Search tips
Search criteria

Results 1-25 (1322937)

Clipboard (0)

Related Articles

1.  REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century(e–Pub ahead of print)(CME) 
Neurology  2010;75(6):494-499.
Idiopathic REM sleep behavior disorder (RBD) may be the initial manifestation of synucleinopathies (Parkinson disease [PD], multiple system atrophy [MSA], or dementia with Lewy bodies [DLB]).
We used the Mayo medical records linkage system to identify cases presenting from 2002 to 2006 meeting the criteria of idiopathic RBD at onset, plus at least 15 years between RBD and development of other neurodegenerative symptoms. All patients underwent evaluations by specialists in sleep medicine to confirm RBD, and behavioral neurology or movement disorders to confirm the subsequent neurodegenerative syndrome.
Clinical criteria were met by 27 patients who experienced isolated RBD for at least 15 years before evolving into PD, PD dementia (PDD), DLB, or MSA. The interval between RBD and subsequent neurologic syndrome ranged up to 50 years, with the median interval 25 years. At initial presentation, primary motor symptoms occurred in 13 patients: 9 with PD, 3 with PD and mild cognitive impairment (MCI), and 1 with PDD. Primary cognitive symptoms occurred in 13 patients: 10 with probable DLB and 3 with MCI. One patient presented with primary autonomic symptoms, diagnosed as MSA. At most recent follow-up, 63% of patients progressed to develop dementia (PDD or DLB). Concomitant autonomic dysfunction was confirmed in 74% of all patients.
These cases illustrate that the α-synuclein pathogenic process may start decades before the first symptoms of PD, DLB, or MSA. A long-duration preclinical phase has important implications for epidemiologic studies and future interventions designed to slow or halt the neurodegenerative process.
= dementia with Lewy bodies;
= mild cognitive impairment;
= multiple system atrophy;
= Parkinson disease;
= PD with associated mild cognitive impairment;
= Parkinson disease dementia;
= polysomnogram;
= REM sleep behavior disorder.
PMCID: PMC2918473  PMID: 20668263
2.  Comparison of cognitive decline between dementia with Lewy bodies and Alzheimer's disease: a cohort study 
BMJ Open  2012;2(1):e000380.
Dementia with Lewy bodies (DLB) accounts for 10%–15% of dementia cases at autopsy and has distinct clinical features associated with earlier institutionalisation and a higher level of carer distress than are seen in Alzheimer's disease (AD). At present, there is on-going debate as to whether DLB is associated with a more rapid cognitive decline than AD. An understanding of the rate of decline of cognitive and non-cognitive symptoms in DLB may help patients and carers to plan for the future.
In this cohort study, the authors compared 100 AD and 58 DLB subjects at baseline and at 12-month follow-up on cognitive and neuropsychiatric measures.
Patients were recruited from 40 European centres.
Subjects with mild–moderate dementia. Diagnosis of DLB or AD required agreement between consensus panel clinical diagnosis and visual rating of 123I-FP-CIT (dopamine transporter) single photon emission computed tomography neuroimaging.
Outcome measures
The Cambridge Cognitive Examination including Mini-Mental State Examination and Neuropsychiatric Inventory (NPI).
The AD and DLB groups did not differ at baseline in terms of age, gender, Clinical Dementia Rating score and use of cholinesterase inhibitors or memantine. NPI and NPI carer distress scores were statistically significantly higher for DLB subjects at baseline and at follow-up, and there were no differences between AD and DLB in cognitive scores at baseline or at follow-up. There was no significant difference in rate of progression of any of the variables analysed.
DLB subjects had more neuropsychiatric features at baseline and at follow-up than AD, but the authors did not find any statistically significant difference in rate of progression between the mild–moderate AD and DLB groups on cognitive or neuropsychiatric measures over a 12-month follow-up period.
Article summary
Article focus
Dementia with Lewy bodies (DLB) has distinct neuropsychiatric features.
At present, we do not know whether the poorer prognosis of DLB is due to a more rapid cognitive decline compared with Alzheimer's disease (AD).
Key messages
In this fairly large cohort of patients with DLB and AD, while there was no difference in level of cognitive impairment (Cambridge Cognitive Examination (CAMCOG) score) at baseline and at 12-month follow-up, DLB patients had significantly higher Neuropsychiatric Inventory (NPI) and NPI carer distress scores both at baseline and at 12-month follow-up.
Therefore, the worse prognosis of DLB is likely to be mediated by neuropsychiatric or other symptoms and not only by cognitive decline.
Strengths and limitations of this study
Inclusion of high number of subjects from 40 European clinical centres.
