, experimental human studies with older adults have produced equivocal results.
Purpose
This randomized clinical trial aimed to investigate the hypotheses that (a) the effects of exercise training on the performance of neurocognitive tasks in older adults is selective, influencing mainly tasks with a substantial executive control component and (b) performance in neurocognitive tasks is related to cardiorespiratory fitness.
Methods
Fifty-seven older adults (65−79 years) participated in aerobic or strength-and-flexibility exercise training for 10 months. Neurocognitive tasks were selected to reflect a range from little (e.g., simple reaction time) to substantial (i.e., Stroop Word–Color conflict) executive control.
Results
Performance in tasks requiring little executive control was unaffected by participating in aerobic exercise. Improvements in Stroop Word–Color task performance were found only for the aerobic exercise group. Changes in aerobic fitness were unrelated to changes in neurocognitive function.
Conclusions
Aerobic exercise in older adults can have a beneficial effect on the performance of speeded tasks that rely heavily on executive control. Improvements in aerobic fitness do not appear to be a prerequisite for this beneficial effect.
doi:10.1007/s12160-008-9064-5
PMCID: PMC2748860  PMID: 18825471
Stroop; Wisconsin Card Sort Test; Cardiorespiratory fitness; Executive processing; Aerobic exercise
19.  Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe† 
The prefrontal cortex and medial temporal lobe are particularly vulnerable to the effects of aging. The disconnection between them is suggested to be an important cause of cognitive decline in normal aging. Here, using multimodal intervention training, we investigated the functional plasticity in resting-state connectivity of these two regions in older adults. The multimodal intervention, comprised of cognitive training, Tai Chi exercise, and group counseling, was conducted to explore the regional connectivity changes in the default-mode network, as well as changes in prefrontal-based voxel-wise connectivity in the whole brain. Results showed that the intervention selectively affected resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Moreover, the strength of resting-state functional connectivity between these regions correlated with individual cognitive performance. Our results suggest that multimodal intervention could postpone the effects of aging and improve the function of the regions that are most heavily influenced by aging, as well as play an important role in preserving the brain and cognition during old age.
doi:10.3389/fnagi.2014.00039
PMCID: PMC3948107  PMID: 24653698
intervention; plasticity; aging; fMRI; functional connectivity
20.  Neurobiological markers of exercise-related brain plasticity in older adults 
The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF.
doi:10.1016/j.bbi.2012.10.021
PMCID: PMC3544982  PMID: 23123199
exercise; aging; functional connectivity; fMRI; default mode network; aerobic fitness; growth factors
21.  Resting-State Functional Connectivity between Fronto-Parietal and Default Mode Networks in Obsessive-Compulsive Disorder 
PLoS ONE  2012;7(5):e36356.
Background
Obsessive-compulsive disorder (OCD) is characterized by an excessive focus on upsetting or disturbing thoughts, feelings, and images that are internally-generated. Internally-focused thought processes are subserved by the “default mode network" (DMN), which has been found to be hyperactive in OCD during cognitive tasks. In healthy individuals, disengagement from internally-focused thought processes may rely on interactions between DMN and a fronto-parietal network (FPN) associated with external attention and task execution. Altered connectivity between FPN and DMN may contribute to the dysfunctional behavior and brain activity found in OCD.
Methods
The current study examined interactions between FPN and DMN during rest in 30 patients with OCD (17 unmedicated) and 32 control subjects (17 unmedicated). Timecourses from seven fronto-parietal seeds were correlated across the whole brain and compared between groups.
Results
OCD patients exhibited altered connectivity between FPN seeds (primarily anterior insula) and several regions of DMN including posterior cingulate cortex, medial frontal cortex, posterior inferior parietal lobule, and parahippocampus. These differences were driven largely by a reduction of negative correlations among patients compared to controls. Patients also showed greater positive connectivity between FPN and regions outside DMN, including thalamus, lateral frontal cortex, and somatosensory/motor regions.
Conclusions
OCD is associated with abnormal intrinsic functional connectivity between large-scale brain networks. Alteration of interactions between FPN and DMN at rest may contribute to aspects of the OCD phenotype, such as patients' inability to disengage from internally-generated scenarios and thoughts when performing everyday tasks requiring external attention.
doi:10.1371/journal.pone.0036356
PMCID: PMC3343054  PMID: 22570705
22.  The brain-in-motion study: effect of a 6-month aerobic exercise intervention on cerebrovascular regulation and cognitive function in older adults 
BMC Geriatrics  2013;13:21.
Background
Aging and physical inactivity are associated with declines in some cognitive domains and cerebrovascular function, as well as an elevated risk of cerebrovascular disease and other morbidities. With the increase in the number of sedentary older Canadians, promoting healthy brain aging is becoming an increasingly important population health issue. Emerging research suggests that higher levels of physical fitness at any age are associated with better cognitive functioning and this may be mediated, at least in part, by improvements in cerebrovascular reserve. We are currently conducting a study to determine: if a structured 6-month aerobic exercise program is associated with improvements or maintenance of both cerebrovascular function and cognitive abilities in older individuals; and, the extent to which any changes seen persist 6 months after the completion of the structured exercise program.
