Search tips
Search criteria

Results 1-25 (1407184)

Clipboard (0)

Related Articles

1.  Computerized Cognitive Training in Cognitively Healthy Older Adults: A Systematic Review and Meta-Analysis of Effect Modifiers 
PLoS Medicine  2014;11(11):e1001756.
Michael Valenzuela and colleagues systematically review and meta-analyze the evidence that computerized cognitive training improves cognitive skills in older adults with normal cognition.
Please see later in the article for the Editors' Summary
New effective interventions to attenuate age-related cognitive decline are a global priority. Computerized cognitive training (CCT) is believed to be safe and can be inexpensive, but neither its efficacy in enhancing cognitive performance in healthy older adults nor the impact of design factors on such efficacy has been systematically analyzed. Our aim therefore was to quantitatively assess whether CCT programs can enhance cognition in healthy older adults, discriminate responsive from nonresponsive cognitive domains, and identify the most salient design factors.
Methods and Findings
We systematically searched Medline, Embase, and PsycINFO for relevant studies from the databases' inception to 9 July 2014. Eligible studies were randomized controlled trials investigating the effects of ≥4 h of CCT on performance in neuropsychological tests in older adults without dementia or other cognitive impairment. Fifty-two studies encompassing 4,885 participants were eligible. Intervention designs varied considerably, but after removal of one outlier, heterogeneity across studies was small (I2 = 29.92%). There was no systematic evidence of publication bias. The overall effect size (Hedges' g, random effects model) for CCT versus control was small and statistically significant, g = 0.22 (95% CI 0.15 to 0.29). Small to moderate effect sizes were found for nonverbal memory, g = 0.24 (95% CI 0.09 to 0.38); verbal memory, g = 0.08 (95% CI 0.01 to 0.15); working memory (WM), g = 0.22 (95% CI 0.09 to 0.35); processing speed, g = 0.31 (95% CI 0.11 to 0.50); and visuospatial skills, g = 0.30 (95% CI 0.07 to 0.54). No significant effects were found for executive functions and attention. Moderator analyses revealed that home-based administration was ineffective compared to group-based training, and that more than three training sessions per week was ineffective versus three or fewer. There was no evidence for the effectiveness of WM training, and only weak evidence for sessions less than 30 min. These results are limited to healthy older adults, and do not address the durability of training effects.
CCT is modestly effective at improving cognitive performance in healthy older adults, but efficacy varies across cognitive domains and is largely determined by design choices. Unsupervised at-home training and training more than three times per week are specifically ineffective. Further research is required to enhance efficacy of the intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
As we get older, we notice many bodily changes. Our hair goes grey, we develop new aches and pains, and getting out of bed in the morning takes longer than it did when we were young. Our brain may also show signs of aging. It may take us longer to learn new information, we may lose our keys more frequently, and we may forget people's names. Cognitive decline—developing worsened thinking, language, memory, understanding, and judgment—can be a normal part of aging, but it can also be an early sign of dementia, a group of brain disorders characterized by a severe, irreversible decline in cognitive functions. We know that age-related physical decline can be attenuated by keeping physically active; similarly, engaging in activities that stimulate the brain throughout life is thought to enhance cognition in later life and reduce the risk of age-related cognitive decline and dementia. Thus, having an active social life and doing challenging activities that stimulate both the brain and the body may help to stave off cognitive decline.
Why Was This Study Done?
“Brain training” may be another way of keeping mentally fit. The sale of computerized cognitive training (CCT) packages, which provide standardized, cognitively challenging tasks designed to “exercise” various cognitive functions, is a lucrative and expanding business. But does CCT work? Given the rising global incidence of dementia, effective interventions that attenuate age-related cognitive decline are urgently needed. However, the impact of CCT on cognitive performance in older adults is unclear, and little is known about what makes a good CCT package. In this systematic review and meta-analysis, the researchers assess whether CCT programs improve cognitive test performance in cognitively healthy older adults and identify the aspects of cognition (cognitive domains) that are responsive to CCT, and the CCT design features that are most important in improving cognitive performance. A systematic review uses pre-defined criteria to identify all the research on a given topic; meta-analysis uses statistical methods to combine the results of several studies.
What Did the Researchers Do and Find?
The researchers identified 51 trials that investigated the effects of more than four hours of CCT on nearly 5,000 cognitively healthy older adults by measuring several cognitive functions before and after CCT. Meta-analysis of these studies indicated that the overall effect size for CCT (compared to control individuals who did not participate in CCT) was small but statistically significant. An effect size quantifies the difference between two groups; a statistically significant result is a result that is unlikely to have occurred by chance. So, the meta-analysis suggests that CCT slightly increased overall cognitive function. Notably, CCT also had small to moderate significant effects on individual cognitive functions. For example, some CCT slightly improved nonverbal memory (the ability to remember visual images) and working memory (the ability to remember recent events; short-term memory). However, CCT had no significant effect on executive functions (cognitive processes involved in planning and judgment) or attention (selective concentration on one aspect of the environment). The design of CCT used in the different studies varied considerably, and “moderator” analyses revealed that home-based CCT was not effective, whereas center-based CCT was effective, and that training sessions undertaken more than three times a week were not effective. There was also some weak evidence suggesting that CCT sessions lasting less than 30 minutes may be ineffective. Finally, there was no evidence for the effectiveness of working memory training by itself (for example, programs that ask individuals to recall series of letters).
What Do These Findings Mean?
These findings suggest that CCT produces small improvements in cognitive performance in cognitively healthy older adults but that the efficacy of CCT varies across cognitive domains and is largely determined by design aspects of CCT. The most important result was that “do-it-yourself” CCT at home did not produce improvements. Rather, the small improvements seen were in individuals supervised by a trainer in a center and undergoing sessions 1–3 times a week. Because only cognitively healthy older adults were enrolled in the studies considered in this systematic review and meta-analysis, these findings do not necessarily apply to cognitively impaired individuals. Moreover, because all the included studies measured cognitive function immediately after CCT, these findings provide no information about the durability of the effects of CCT or about how the effects of CCT on cognitive function translate into real-life outcomes for individuals such as independence and the long-term risk of dementia. The researchers call, therefore, for additional research into CCT, an intervention that might help to attenuate age-related cognitive decline and improve the quality of life for older individuals.