Well-characterised cases with both consensus panel clinical diagnosis (three clinical experts) and dopaminergic transporter single photon emission computed tomography imaging.
No autopsy data were available and therefore it is possible that more rapid cognitive decline may be present in pure DLB.
Only 1 year of follow-up.
There was higher attrition rate (no-follow-up assessment) in the DLB group, and DLB patients that did not return for follow-up were more impaired than AD patients.
PMCID: PMC3330257  PMID: 22318660
3.  Post mortem cerebrospinal fluid α-synuclein levels are raised in multiple system atrophy and distinguish this from the other α-synucleinopathies, Parkinson's disease and Dementia with Lewy bodies 
Neurobiology of Disease  2012;45(1):188-195.
Differentiating clinically between Parkinson's disease (PD) and the atypical parkinsonian syndromes of Progressive supranuclear palsy (PSP), corticobasal syndrome (CBS) and multiple system atrophy (MSA) is challenging but crucial for patient management and recruitment into clinical trials. Because PD (and the related disorder Dementia with Lewy bodies (DLB)) and MSA are characterised by the deposition of aggregated forms of α-synuclein protein (α-syn) in the brain, whereas CBS and PSP are tauopathies, we have developed immunoassays to detect levels of total and oligomeric forms of α-syn, and phosphorylated and phosphorylated oligomeric forms of α-syn, within body fluids, in an attempt to find a biomarker that will differentiate between these disorders. Levels of these 4 different forms of α-syn were measured in post mortem samples of ventricular cerebrospinal fluid (CSF) obtained from 76 patients with PD, DLB, PSP or MSA, and in 20 healthy controls. Mean CSF levels of total and oligomeric α-syn, and phosphorylated α-syn, did not vary significantly between the diagnostic groups, whereas mean CSF levels of phosphorylated oligomeric α-syn did differ significantly (p < 0.001) amongst the different diagnostic groups. Although all 4 measures of α-syn were higher in patients with MSA compared to all other diagnostic groups, these were only significantly raised (p < 0.001) in MSA compared to all other diagnostic groups, for phosphorylated oligomeric forms of α-syn. This suggests that this particular assay may have utility in differentiating MSA from control subject and patients with other α-synucleinopathies. However, it does not appear to be of help in distinguishing patients with PD and DLB from those with PSP or from control subjects. Western blots show that the principal form of α-syn within CSF is phosphorylated, and the finding that the phosphorylated oligomeric α-syn immunoassay appears to be the most informative of the 4 assays would be consistent with this observation.
PMCID: PMC3657198  PMID: 21856424
Parkinson's disease; Dementia with Lewy Bodies; Multiple system atrophy; Alpha synuclein; Cerebrospinal fluid
4.  Clinical and Cognitive Phenotype of Mild Cognitive Impairment Evolving to Dementia with Lewy Bodies 
The aim of this study was to determine which characteristics could better distinguish dementia with Lewy bodies (DLB) from Alzheimer's disease (AD) at the mild cognitive impairment (MCI) stage, with particular emphasis on visual space and object perception abilities.
Fifty-three patients with mild cognitive deficits that were eventually diagnosed with probable DLB (MCI-DLB: n = 25) and AD (MCI-AD: n = 28) at a 3-year follow-up were retrospectively studied. At the first visit, the patients underwent cognitive assessment including the Qualitative Scoring Mini Mental State Examination Pentagon Test and the Visual Object and Space Perception Battery. The Neuropsychiatric Inventory Questionnaire, Unified Parkinson's Disease Rating Scale (UPDRS) and questionnaires for cognitive fluctuations and sleep disorders were also administered.
The best clinical predictor of DLB was the presence of soft extrapyramidal signs (mean UPDRS score: 4.04 ± 5.9) detected in 72% of patients, followed by REM sleep behavior disorder (60%) and fluctuations (60%). Wrong performances in the pentagon's number of angles were obtained in 44% of DLB and 3.7% of AD patients and correlated with speed of visual attention. Executive functions, visual attention and visuospatial abilities were worse in DLB, while verbal episodic memory impairment was greater in AD. Deficits in the visual-perceptual domain were present in both MCI-DLB and AD.
Poor performance in the pentagon's number of angles is specific of DLB and correlates with speed of visual attention. The dorsal visual stream seems specifically more impaired in MCI-DLB with respect to the ventral visual stream, the latter being involved in both DLB and AD. These cognitive features, associated with subtle extrapyramidal signs, should alert clinicians to a diagnostic hypothesis of DLB.