Methods/design
Two hundred and fifty men and women aged 55–80 years are being enrolled into an 18-month combined quasi-experimental and prospective cohort study. Participants are eligible for enrollment into the study if they are inactive (i.e., not participating in regular physical activity), non-smokers, have a body mass index <35.0 kg/m2, are free of significant cognitive impairment (defined as a Montreal Cognitive Assessment score of 24 or more), and do not have clinically significant cardiovascular, cerebrovascular disease, or chronic obstructive pulmonary airway disease. Repeated measurements are done during three sequential six-month phases: 1) pre-intervention; 2) aerobic exercise intervention; and 3) post-intervention. These outcomes include: cardiorespiratory fitness, resting cerebral blood flow, cerebrovascular reserve, and cognitive function.
Discussion
This is the first study to our knowledge that will examine contemporaneously the effect of an exercise intervention on both cerebrovascular reserve and cognition in an older population. This study will further our understanding of whether cerebrovascular mechanisms might explain how exercise promotes healthy brain aging. In addition our study will address the potential of increasing physical activity to prevent age-associated cognitive decline.
doi:10.1186/1471-2318-13-21
PMCID: PMC3598522  PMID: 23448504
Physical fitness; Cerebrovascular function; Cognition; Aging
23.  Selective Vulnerability Related to Aging in Large-Scale Resting Brain Networks 
PLoS ONE  2014;9(10):e108807.
Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60–80 years) and 18 younger (aged 22–33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.
doi:10.1371/journal.pone.0108807
PMCID: PMC4182761  PMID: 25271846
24.  Exercise-Induced Cognitive Plasticity, Implications for Mild Cognitive Impairment and Alzheimer’s Disease 
Lifestyle factors such as intellectual stimulation, cognitive and social engagement, nutrition, and various types of exercise appear to reduce the risk for common age-associated disorders such as Alzheimer’s disease (AD) and vascular dementia. In fact, many studies have suggested that promoting physical activity can have a protective effect against cognitive deterioration later in life. Slowing or a deterioration of walking speed is associated with a poor performance in tests assessing psychomotor speed and verbal fluency in elderly individuals. Fitness training influences a wide range of cognitive processes, and the largest positive impact observed is for executive (a.k.a. frontal lobe) functions. Studies show that exercise improves additional cognitive functions such as tasks mediated by the hippocampus, and result in major changes in plasticity in the hippocampus. Interestingly, this exercise-induced plasticity is also pronounced in APOE ε4 carriers who express a risk factor for late-onset AD that may modulate the effect of treatments. Based on AD staging by Braak and Braak (1991) and Braak et al. (1993) we propose that the effects of exercise occur in two temporo-spatial continua of events. The “inward” continuum from isocortex (neocortex) to entorhinal cortex/hippocampus for amyloidosis and a reciprocal “outward” continuum for neurofibrillary alterations. The exercise-induced hypertrophy of the hippocampus at the core of these continua is evaluated in terms of potential for prevention to stave off neuronal degeneration. Exercise-induced production of growth factors such as the brain-derived neurotrophic factor (BDNF) has been shown to enhance neurogenesis and to play a key role in positive cognitive effects. Insulin-like growth factor (IGF-1) may mediate the exercise-induced response to exercise on BDNF, neurogenesis, and cognitive performance. It is also postulated to regulate brain amyloid β (Aβ) levels by increased clearance via the choroid plexus. Growth factors, specifically fibroblast growth factor and IGF-1 receptors and/or their downstream signaling pathways may interact with the Klotho gene which functions as an aging suppressor gene. Neurons may not be the only cells affected by exercise. Glia (astrocytes and microglia), neurovascular units and the Fourth Element may also be affected in a differential fashion by the AD process. Analyses of these factors, as suggested by the multi-dimensional matrix approach, are needed to improve our understanding of this complex multi-factorial process, which is increasingly relevant to conquering the escalating and intersecting world-wide epidemics of dementia, diabetes, and sarcopenia that threaten the global healthcare system. Physical activity and interventions aimed at enhancing and/or mimicking the effects of exercise are likely to play a significant role in mitigating these epidemics, together with the embryonic efforts to develop cognitive rehabilitation for neurodegenerative disorders.
doi:10.3389/fneur.2011.00028
PMCID: PMC3092070  PMID: 21602910
hippocampus; entorhinal cortex; insulin-like growth factor; reduction of systemic inflammation; p38 effector of Aβ-induced neurodegeneration; virtual reality environment; exponentially decreasing risk of cell death; loss of cognitive performance
25.  Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition? 
Neuropsychologia  2010;48(5):1394-1406.
Over the next twenty years the number of Americans diagnosed with dementia is expected to more than double (CDC 2007). It is, therefore, an important public health initiative to understand what factors contribute to the longevity of a healthy mind. Both default mode network (DMN) function and increased aerobic fitness have been associated with better cognitive performance and reduced incidence of Alzheimer’s disease among older adults. Here we examine the association between aerobic fitness, functional connectivity in the DMN, and cognitive performance. Results showed significant age-related deficits in functional connectivity in both local and distributed DMN pathways. However, in a group of healthy elderly adults, almost half of the age-related disconnections showed increased functional connectivity as a function of aerobic fitness level. Finally, we examine the hypothesis that functional connectivity in the DMN is one source of variance in the relationship between aerobic fitness and cognition. Results demonstrate instances of both specific and global DMN connectivity mediating the relationship between fitness and cognition. We provide the first evidence for functional connectivity as a source of variance in the association between aerobic fitness and cognition, and discuss results in the context of neurobiological theories of cognitive aging and disease.
doi:10.1016/j.neuropsychologia.2010.01.005
PMCID: PMC3708614  PMID: 20079755
cognitive aging; fMRI; functional connectivity; aerobic exercise; executive function; spatial memory

Results 1-25 (1116667)