Additional Information
Please access these websites via the online version of this summary at
This study is further discussed in a PLOS Medicine Perspective by Druin Burch
The US National Institute on Aging provides information for patients and carers about age-related forgetfulness, about memory and cognitive health, and about dementia (in English and Spanish)
The UK National Health Service Choices website also provides information about dementia and about memory loss
MedlinePlus provides links to additional resources about memory, mild cognitive impairment, and dementia (in English and Spanish)
PMCID: PMC4236015  PMID: 25405755
2.  Using Network Science to Evaluate Exercise-Associated Brain Changes in Older Adults 
Literature has shown that exercise is beneficial for cognitive function in older adults and that aerobic fitness is associated with increased hippocampal tissue and blood volumes. The current study used novel network science methods to shed light on the neurophysiological implications of exercise-induced changes in the hippocampus of older adults. Participants represented a volunteer subgroup of older adults that were part of either the exercise training (ET) or healthy aging educational control (HAC) treatment arms from the Seniors Health and Activity Research Program Pilot (SHARP-P) trial. Following the 4-month interventions, MRI measures of resting brain blood flow and connectivity were performed. The ET group's hippocampal cerebral blood flow (CBF) exhibited statistically significant increases compared to the HAC group. Novel whole-brain network connectivity analyses showed greater connectivity in the hippocampi of the ET participants compared to HAC. Furthermore, the hippocampus was consistently shown to be within the same network neighborhood (module) as the anterior cingulate cortex only within the ET group. Thus, within the ET group, the hippocampus and anterior cingulate were highly interconnected and localized to the same network neighborhood. This project shows the power of network science to investigate potential mechanisms for exercise-induced benefits to the brain in older adults. We show a link between neurological network features and CBF, and it is possible that this alteration of functional brain networks may lead to the known improvement in cognitive function among older adults following exercise.
PMCID: PMC2893375  PMID: 20589103
hippocampus; exercise; fitness; aging; perfusion; networks; small-world; fMRI
3.  Effects of Cognitive Training on Resting-State Functional Connectivity of Default Mode, Salience, and Central Executive Networks 
Neuroimaging studies have documented that aging can disrupt certain higher cognitive systems such as the default mode network (DMN), the salience network and the central executive network (CEN). The effect of cognitive training on higher cognitive systems remains unclear. This study used a 1-year longitudinal design to explore the cognitive training effect on three higher cognitive networks in healthy older adults. The community-living healthy older adults were divided into two groups: the multi-domain cognitive training group (24 sessions of cognitive training over a 3-months period) and the wait-list control group. All subjects underwent cognitive measurements and resting-state functional magnetic resonance imaging scanning at baseline and at 1 year after the training ended. We examined training-related changes in functional connectivity (FC) within and between three networks. Compared with the baseline, we observed maintained or increased FC within all three networks after training. The scans after training also showed maintained anti-correlation of FC between the DMN and CEN compared to the baseline. These findings demonstrated that cognitive training maintained or improved the functional integration within networks and the coupling between the DMN and CEN in older adults. Our findings suggested that multi-domain cognitive training can mitigate the aging-related dysfunction of higher cognitive networks.
PMCID: PMC4828428  PMID: 27148042
aging; cognitive training; resting-state fMRI; functional connectivity; brain network
4.  Effects of Aerobic Exercise on Mild Cognitive Impairment 
Archives of neurology  2010;67(1):71-79.
To examine the effects of aerobic exercise on cognition and other biomarkers associated with Alzheimer disease pathology for older adults with mild cognitive impairment, and assess the role of sex as a predictor of response.
Six-month, randomized, controlled, clinical trial.
Veterans Affairs Puget Sound Health Care System clinical research unit.
Thirty-three adults (17 women) with amnestic mild cognitive impairment ranging in age from 55 to 85 years (mean age,70 years).
Participants were randomized either to a high-intensity aerobic exercise or stretching control group. The aerobic group exercised under the supervision of a fitness trainer at 75% to 85% of heart rate reserve for 45 to 60 min/d, 4 d/wk for 6 months. The control group carried out supervised stretching activities according to the same schedule but maintained their heart rate at or below 50% of their heart rate reserve. Before and after the study, glucometabolic and treadmill tests were performed and fat distribution was assessed using dual-energy x-ray absorptiometry. At baseline, month 3, and month 6, blood was collected for assay and cognitive tests were administered.
Main Outcome Measures
Performance measures on Symbol-Digit Modalities, Verbal Fluency, Stroop, Trails B, Task Switching, Story Recall, and List Learning. Fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulinlike growth factor-I, and β-amyloids 40 and 42.
Six months of high-intensity aerobic exercise had sex-specific effects on cognition, glucose metabolism, and hypothalamic-pituitary-adrenal axis and trophic activity despite comparable gains in cardiorespiratory fitness and body fat reduction. For women, aerobic exercise improved performance on multiple tests of executive function, increased glucose disposal during the metabolic clamp, and reduced fasting plasma levels of insulin, cortisol, and brain-derived neurotrophic factor. For men, aerobic exercise increased plasma levels of insulinlike growth factor I and had a favorable effect only on Trails B performance.
This study provides support, using rigorous controlled methodology, for a potent nonpharma-cologic intervention that improves executive control processes for older women at high risk of cognitive decline. Moreover, our results suggest that a sex bias in cognitive response may relate to sex-based differences in glucometabolic and hypothalamic-pituitary-adrenal axis responses to aerobic exercise.
PMCID: PMC3056436  PMID: 20065132
5.  Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults 
Age  2014;36(5):9710.