PMCID: PMC4677697  PMID: 26674638
Dementia with Lewy bodies; Visuoconstructional abilities; Mini Mental State Examination; Mild cognitive impairment
5.  Neuropsychiatric Symptoms in Parkinson’s Disease Dementia Are More Similar to Alzheimer’s Disease than Dementia with Lewy Bodies: A Case-Control Study 
PLoS ONE  2016;11(4):e0153989.
Background and purpose
Previous studies on the clinical and pathological manifestations of Parkinson’s disease dementia (PDD) have reported findings more similar to dementia with Lewy bodies (DLB) than to Alzheimer’s disease (AD). The aim of this study was to investigate the neuropsychiatric symptoms of PDD compared to DLB and AD.
We conducted a retrospective case-control study on 125 newly diagnosed consecutive PDD patients and age- and dementia stage-matched controls with either DLB (N = 250) or AD (N = 500) who visited the same hospital over the same period. For each case and control, neuropsychiatric symptoms were assessed using the Neuropsychiatric Inventory (NPI).
Overall, 513 (58.6%) patients were female and 362 (41.4%) were male. Comparisons of clinical data revealed that the PDD group, similar to the AD group, had a lower NPI total score, NPI caregiver burden score, and rate of antipsychotic use (all p < 0.001) than the DLB group. One or more psychiatric symptoms were reported in 95.2% of the PDD, 99.2% of the DLB, and 96.8% of the AD patients. The PDD group had lower subscores in the items of delusions, hallucinations, agitation, anxiety, irritation, aberrant motor behavior compared to the DLB group. Severe neuropsychiatric symptoms among all dementia patients were associated with younger age, more advanced stage, and a diagnosis of DLB.
Neuropsychiatric symptoms in PDD were more like those in AD than in DLB. Severe neuropsychiatric symptoms in degenerative dementia were associated with younger age, more advanced stage of dementia, and a diagnosis of DLB.
PMCID: PMC4839640  PMID: 27101140
6.  Imaging amyloid deposition in Lewy body diseases 
Neurology  2008;71(12):903-910.
Extrapyramidal motor symptoms precede dementia in Parkinson disease (PDD) by many years, whereas dementia occurs early in dementia with Lewy bodies (DLB). Despite this clinical distinction, the neuropsychological and neuropathologic features of these conditions overlap. In addition to widespread distribution of Lewy bodies, both diseases have variable burdens of neuritic plaques and neurofibrillary tangles characteristic of Alzheimer disease (AD).
To determine whether amyloid deposition, as assessed by PET imaging with the β-amyloid–binding compound Pittsburgh Compound B (PiB), can distinguish DLB from PDD, and to assess whether regional patterns of amyloid deposition correlate with specific motor or cognitive features.
Eight DLB, 7 PDD, 11 Parkinson disease (PD), 15 AD, and 37 normal control (NC) subjects underwent PiB-PET imaging and neuropsychological assessment. Amyloid burden was quantified using the PiB distribution volume ratio.
Cortical amyloid burden was higher in the DLB group than in the PDD group, comparable to the AD group. Amyloid deposition in the PDD group was low, comparable to the PD and NC groups. Relative to global cortical retention, occipital PiB retention was lower in the AD group than in the other groups. For the DLB, PDD, and PD groups, amyloid deposition in the parietal (lateral and precuneus)/posterior cingulate region was related to visuospatial impairment. Striatal PiB retention in the DLB and PDD groups was associated with less impaired motor function.
Global cortical amyloid burden is high in dementia with Lewy bodies (DLB) but low in Parkinson disease dementia. These data suggest that β-amyloid may contribute selectively to the cognitive impairment of DLB and may contribute to the timing of dementia relative to the motor signs of parkinsonism.
= Automated Anatomic Labeling;
= Alzheimer disease;
= Alzheimer’s Disease Research Center;
= American version of the National Adult Reading Test;
= analysis of covariance;
= Blessed Dementia Scale;
= cerebral amyloid angiopathy;
= Clinical Dementia Rating;
= Clinical Dementia Rating Sum of Boxes;
= dementia with Lewy bodies;
= distribution volume ratio;
= Cued Selective Reminding Test;
= Free Selective Reminding Test;
= Hoehn and Yahr;
= Massachusetts General Hospital;
= Mini-Mental State Examination;
= normal control;
= neurofibrillary tangle;
= Neuropsychiatric Inventory Questionnaire;
= not significant;
= Parkinson disease;
= Parkinson disease dementia;
= Pittsburgh Compound B;
= region of interest;
= Statistical Parametric Mapping;
= UK Parkinson’s Disease Society Brain Bank Research Center;
= United Parkinson’s Disease Rating Scale;
= Wechsler Adult Intelligence Scale–Revised.
PMCID: PMC2637553  PMID: 18794492
7.  Performance on the dementia rating scale in Parkinson's disease with dementia and dementia with Lewy bodies: comparison with progressive supranuclear palsy and Alzheimer's disease 
Background: The relation between dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD) is unknown.
Objectives: To compare the cognitive profiles of patients with DLB and PDD, and compare those with the performance of patients with a subcortical dementia (progressive supranuclear palsy) and a cortical dementia (Alzheimer's disease).
Design: Survey of cognitive features.
Setting: General community in Rogaland county, Norway, and a university dementia and movement disorder research centre in the USA.
Patients: 60 patients with DLB, 35 with PDD, 49 with progressive supranuclear palsy, and 29 with Alzheimer's disease, diagnosed by either standardised clinical procedures and criteria (all PDD and Alzheimer cases and 76% of cases of progressive supranuclear palsy), or necropsy (all DLB cases and 24% of cases of progressive supranuclear palsy). Level of dementia severity was matched using the total score on the dementia rating scale adjusted for age and education.
Main outcome measures: Dementia rating scale subscores corrected for age.
Results: No significant differences between the dementia rating scale subscores in the PDD and DLB groups were found in the severely demented patients; in patients with mild to moderate dementia the conceptualisation subscore was higher in PDD than in DLB (p = 0.03). Compared with Alzheimer's disease, PDD and DLB had higher memory subscores (p < 0.001) but lower initiation and perseveration (p = 0.008 and p=0.021) and construction subscores (p = 0.009 and p = 0.001). DLB patients had a lower conceptualisation subscore (p = 0.004). Compared with progressive supranuclear palsy, PDD and DLB patients had lower memory subscores (p < 0.001).
Conclusions: The cognitive profiles of patients with DLB and PDD were similar, but they differed from those of patients with Alzheimer's disease and progressive supranuclear palsy. The cognitive pattern in DLB and PDD probably reflects the superimposition of subcortical deficits upon deficits typically associated with Alzheimer's disease.
PMCID: PMC1738667  PMID: 12933921
8.  Fluoxetine Ameliorates Behavioral and Neuropathological Deficits in a Transgenic Model Mouse of α-synucleinopathy 
Experimental neurology  2012;234(2):405-416.
The term α-synucleinopathies refers to a group of age-related neurological disorders including Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA) that display an abnormal accumulation of alpha-synuclein (α-syn). In contrast to the neuronal α-syn accumulation observed in PD and DLB, MSA is characterized by a widespread oligodendrocytic α-syn accumulation. Transgenic mice expressing human α-syn under the oligodendrocyte-specific myelin basic protein promoter (MBP1-hαsyn tg mice) model many of the behavioral and neuropathological alterations observed in MSA.
Fluoxetine, a selective serotonin reuptake inhibitor, has been shown to be protective in toxin-induced models of PD, however its effects in an in vivo transgenic model of α-synucleinopathy remain unclear. In this context, this study examined the effect of fluoxetine in the MBP1-hαsyn tg mice, a model of MSA.
Fluoxetine adminstration ameliorated motor deficits in the MBP1-hαsyn tg mice, with a concomitant decrease in neurodegenerative pathology in the basal ganglia, neocortex and hippocampus. Fluoxetine adminstration also increased levels of the neurotrophic factors, GDNF (glial-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) in the MBP1-hαsyn tg mice compared to vehicle-treated tg mice. This fluoxetine-induced increase in GDNF and BDNF protein levels was accompanied by activation of the ERK signaling pathway. The effects of fluoxetine adminstration on myelin and serotonin markers were also examined.
Collectively these results indicate that fluoxetine may represent a novel therapeutic intervention for MSA and other neurodegenerative disorders.
PMCID: PMC3897235  PMID: 22281106
9.  Longitudinal assessment of global and regional atrophy rates in Alzheimer's disease and dementia with Lewy bodies 
NeuroImage : Clinical  2015;7:456-462.
Background & objective
Percent whole brain volume change (PBVC) measured from serial MRI scans is widely accepted as a sensitive marker of disease progression in Alzheimer's disease (AD). However, the utility of PBVC in the differential diagnosis of dementia remains to be established. We compared PBVC in AD and dementia with Lewy bodies (DLB), and investigated associations with clinical measures.
72 participants (14 DLBs, 25 ADs, and 33 healthy controls (HCs)) underwent clinical assessment and 3 Tesla T1-weighted MRI at baseline and repeated at 12 months. We used FSL-SIENA to estimate PBVC for each subject. Voxelwise analyses and ANCOVA compared PBVC between DLB and AD, while correlational tests examined associations of PBVC with clinical measures.