The effects of physical activity on cognition in older adults have been extensively investigated in the last decade. Different interventions such as aerobic, strength, and gross motor training programs have resulted in improvements in cognitive functions. However, the mechanisms underlying the relationship between physical activity and cognition are still poorly understood. Recently, it was shown that acute bouts of exercise resulted in reduced executive control at higher relative exercise intensities. Considering that aging is characterized by a reduction in potential energy (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\cdotp }{V}{\mathrm{O}}_2 $$\end{document}V·O2 max − energy cost of walking), which leads to higher relative walking intensity for the same absolute speed, it could be argued that any intervention aimed at reducing the relative intensity of the locomotive task would improve executive control while walking. The objective of the present study was to determine the effects of a short-term (8 weeks) high-intensity strength and aerobic training program on executive functions (single and dual task) in a cohort of healthy older adults. Fifty-one participants were included and 47 (age, 70.7 ± 5.6) completed the study which compared the effects of three interventions: lower body strength + aerobic training (LBS-A), upper body strength + aerobic training (UBS-A), and gross motor activities (GMA). Training sessions were held 3 times every week. Both physical fitness (aerobic, neuromuscular, and body composition) and cognitive functions (RNG) during a dual task were assessed before and after the intervention. Even though the LBS-A and UBS-A interventions increased potential energy to a higher level (Effect size: LBS-A—moderate, UBS-A—small, GMA—trivial), all groups showed equivalent improvement in cognitive function, with inhibition being more sensitive to the intervention. These findings suggest that different exercise programs targeting physical fitness and/or gross motor skills may lead to equivalent improvement in cognition in healthy older adults. Such results call for further investigation of the multiple physiological pathways by which physical exercise can impact cognition in older adults.
PMCID: PMC4156938  PMID: 25194940
Energy cost of walking; Peak oxygen uptake; Potential energy; Dual task; Cognition; Mobility
6.  Effects of exercise and horticultural intervention on the brain and mental health in older adults with depressive symptoms and memory problems: study protocol for a randomized controlled trial [UMIN000018547] 
Trials  2015;16:499.
Depressive symptoms and memory problems are significant risk factors for dementia. Exercise can reduce depressive symptoms and improve cognitive function in older people. In addition, the benefits of horticultural activity on physical and mental well-being have been demonstrated in people with dementia. Although evidence of such non-pharmacological interventions is mounting, no studies have examined whether physical exercise and horticultural activity exert a positive impact on brain and mental health (e.g., depressive symptoms) in non-demented older adults at high risk of cognitive impairment and depression. Therefore, we propose a randomized controlled trial to assess the efficacy and efficiency of physical exercise and horticultural activity in improving brain and mental health in community-dwelling older adults with memory problems and depressive symptoms.
The 20-week randomized controlled trial will include 90 community-dwelling adults aged 65 years or older with memory problems and depressive symptoms. Participants will be randomized to one of three experiments: exercise, horticultural activity, or educational control group, using a 1:1:1 allocation ratio. The combined exercise program and horticultural activity program will consist of 20 weekly 90-minute sessions. Participants in the exercise group will practice aerobic exercise, muscle strength training, postural balance retraining, and dual-task training. The horticultural activity program will include crop-related activities, such as field cultivation, growing, and harvesting. Participants in the educational control group will attend two 90-minute educational classes during the 6-month trial period. Depressive symptoms and memory performance will be measured by the Geriatric Depression Scale-15, and the Logical Memory subtests of the Wechsler Memory Scale-Revised will be used to measure depressive symptoms and memory performance as primary outcomes, at baseline (prior to randomization), immediately following intervention (6 months from baseline), and 6 months after intervention. Hippocampal volume will be measured at baseline and immediately after intervention, using magnetic resonance imaging. Secondary outcomes will comprise cognitive function, including language, attention/executive performance, and processing speed; brain-derived neurotrophic-factor serum levels; and health-related quality of life.
This intervention study will determine the clinical importance and efficacy of physical exercise and horticultural activity as non-pharmacological interventions in community-dwelling older adults at high risk of poor brain and mental health.
Trial registration
UMIN000018547; registered 7 August 2015.
PMCID: PMC4634591  PMID: 26537979
Cognition; Depression; Exercise; Hippocampal volume; Horticulture
7.  Cognitive training can reduce the rate of cognitive aging: a neuroimaging cohort study 
BMC Geriatrics  2016;16:12.
The neural mechanisms underlying the restorative effects of cognitive training on aging brains remain unclear. To address this issue, we examined the relationship between changes in spontaneous brain activity and cognitive performance that occur after cognitive training.
Participants were older adults who were part of a randomized control trial within a larger longitudinal cognitive training study. We conducted single-domain and multi-domain cognitive training in two respective intervention groups. Participants were trained for 1 h, twice a week, for 12 weeks. Cognition was assessed in all participants and magnetic resonance images were obtained at baseline and 1 year after training. To assess spontaneous fluctuations in brain activity, we acquired resting-state fMRI data. Two indices—functional entropy and time-domain entropy—were used to measure the effects of training. Functional entropy increases with aging, and indicates disruptions in functional conectivity. Time-domain entropy decreases with aging, and indicates structural alterations in the brain and blood-flow reduction.
Seventy participants completed the study: 26 in the multi-domain cognitive training group (70.38 ± 3.30 yrs), 27 in single-domain group (70.48 ± 3.93 yrs), and 17 in a control group (68.59 ± 3.24 yrs). Functional entropy increased significantly less in the multi-domain (p = 0.047) and single-domain groups (p = 9.51 × 10−4) compared with the control group. In the multi-domain group, this was true in the paracentral lobule (p = 0.004, Bonferroni corrected p < 0.05). Time-domain entropy also improved with training. Compared with controls, time-domain entropy in the multi-domain group decreased less in the inferior frontal gyrus pars opercularis (p = 3.59 × 10−4), the medial part of superior frontal gyrus (p = 1.17 × 10−5), and the thalamus (p = 4.72 × 10−5), while that in the single-domain group decreased less in the cuneus (p = 2.58 × 10−4, Bonferroni corrected p < 0.05). Additionally, changes in regional entropy for some regions such as hippocampus significantly correlated with improvements in cognitive performance.
Cognitive training can induce plastic changes in neural functional connectivity of healthy older people, and these changes may underlie the positive effect of cognitive training.
Trial registration
ChiCTR-TRC-08000732 (Date of registration: 5th November, 2008).
Electronic supplementary material
The online version of this article (doi:10.1186/s12877-016-0194-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4712458  PMID: 26762334
Aging; Cognitive training; Intrinsic brain activity; Functional magnetic resonance imaging; Functional connectivity; Entropy
8.  Beneficial effects of short-term combination exercise training on diverse cognitive functions in healthy older people: study protocol for a randomized controlled trial 
Trials  2012;13:200.
Results of previous studies have shown that exercise training can improve cognitive functions in healthy older people. Some studies have demonstrated that long-term combination exercise training can facilitate memory function improvement better than either aerobic or strength exercise training alone. Nevertheless, it remains unclear whether short-term combination exercise training can improve diverse cognitive functions in healthy older people or not. We investigate the effects of four weeks of short-term combination exercise training on various cognitive functions (executive functions, episodic memory, short-term memory, working memory, attention, reading ability, and processing speed) of healthy older people.
A single-blinded intervention with two parallel groups (combination exercise training; waiting list control) is used. Testers are blind to the study hypothesis and the participants’ group membership. Through an advertisement in a local newspaper, 64 healthy older adults are recruited and then assigned randomly to a combination exercise training group or a waiting list control group. Participants in the combination exercise training group must participate in the short-term combination exercise training (aerobic and strength exercise training) three days per week during the four weeks (12 workouts in total). The waiting list group does not participate in the combination exercise training. The primary outcome measure is the Stroop test score: a measure of executive function. Secondary outcome measures are assessments including the Verbal Fluency Task, Logical Memory, First and Second Names, Digit Span Forward, Digit span backward, Japanese Reading Test, Digit Cancellation Task, Digit Symbol Coding, and Symbol Search. We assess these outcome measures before and after the intervention.
This report is the first of a study that investigates the beneficial effects of short-term combination exercise training on diverse cognitive functions of older people. Our study is expected to provide sufficient evidence of short-term combination exercise’s effectiveness.
Trial registration
This trial was registered in The University Hospital Medical Information Network Clinical Trials Registry (Number UMIN000007828).
PMCID: PMC3495024  PMID: 23107038
9.  Physical Exercise as a Preventive or Disease-Modifying Treatment of Dementia and Brain Aging 
Mayo Clinic Proceedings  2011;86(9):876-884.
A rapidly growing literature strongly suggests that exercise, specifically aerobic exercise, may attenuate cognitive impairment and reduce dementia risk. We used PubMed (keywords exercise and cognition) and manuscript bibliographies to examine the published evidence of a cognitive neuroprotective effect of exercise. Meta-analyses of prospective studies documented a significantly reduced risk of dementia associated with midlife exercise; similarly, midlife exercise significantly reduced later risks of mild cognitive impairment in several studies. Among patients with dementia or mild cognitive impairment, randomized controlled trials (RCTs) documented better cognitive scores after 6 to 12 months of exercise compared with sedentary controls. Meta-analyses of RCTs of aerobic exercise in healthy adults were also associated with significantly improved cognitive scores. One year of aerobic exercise in a large RCT of seniors was associated with significantly larger hippocampal volumes and better spatial memory; other RCTs in seniors documented attenuation of age-related gray matter volume loss with aerobic exercise. Cross-sectional studies similarly reported significantly larger hippocampal or gray matter volumes among physically fit seniors compared with unfit seniors. Brain cognitive networks studied with functional magnetic resonance imaging display improved connectivity after 6 to 12 months of exercise. Animal studies indicate that exercise facilitates neuroplasticity via a variety of biomechanisms, with improved learning outcomes. Induction of brain neurotrophic factors by exercise has been confirmed in multiple animal studies, with indirect evidence for this process in humans. Besides a brain neuroprotective effect, physical exercise may also attenuate cognitive decline via mitigation of cerebrovascular risk, including the contribution of small vessel disease to dementia. Exercise should not be overlooked as an important therapeutic strategy.
PMCID: PMC3258000  PMID: 21878600
10.  Disruptions in Brain Networks of Older Fallers Are Associated with Subsequent Cognitive Decline: A 12-Month Prospective Exploratory Study 
PLoS ONE  2014;9(4):e93673.
Cognitive impairment and impaired mobility are major public health concerns. There is growing recognition that impaired mobility is an early biomarker of cognitive impairment and dementia. The neural basis for this association is currently unclear. We propose disrupted functional connectivity as a potential mechanism. In this 12-month prospective exploratory study, we compared functional connectivity of four brain networks– the default mode network (DMN), fronto-executive network (FEN), fronto-parietal network (FPN), and the primary motor sensory network (SMN) – between community-dwelling older adults with ≥ two falls in the last 12 months and their non-falling counterparts (≤ one fall in the last 12 months). Functional connectivity was examined both at rest and during a simple motor tapping task. Compared with non-fallers, fallers showed more connectivity between the DMN and FPN during right finger tapping (p = 0.04), and significantly less functional connectivity between the SMN and FPN during rest (p≤0.05). Less connectivity between the SMN and FPN during rest was significantly associated with greater decline in both cognitive function and mobility over the12-month period (r = −0.32 and 0.33 respectively; p≤0.04). Thus, a recent history of multiple falls among older adults without a diagnosis of dementia may indicate sub-clinical changes in brain function and increased risk for subsequent decline.