AD had significantly greater atrophy over 1 year (1.8%) compared to DLB (1.0%; p = 0.01) and HC (0.9%; p < 0.01) in widespread regions of the brain including periventricular areas. PBVC was not significantly different between DLB and HC (p = 0.95). There were no differences in cognitive decline between DLB and AD. In the combined dementia group (AD and DLB), younger age was associated with higher atrophy rates (r = 0.49, p < 0.01).
AD showed a faster rate of global brain atrophy compared to DLB, which had similar rates of atrophy to HC. Among dementia subjects, younger age was associated with accelerated atrophy, reflecting more aggressive disease in younger people. PBVC could aid in differentiating between DLB and AD, however its utility as an outcome marker in DLB is limited.
•AD showed faster global and regional brain atrophy in comparison to DLB.•Similar rates of global and regional atrophy were found in DLB and HC.•Longitudinal imaging could improve clinical differentiation of DLB from AD.•Atrophy rates might not be a useful marker to track disease progression in DLB.
PMCID: PMC4325088  PMID: 25685712
Dementia; Alzheimer's disease; Lewy bodies; Neuroimaging; Atrophy
10.  Higher cortical deficits influence attentional processing in dementia with Lewy bodies, relative to patients with dementia of the Alzheimer's type and controls 
Attentional dysfunction is believed to be a prominent and distinguishing neuropsychological feature of dementia with Lewy bodies (DLB); yet, the specific nature of the attentional deficit and factors that can potentially influence attentional processing in DLB have not been fully defined.
To clarify the nature of the attentional deficit in early‐stage DLB relative to patients with early‐stage dementia of the Alzheimer's type (DAT) and elderly controls, and examine the effect of task complexity and type of cognitive load on attentional processing in DLB.
Attentional impairment and fluctuating attention were investigated in three groups of subjects—patients with clinical features of early probable DLB (n = 20), a group with early probable DAT (n = 19) and healthy elderly controls (n = 20)—using an experimental computerised reaction time paradigm.
Patients with DLB showed greater attentional impairment and fluctuations in attention relative to patients with DAT and elderly controls. The attentional deficit was generalised in nature but increased in magnitude as greater demands were placed on attentional selectivity. Attentional deficits in DLB were most pronounced under task conditions that required more active recruitment of executive control and visuospatial cognitive processes.
Attentional deficits in DLB are widespread and encompass all aspects of attentional function. Deficits in higher cortical function influence the degree of attentional impairment and fluctuating attention, suggesting that attentional processing in DLB is mediated by interacting cortical and subcortical mechanisms. These findings serve to clarify the nature of the attentional deficit in DLB and have potentially important ramifications for our understanding of the neurocognitive underpinnings of fluctuations.
PMCID: PMC2077555  PMID: 16772356
11.  Dopamine cell loss in the periaqueductal gray in multiple system atrophy and Lewy body dementia 
Neurology  2009;73(2):106-112.
Experimental studies indicate that dopaminergic neurons in the ventral periaqueductal gray matter (PAG) are involved in maintenance of wakefulness. Excessive daytime sleepiness (EDS) is a common manifestation of multiple system atrophy (MSA) and dementia with Lewy bodies (DLB) but involvement of these neurons has not yet been explored.
We sought to determine whether there is loss of dopaminergic neurons in the ventral PAG in MSA and DLB. We studied the midbrain obtained at autopsy from 12 patients (9 male, 3 female, age 61 ± 3) with neuropathologically confirmed MSA, 12 patients (11 male, 1 female, age 79 ± 4) with diagnosis of DLB and limbic or neocortical Lewy body disease, and 12 controls (7 male, 5 female, ages 67 ± 4). Fifty-micron sections were immunostained for tyrosine hydroxylase (TH) or α-synuclein and costained with thionin. Cell counts were performed every 400 μm throughout the ventral PAG using stereologic techniques.
Compared to the total estimated cell numbers in controls (21,488 ± 8,324 cells), there was marked loss of TH neurons in the ventral PAG in both MSA (11,727 ± 5,984; p < 0.01) and DLB (5,163 ± 1,926; p < 0.001) cases. Cell loss was more marked in DLB than in MSA. There were characteristic α-synuclein inclusions in the ventral PAG in both MSA and DLB.
There is loss of putative wake-active ventral periaqueductal gray matter dopaminergic neurons in both multiple system atrophy and dementia with Lewy bodies, which may contribute to excessive daytime sleepiness in these conditions.