PMCID: PMC3977422  PMID: 24699668
11.  Exergame and Balance Training Modulate Prefrontal Brain Activity during Walking and Enhance Executive Function in Older Adults 
Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25–0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F(1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31–0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults.
PMCID: PMC4828439  PMID: 27148041
prefrontal cortex; hemispheric asymmetry; functional near-infrared spectroscopy; cognition; gait; interactive cognitive-motor video game dancing; simultaneous cognitive-physical training; elderly
12.  Aerobic training as a means to enhance inhibition: what’s yet to be studied? 
Some of the neurodegenerative processes in healthy aging, including changes in structural and biochemical properties of the brain, are argued to affect cortical inhibitory functions. Age-related deficits in the ability to control cerebral inhibition may explain wide range of motor and cognitive deficits that healthy older adults experience in daily life such as impaired coordination skills and declines in attention, concentration, and learning abilities. Importantly, evidence from many studies suggests that impaired inhibitory control in advancing age can be delayed or even alleviated by aerobic exercise training. Findings from a recent study by Duchesne and colleagues (2015) may provide insights into this process. First, observations from Duchesne et al. indicated that aerobic exercise training program improved cognitive inhibitory functioning in both patients with Parkinson’s disease (PD) and matched older controls. Second, Duchesne et al. showed that cognitive inhibition and motor skills were highly correlated both pre- and post-exercise in PD but not in controls. Based on the aforementioned findings we highlight possible mechanisms that may play a role in the interactions between cognitive and motor inhibitory functions in healthy elderly that could benefit from aerobic exercise training: specifically, the brain neurotransmission systems and the frontal-basal ganglia network. In conclusion, we raise two fundamental questions which are yet to be addressed: (1) the extent to which different brain neurotransmitter systems are affected by aerobic exercise training; (2) the extent to which neurotransmitter levels prior to the onset of intervention may facilitate (or impede) training-induced neuroplasticity in the aging brain.
PMCID: PMC4748326  PMID: 26865878
Aging; Inhibition; Aerobic exercise training; Brain neurotransmitters; Brain networks; Motor control
13.  The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention 
Human brain mapping  2012;34(11):2972-2985.
Cerebral white matter degeneration occurs with increasing age and is associated with declining cognitive function. Research has shown that cardiorespiratory fitness and exercise are effective as protective, even restorative, agents against cognitive and neurobiological impairments in older adults. In this study, we investigated whether the beneficial impact of aerobic fitness would extend to white matter integrity in the context of a one-year exercise intervention. Further, we examined the pattern of diffusivity changes to better understand the underlying biological mechanisms. Finally, we assessed whether training-induced changes in white matter integrity would be associated with improvements in cognitive performance independent of aerobic fitness gains. Results showed that aerobic fitness training did not affect group-level change in white matter integrity, executive function, or short-term memory, but that greater aerobic fitness derived from the walking program was associated with greater change in white matter integrity in the frontal and temporal lobes, and greater improvement in short-term memory. Increases in white matter integrity, however, were not associated with short-term memory improvement, independent of fitness improvements. Therefore, while not all findings are consistent with previous research, we provide novel evidence for correlated change in training-induced aerobic fitness, white matter integrity, and cognition among healthy older adults.
PMCID: PMC4096122  PMID: 22674729
Diffusion tensor imaging; Anisotropy; Cerebrum; Cognition; Physical fitness; Aging
14.  Dynamics of the Human Structural Connectome Underlying Working Memory Training 
The Journal of Neuroscience  2016;36(14):4056-4066.
Brain region-specific changes have been demonstrated with a variety of cognitive training interventions. The effect of cognitive training on brain subnetworks in humans, however, remains largely unknown, with studies limited to functional networks. Here, we used a well-established working memory training program and state-of-the art neuroimaging methods in 40 healthy adults (21 females, mean age 26.5 years). Near and far-transfer training effects were assessed using computerized working memory and executive function tasks. Adaptive working memory training led to improvement on (non)trained working memory tasks and generalization to tasks of reasoning and inhibition. Graph theoretical analysis of the structural (white matter) network connectivity (“connectome”) revealed increased global integration within a frontoparietal attention network following adaptive working memory training compared with the nonadaptive group. Furthermore, the impact on the outcome of graph theoretical analyses of different white matter metrics to infer “connection strength” was evaluated. Increased efficiency of the frontoparietal network was best captured when using connection strengths derived from MR metrics that are thought to be more sensitive to differences in myelination (putatively indexed by the [quantitative] longitudinal relaxation rate, R1) than previously used diffusion MRI metrics (fractional anisotropy or fiber-tracking recovered streamlines). Our findings emphasize the critical role of specific microstructural markers in providing important hints toward the mechanisms underpinning training-induced plasticity that may drive working memory improvement in clinical populations.
SIGNIFICANCE STATEMENT This is the first study to explore training-induced changes in the structural connectome using a well-controlled design to examine cognitive training with up-to-date neuroimaging methods. We found changes in global integration based on white matter connectivity within a frontoparietal attention network following adaptive working memory training compared with a nonadaptive comparison group. Furthermore, the impact of different diffusion MR metrics and more specific markers of white matter on the graph theoretical findings was evaluated. An increase in network global efficiency following working memory training was best captured when connection strengths were weighted by MR relaxation rates (influenced by myelination). These results are important for the optimization of cognitive training programs for healthy individuals and people with brain disease.
PMCID: PMC4821915  PMID: 27053212
cognitive control; connectome; diffusion MRI; graph analysis; memory training; structural MRI
15.  Altered resting brain connectivity in persistent cancer related fatigue 
NeuroImage : Clinical  2015;8:305-313.
There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF) disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued) who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI). Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected). This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52) and poor sleep quality (P = 0.04, r = 0.52) in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected). Mental fatigue scores were associated with greater default mode network (DMN) connectivity to the superior frontal gyrus (P = 0.05 FDR corrected) among fatigued subjects (r = 0.82) and less connectivity in the non-fatigued group (r = −0.88). These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent fatigue. As the DMN is a network involved in self-referential thinking we speculate that enhanced connectivity between the DMN and the frontal gyrus may be related to mental fatigue and poor sleep quality. In contrast, enhanced connectivity between the DMN and regions in the subgenual cingulate and brainstem may serve a protective function in the non-fatigued group.
•First cancer study to link self-reported fatigue to intrinsic brain connectivity•Fatigue and non-fatigue groups showed differential superior frontal connectivity.•Level of connectivity was correlated with self-reports of fatigue and sleep-quality.
PMCID: PMC4474178  PMID: 26106555
PCRF, persistent cancer related fatigue; BCS, breast cancer survivors; fcMRI, functional connectivity magnetic resonance imaging; BOLD, blood-oxygen level dependence; ICA, independent component analysis; MFI, multidimensional fatigue Inventory; BFI, brief fatigue inventory; PSQI, Pittsburgh sleep quality index; HADS, hospital anxiety and depression scale; CFS, chronic fatigue syndrome; MNI, Montreal Neurological Institute; SPM, statistical parametric mapping; FWHM, Full width at half maximum; STR, spatio-temporal regression; FDR, false discovery rate; BA, Brodmann area; DMN, default mode network; SFG, superior frontal gyrus; IPL, inferior parietal lobule; PC, posterior cingulate; Persistent cancer related fatigue (PCRF); Breast cancer survivors; Functional connectivity magnetic resonance imaging (fcMRI); Independent component analysis (ICA); Default mode network (DMN)
16.  An Eight Month Randomized Controlled Exercise Intervention Alters Resting State Synchrony in Overweight Children 
Neuroscience  2013;256:445-455.
Children with low aerobic fitness have altered brain function compared to higher-fit children. This study examined the effect of an 8-month exercise intervention on resting state synchrony. Twenty-two sedentary, overweight (body mass index ≥ 85th percentile) children 8–11 years old were randomly assigned to one of two after-school programs: aerobic exercise (n=13) or sedentary attention control (n=9). Before and after the 8-month programs, all subjects participated in resting state functional magnetic resonance imaging scans. Independent components analysis identified several networks, with four chosen for between-group analysis: salience, default mode, cognitive control, and motor networks. The default mode, cognitive control, and motor networks showed more spatial refinement over time in the exercise group compared to controls. The motor network showed increased synchrony in the exercise group with the right medial frontal gyrus compared to controls. Exercise behavior may enhance brain development in children.
PMCID: PMC3995346  PMID: 24096138
Resting state fMRI; aerobic exercise; obesity; development; default mode; cognitive control
17.  Neural Mechanisms of Brain Plasticity with Complex Cognitive Training in Healthy Seniors 
Cerebral Cortex (New York, NY)  2013;25(2):396-405.
Complex mental activity induces improvements in cognition, brain function, and structure in animals and young adults. It is not clear to what extent the aging brain is capable of such plasticity. This study expands previous evidence of generalized cognitive gains after mental training in healthy seniors. Using 3 MRI-based measurements, that is, arterial spin labeling MRI, functional connectivity, and diffusion tensor imaging, we examined brain changes across 3 time points pre, mid, and post training (12 weeks) in a randomized sample (n = 37) who received cognitive training versus a control group. We found significant training-related brain state changes at rest; specifically, 1) increases in global and regional cerebral blood flow (CBF), particularly in the default mode network and the central executive network, 2) greater connectivity in these same networks, and 3) increased white matter integrity in the left uncinate demonstrated by an increase in fractional anisotropy. Improvements in cognition were identified along with significant CBF correlates of the cognitive gains. We propose that cognitive training enhances resting-state neural activity and connectivity, increasing the blood supply to these regions via neurovascular coupling. These convergent results provide preliminary evidence that neural plasticity can be harnessed to mitigate brain losses with cognitive training in seniors.
PMCID: PMC4351428  PMID: 23985135
aging; brain plasticity; CBF; cognitive training; MRI
18.  Cardiovascular and Coordination Training Differentially Improve Cognitive Performance and Neural Processing in Older Adults 
Recent studies revealed a positive influence of physical activity on cognitive functioning in older adults. Studies that investigate the behavioral and neurophysiological effects of type and long term duration of physical training, however, are missing. We performed a 12-month longitudinal study to investigate the effects of cardiovascular and coordination training (control group: relaxation and stretching) on cognitive functions (executive control and perceptual speed) in older adults. We analyzed data of 44 participants aged 62–79 years. Participants were trained three times a week for 12 months. Their physical and cognitive performance was tested prior to training, and after 6 and 12 months. Changes in brain activation patterns were investigated using functional MRI. On the behavioral level, both experimental groups improved in executive functioning and perceptual speed but with differential effects on speed and accuracy. In line with the behavioral findings, neurophysiological results for executive control also revealed changes (increases and reductions) in brain activity for both interventions in frontal, parietal, and sensorimotor cortical areas. In contrast to the behavioral findings, neurophysiological changes were linear without indication of a plateau. In both intervention groups, prefrontal areas showed decreased activation after 6 and 12 months when performing an executive control task, as compared to the control group, indicating more efficient information processing. Furthermore, cardiovascular training was associated with an increased activation of the sensorimotor network, whereas coordination training was associated with increased activation in the visual–spatial network. Our data suggest that besides cardiovascular training also other types of physical activity improve cognition of older adults. The mechanisms, however, that underlie the performance changes seem to differ depending on the intervention.
PMCID: PMC3062100  PMID: 21441997
physical training; cognition; older adults; brain aging; functional MRI; fitness
19.  Neural correlates of cognitive improvements following cognitive remediation in schizophrenia: a systematic review of randomized trials 
Socioaffective Neuroscience & Psychology  2016;6:10.3402/snp.v6.30054.