= Alzheimer disease;
= Braak and Braak;
= Consortium to Establish a Registry for Alzheimer's Disease;
= continuous positive airway pressure;
= dementia with Lewy bodies;
= electrocardiogram;
= excessive daytime sleepiness;
= electrooculography;
= Epworth Sleepiness Scale;
= glial cytoplasmic inclusion;
= Lewy body disease;
= multiple system atrophy;
= MSA with predominant parkinsonism;
= MSA with predominant cerebellar involvement;
= obstructive sleep apnea;
= periaqueductal gray matter;
= polysomnogram;
= REM sleep behavior disorder;
= tyrosine hydroxylase.
PMCID: PMC2713188  PMID: 19597132
12.  Multiple system atrophy: the application of genetics in understanding etiology 
Classically defined phenotypically by a triad of cerebellar ataxia, parkinsonism and autonomic dysfunction in conjunction with pyramidal signs, multiple system atrophy (MSA) is a rare and progressive neurodegenerative disease affecting an estimated 3-4 per every 100,000 individuals among adults 50-99 years of age. With a pathological hallmark of alpha-synuclein-immunoreactive glial cytoplasmic inclusions (GCIs; Papp-Lantos inclusions), MSA patients exhibit marked neurodegenerative changes in the striatonigral and/or olivopontocerebellar structures of the brain. As a member of the alpha-synucleinopathy family, which is defined by its well-demarcated alpha-synuclein-immunoreactive inclusions and aggregation, MSA’s clinical presentation exhibits several overlapping features with other members including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Given the extensive fund of knowledge regarding the genetic etiology of PD revealed within the past several years, a genetic investigation of MSA is warranted. While a current genome wide association (GWA) study is underway for MSA to further clarify the role of associated genetic loci and single nucleotide polymorphisms (SNPs), several cases have presented solid preliminary evidence of a genetic etiology. Naturally, genes and variants manifesting known associations with PD (and other phenotypically similar neurodegenerative disorders), including SNCA and MAPT, have been comprehensively investigated in MSA patient cohorts. More recently variants in COQ2 have been linked to MSA in the Japanese population although this finding awaits replication. Nonetheless, significant positive associations with subsequent independent replication studies have been scarce. With very limited information regarding genetic mutations or alterations in gene dosage as a cause of MSA, the search for novel risk genes, which may be in the form of common variants or rare variants, is the logical nexus for MSA research. We believe that the application of next generation genetic methods to MSA will provide valuable insight into the underlying causes of this disease, and will be central to the identification of etiologic based therapies.
PMCID: PMC5217460  PMID: 25687905
Genome wide association; linkage analysis; genetic risk; mutation
13.  Magnetic Resonance Spectroscopy in the Diagnosis of Dementia with Lewy Bodies 
BioMed Research International  2014;2014:809503.
Dementia with Lewy bodies (DLB) is considered to be the second most frequent primary degenerative dementing illness after Alzheimer's disease (AD). DLB, together with Parkinson's disease (PD), Parkinson's disease with dementia (PDD) belong to α-synucleinopathies—a group of neurodegenerative diseases associated with pathological accumulation of the α-synuclein protein. Dementia due to PD and DLB shares clinical symptoms and neuropsychological profiles. Moreover, the core features and additional clinical signs and symptoms for these two very similar diseases are largely the same. Neuroimaging seems to be a promising method in differential diagnosis of dementia studies. The development of imaging methods or other objective measures to supplement clinical criteria for DLB is needed and a method which would accurately facilitate diagnosis of DLB prior to death is still being searched. Proton magnetic resonance spectroscopy (1H-MRS) provides a noninvasive method of assessing an in vivo biochemistry of brain tissue. This review summarizes the main results obtained from the application of neuroimaging techniques in DLB cases focusing on 1H-MRS.
PMCID: PMC4109391  PMID: 25110697
14.  Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies 
Neurology  2013;81(23):2032-2038.
To determine the rate of progression of mild cognitive impairment (MCI) to dementia with Lewy bodies (DLB).
We followed 337 patients with MCI in the Mayo Alzheimer's Disease Research Center (range 2–12 years). Competing risks survival models were used to examine the rates of progression to clinically probable DLB and Alzheimer disease (AD). A subset of patients underwent neuropathologic examination.
In this clinical cohort, 116 remained as MCI, while 49 progressed to probable DLB, 162 progressed to clinically probable AD, and 10 progressed to other dementias. Among nonamnestic MCI, progression rate to probable DLB was 20 events per 100 person-years and to probable AD was 1.6 per 100 person-years. Among amnestic MCI, progression rate to probable AD was 17 events per 100 person-years, and to DLB was 1.5 events per 100 person-years. In 88% of those who developed probable DLB, the baseline MCI diagnosis included attention and/or visuospatial deficits. Those who developed probable DLB were more likely to have baseline daytime sleepiness and subtle parkinsonism. In 99% of the clinically probable AD group, the baseline MCI diagnosis included memory impairment. Neuropathologic confirmation was obtained in 24 of 30 of those with clinically probable AD, and in 14 of 18 of those with clinically probable DLB.