Cognitive impairments are a core feature in schizophrenia and are linked to poor social functioning. Numerous studies have shown that cognitive remediation can enhance cognitive and functional abilities in patients with this pathology. The underlying mechanism of these behavioral improvements seems to be related to structural and functional changes in the brain. However, studies on neural correlates of such enhancement remain scarce.
We explored the neural correlates of cognitive enhancement following cognitive remediation interventions in schizophrenia and the differential effect between cognitive training and other therapeutic interventions or patients’ usual care.
We searched MEDLINE, PsycInfo, and ScienceDirect databases for studies on cognitive remediation therapy in schizophrenia that used neuroimaging techniques and a randomized design. Search terms included randomized controlled trial, cognitive remediation, cognitive training, rehabilitation, magnetic resonance imaging, positron emission tomography, electroencephalography, magnetoencephalography, near infrared spectroscopy, and diffusion tensor imaging. We selected randomized controlled trials that proposed multiple sessions of cognitive training to adult patients with a schizophrenia spectrum disorder and assessed its efficacy with imaging techniques.
In total, 15 reports involving 19 studies were included in the systematic review. They involved a total of 455 adult patients, 271 of whom received cognitive remediation. Cognitive remediation therapy seems to provide a neurobiological enhancing effect in schizophrenia. After therapy, increased activations are observed in various brain regions mainly in frontal – especially prefrontal – and also in occipital and anterior cingulate regions during working memory and executive tasks. Several studies provide evidence of an improved functional connectivity after cognitive training, suggesting a neuroplastic effect of therapy through mechanisms of functional reorganization. Neurocognitive and social-cognitive training may have a cumulative effect on neural networks involved in social cognition. The variety of proposed programs, imaging tasks, and techniques may explain the heterogeneity of observed neural improvements. Future studies would need to specify the effect of cognitive training depending on those variables.
PMCID: PMC4799394  PMID: 26993787
cognitive training; cognitive enhancement therapy; neurocognition; social cognition; magnetic resonance imaging; magnetoencephalography; electroencephalography; schizophrenia
20.  Regional amyloid burden and intrinsic connectivity networks in cognitively normal elderly subjects 
Brain  2014;137(12):3327-3338.
See Toga and Thompson (doi:10.1093/brain/awu276) for a scientific commentary on this article.
Hyun Kook Lim et al. investigate the relationship between amyloid burden and intrinsic functional connectivity in cognitively normal older adults. Individuals with amyloid deposition show aberrant functional connectivity in the default mode and central executive networks compared to those without detectable amyloid. Changes may reflect early deleterious effects of amyloid deposition.
Although previous studies demonstrated decreased functional connectivity in the default mode network in the cognitively normal older adults with amyloid burden, effects of amyloid burden in the other large-scale intrinsic connectivity networks are not yet clear. The aim of this study was to investigate the distinctive association pattern of amyloid-β deposition on the three large-scale intrinsic connectivity networks (the default mode network, salience network and central executive network) in older adults with normal cognition. Fifty-six older adults with normal cognition underwent functional magnetic resonance imaging and were dichotomized using 11C-labelled Pittsburgh compound B positron emission tomography imaging into subjects with (PiB+; n = 27) and without (PiB−; n = 29) detectable amyloid burden. We found that the functional connectivities of (i) the default mode network were greater; (ii) the salience network were not different; and (iii) the central executive network were lower in the Pittsburgh compound B positive group, compared with the Pittsburgh compound B negative group. Anterior cingulate cortex Pittsburgh compound B retention was negatively correlated with the functional connectivities of the posterior default mode network, and positively correlated with fronto-parietal functional connectivity (within the central executive network) in the Pittsburgh compound B positive group. The anti-correlation strength between the default mode network and the central executive network was negatively correlated with the anterior cingulate cortex Pittsburgh compound B levels. Additionally, significant group × episodic memory interactions with functional connectivities in the posterior default mode network, and the frontal default mode network were observed. Our results of aberrant default mode network functional connectivity and distinctive correlation patterns between the Pittsburgh compound B retention in the anterior cingulate cortex and functional connectivities in the default mode network and central executive network in the Pittsburgh compound B positive group might reflect a detrimental effect of amyloid retention on functional changes in the course of Alzheimer’s disease progression.
PMCID: PMC4240287  PMID: 25266592
amyloid imaging; normal older adults; functional MRI; large scale intrinsic networks
21.  Elevated body mass index and maintenance of cognitive function in late life: exploring underlying neural mechanisms 
Background: Obesity is associated with vascular risk factors that in turn, may increase dementia risk. However, higher body mass index (BMI) in late life may be neuroprotective. The possible neural mechanisms underlying the benefit of higher BMI on cognition in older adults are largely unknown. Thus, we used functional connectivity magnetic resonance imaging (fcMRI) to examine: (1) the relationship between BMI and functional brain connectivity; and (2) the mediating role of functional brain connectivity in the association between baseline BMI and change in cognitive function over a 12-month period.
Methods:We conducted a 12-month, prospective study among 66 community-dwelling older adults, aged 70 to 80 years, who were categorized as: normal weight (BMI from 18.50 to 24.99); overweight (BMI from 25.00 to 29.99); and obese (BMI ≥ 30.00). At baseline, participants performed a finger-tapping task during fMRI scanning. Relevant neural networks were initially identified through independent component analysis (ICA) and subsequently examined through seed-based functional connectivity analysis. At baseline and 12-months, we measured three executive cognitive processes: (1) response inhibition; (2) set shifting; and (3) working memory.
Results:Obese individuals showed lower task-related functional connectivity during finger tapping in the default mode network (DMN) compared with their healthy weight counterparts (p < 0.01). Lower task-related functional connectivity in the DMN at baseline was independently associated with better working memory performance at 12-months (p = 0.02). Finally, DMN functional connectivity during finger tapping significantly mediated the relationship between baseline BMI and working memory at 12-months (indirect effect: −0.155, 95% confidence interval [−0.313, −0.053]).
Conclusions:These findings suggest that functional connectivity of the DMN may be an underlying mechanism by which higher BMI confers protective effects to cognition in late life.
PMCID: PMC4539697  PMID: 26347646
older adults; default mode network (DMN); mediation analysis; executive functions; body mass index
22.  The Cerebral Cost of Breathing: An fMRI Case-Study in Congenital Central Hypoventilation Syndrome 
PLoS ONE  2014;9(9):e107850.
Certain motor activities - like walking or breathing - present the interesting property of proceeding either automatically or under voluntary control. In the case of breathing, brainstem structures located in the medulla are in charge of the automatic mode, whereas cortico-subcortical brain networks - including various frontal lobe areas - subtend the voluntary mode. We speculated that the involvement of cortical activity during voluntary breathing could impact both on the “resting state” pattern of cortical-subcortical connectivity, and on the recruitment of executive functions mediated by the frontal lobe. In order to test this prediction we explored a patient suffering from central congenital hypoventilation syndrome (CCHS), a very rare developmental condition secondary to brainstem dysfunction. Typically, CCHS patients demonstrate efficient cortically-controlled breathing while awake, but require mechanically-assisted ventilation during sleep to overcome the inability of brainstem structures to mediate automatic breathing. We used simultaneous EEG-fMRI recordings to compare patterns of brain activity between these two types of ventilation during wakefulness. As compared with spontaneous breathing (SB), mechanical ventilation (MV) restored the default mode network (DMN) associated with self-consciousness, mind-wandering, creativity and introspection in healthy subjects. SB on the other hand resulted in a specific increase of functional connectivity between brainstem and frontal lobe. Behaviorally, the patient was more efficient in cognitive tasks requiring executive control during MV than during SB, in agreement with her subjective reports in everyday life. Taken together our results provide insight into the cognitive and neural costs of spontaneous breathing in one CCHS patient, and suggest that MV during waking periods may free up frontal lobe resources, and make them available for cognitive recruitment. More generally, this study reveals how the active maintenance of cortical control over a continuous motor activity impacts on brain functioning and cognition.
PMCID: PMC4182437  PMID: 25268234
23.  Promotion of the mind through exercise (PROMoTE): a proof-of-concept randomized controlled trial of aerobic exercise training in older adults with vascular cognitive impairment 
BMC Neurology  2010;10:14.
Sub-cortical vascular ischaemia is the second most common etiology contributing to cognitive impairment in older adults, and is frequently under-diagnosed and under-treated. Although evidence is mounting that exercise has benefits for cognitive function among seniors, very few randomized controlled trials of exercise have been conducted in populations at high-risk for progression to dementia. Aerobic-based exercise training may be of specific benefit in delaying the progression of cognitive decline among seniors with vascular cognitive impairment by reducing key vascular risk factors associated with metabolic syndrome. Thus, we aim to carry out a proof-of-concept single-blinded randomized controlled trial primarily designed to provide preliminary evidence of efficacy aerobic-based exercise training program on cognitive and everyday function among older adults with mild sub-cortical ischaemic vascular cognitive impairment.
A proof-of-concept single-blinded randomized trial comparing a six-month, thrice-weekly, aerobic-based exercise training group with usual care on cognitive and everyday function. Seventy older adults who meet the diagnostic criteria for sub-cortical ischaemic vascular cognitive impairment as outlined by Erkinjuntti and colleagues will be recruited from a memory clinic of a metropolitan hospital. The aerobic-based exercise training will last for 6 months. Participants will be followed for an additional six months after the cessation of exercise training.
This research will be an important first step in quantifying the effect of an exercise intervention on cognitive and daily function among seniors with sub-cortical ischaemic vascular cognitive impairment, a recognized risk state for progression to dementia. Exercise has the potential to be an effective, inexpensive, and accessible intervention strategy with minimal adverse effects. Reducing the rate of cognitive decline among seniors with sub-cortical ischaemic vascular cognitive impairment could preserve independent functioning and health related quality of life in this population. This, in turn, could lead to reduced health care resource utilization costs and avoidance of early institutional care.
Trial Registration Protocol Registration System: NCT01027858.
PMCID: PMC2830197  PMID: 20158920
24.  Functional neural correlates of reduced physiological falls risk 
It is currently unclear whether the function of brain regions associated with executive cognitive processing are independently associated with reduced physiological falls risk. If these are related, it would suggest that the development of interventions targeted at improving executive neurocognitive function would be an effective new approach for reducing physiological falls risk in seniors.
We performed a secondary analysis of 73 community-dwelling senior women aged 65 to 75 years old who participated in a 12-month randomized controlled trial of resistance training. Functional MRI data were acquired while participants performed a modified Eriksen Flanker Task - a task of selective attention and conflict resolution. Brain volumes were obtained using MRI. Falls risk was assessed using the Physiological Profile Assessment (PPA).
After accounting for baseline age, experimental group, baseline PPA score, and total baseline white matter brain volume, baseline activation in the left frontal orbital cortex extending towards the insula was negatively associated with reduced physiological falls risk over the 12-month period. In contrast, baseline activation in the paracingulate gyrus extending towards the anterior cingulate gyrus was positively associated with reduced physiological falls risk.
Baseline activation levels of brain regions underlying response inhibition and selective attention were independently associated with reduced physiological falls risk. This suggests that falls prevention strategies may be facilitated by incorporating intervention components - such as aerobic exercise - that are specifically designed to induce neurocognitive plasticity.
Trial Registration Identifier: NCT00426881
PMCID: PMC3178476  PMID: 21846395
25.  Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise 
Neurobiology of disease  2015;77:71-87.
Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson’s disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4 weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [14C]-iodoantipyrine 1 week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function.
PMCID: PMC4402279  PMID: 25747184
rehabilitation; exercise; motor skill learning; motor adaptation; functional brain mapping; functional connectivity; prefrontal cortex; cerebellum; Parkinson’s Disease; motor function; rats

Results 1-25 (1407184)