In a clinical sample, patients with nonamnestic MCI were more likely to develop DLB, and those with amnestic MCI were more likely to develop probable AD.
PMCID: PMC3854825  PMID: 24212390
15.  Cognitive and affective theory of mind in dementia with Lewy bodies and Alzheimer’s disease 
Theory of mind (ToM) refers to the ability to attribute mental states, thoughts (cognitive component) or feelings (affective component) to others. This function has been studied in many neurodegenerative diseases; however, to our knowledge, no studies investigating ToM in dementia with Lewy bodies (DLB) have been published. The aim of our study was to assess ToM in patients with DLB and to search for neural correlates of potential deficits.
Thirty-three patients with DLB (DLB group) and 15 patients with Alzheimer’s disease (AD group), all in the early stage of the disease, as well as 16 healthy elderly control subjects (HC group), were included in the study. After a global cognitive assessment, we used the Faux Pas Recognition (FPR) test, the Reading the Mind in the Eyes (RME) test and Ekman’s Facial Emotion Recognition test to assess cognitive and affective components of ToM. Patients underwent cerebral 3-T magnetic resonance imaging, and atrophy of grey matter was analysed using voxel-based morphometry. We performed a one-sample t test to investigate the correlation between each ToM score and grey matter volume and a two-sample t test to compare patients with DLB impaired with those non-impaired for each test.
The DLB group performed significantly worse than the HC group on the FPR test (P = 0.033) and the RME test (P = 0.015). There was no significant difference between the AD group and the HC group or between the DLB group and the AD group. Some brain regions were associated with ToM impairments. The prefrontal cortex, with the inferior frontal cortex and the orbitofrontal cortex, was the main region, but we also found correlations with the temporoparietal junction, the precuneus, the fusiform gyrus and the insula.
This study is the first one to show early impairments of ToM in DLB. The two cognitive and affective components both appear to be affected in this disease. Among patients with ToM difficulties, we found atrophy in brain regions classically involved in ToM, which reinforces the neuronal network of ToM. Further studies are now needed to better understand the neural basis of such impairment.
Electronic supplementary material
The online version of this article (doi:10.1186/s13195-016-0179-9) contains supplementary material, which is available to authorized users.
PMCID: PMC4793654  PMID: 26979460
Theory of mind; Dementia with Lewy bodies; Alzheimer’s disease; Brain volume; Neural correlates
16.  Differential Diagnosis of Parkinsonism Using Dual-Phase F-18 FP-CIT PET Imaging 
Dopamine transporter (DAT) imaging can demonstrate presynaptic dopaminergic neuronal loss in Parkinson’s disease (PD). However, differentiating atypical parkinsonism (APD) from PD is often difficult. We investigated the usefulness of dual-phase F-18 FP-CIT positron emission tomography (PET) imaging in the differential diagnosis of parkinsonism.
Ninety-eight subjects [five normal, seven drug-induced parkinsonism (DIP), five essential tremor (ET), 24 PD, 20 multiple system atrophy-parkinson type (MSA-P), 13 multiple system atrophy-cerebellar type (MSA-C), 13 progressive supranuclear palsy (PSP), and 11 dementia with Lewy bodies (DLB)] underwent F-18 FP-CIT PET. PET images were acquired at 5 min (early phase) and 3 h (late phase) after F-18 FP-CIT administration (185 MBq). Regional uptake pattern of cerebral and cerebellar hemispheres was assessed on early phase images and striatal DAT binding pattern was assessed on late phase images, using visual, quantitative, and statistical parametric mapping (SPM) analyses.
Striatal DAT binding was normal in normal, ET, DIP, and MSA-C groups, but abnormal in PD, MSA-P, PSP, and DLB groups. No difference was found in regional uptake on early phase images among normal DAT binding groups, except in the MSA-C group. Abnormal DAT binding groups showed different regional uptake pattern on early phase images compared with PD in SPM analysis (FDR < 0.05). When discriminating APD from PD, visual interpretation of the early phase image showed high diagnostic sensitivity and specificity (75.4 % and 100 %, respectively). Regarding the ability to distinguish specific APD, sensitivities were 81 % for MSA-P, 77 % for MSA-C, 23 % for PSP, and 54.5 % for DLB.
Dual-phase F-18 FP-CIT PET imaging is useful in demonstrating striatal DAT loss in neurodegenerative parkinsonism, and also in differentiating APD, particularly MSA, from PD.
PMCID: PMC4035208  PMID: 24895507
Atypical parkinsonism; Dual-phase; F-18 FP-CIT; Positron emission tomography; PET
17.  Autonomic Dysfunctions in Parkinsonian Disorders 
Journal of Movement Disorders  2009;2(2):72-77.
Background and Purpose:
Symptoms of autonomic dysfunctions are common in the patients with parkinsonian disorders. Because clinical features of autonomic dysfunctions are diverse, the comprehensive evaluation is essential for the appropriate management. For the appreciation of autonomic dysfunctions and the identification of differences, patients with degenerative parkinsonisms are evaluated using structured questionnaire for autonomic dysfunction (ADQ).
Total 259 patients, including 192 patients with [idiopathic Parkinson’s disease (IPD, age 64.6 ± 9.6 years)], 37 with [multiple system atrophy (MSA, 62.8 ± 9.1)], 9 with [dementia with Lewy body (DLB, 73.9 ± 4.3)], and 21 with [progressive supranuclear palsy (PSP, 69.4 ± 9.6)]. The ADQ was structured for evaluation of the presence of symptoms and its severity due to autonomic dysfunction, covering gastrointestinal, urinary, sexual, cardiovascular and thermoregulatory domains. Patients were also evaluated for the orthostatic hypotension.
Although dementia with Lewy body (DLB) patients were oldest and duration of disease was longest in IPD, total ADQ scores of MSA and PSP (23.9 ± 12.6 and 21.1 ± 7.8) were significantly increased than that of IPD (15.1 ± 10.6). Urinary and cardiovascular symptom scores of MSA and gastrointestinal symptom score of PSP were significantly worse than those of IPD. The ratio of patient with orthostatic hypotension in IPD was 31.2% and not differed between groups (35.1% in MSA, 33.3% in DLB and 33.3% in PSP). But the systolic blood pressure dropped drastically after standing in patients with MSA and DLB than in patients with IPD and PSP.
Patients with degenerative parkinsonism showed widespread symptoms of autonomic dysfunctions. The severity of those symptoms in patients with PSP were comparing to that of MSA patients and worse than that of IPD.
PMCID: PMC4027718  PMID: 24868361
Parkinsonism; Autonomic dysfunction; Orthostatic hypotension
18.  Striatal and extrastriatal dopamine transporter levels relate to cognition in Lewy body diseases: an 11C altropane positron emission tomography study 
The biological basis of cognitive impairment in parkinsonian diseases is believed to be multifactorial. We investigated the contribution of dopamine deficiency to cognition in Parkinson disease (PD) and dementia with Lewy bodies (DLB) with dopamine transporter (DAT) imaging.
We acquired 11C altropane PET, magnetic resonance imaging and cognitive testing in 19 nondemented subjects with PD, 10 DLB and 17 healthy control subjects (HCS). We analyzed DAT concentration in putamen, caudate, anterior cingulate (AC), orbitofrontal and prefrontal regions, using the Standardized Uptake Volume Ratio with partial volume correction, and we related DAT concentration and global cortical thickness to neuropsychological performance.
DAT concentration in putamen and in caudate were similar in PD and DLB groups and significantly lower than in HCS. Reduced caudate DAT concentration was associated with worse Clinical Dementia Rating Scale–sum of boxes (CDR-SB) scores and visuospatial skills in DLB but not in PD or HCS groups. Adjusting for putamen DAT concentration, as a measure of severity of motor disease, caudate DAT concentration was lower in DLB than in PD. Higher AC DAT concentration was associated with lower putamen DAT concentration in DLB and with higher putamen DAT concentration in PD. Higher AC DAT concentration in DLB correlated with greater impairment in semantic memory and language.
Caudate and AC dopamine dysfunction contribute in opposing directions to cognitive impairment in DLB.
PMCID: PMC4245149  PMID: 25429309
19.  Demography, diagnostics, and medication in dementia with Lewy bodies and Parkinson’s disease with dementia: data from the Swedish Dementia Quality Registry (SveDem) 
Whether dementia with Lewy bodies (DLB) and Parkinson’s disease with dementia (PDD) should be considered as one entity or two distinct conditions is a matter of controversy. The aim of this study was to compare the characteristics of DLB and PDD patients using data from the Swedish Dementia Quality Registry (SveDem).
SveDem is a national Web-based quality registry initiated to improve the quality of diagnostic workup, treatment, and care of patients with dementia across Sweden. Patients with newly diagnosed dementia of various types were registered in SveDem during the years 2007–2011. The current cross-sectional report is based on DLB (n = 487) and PDD (n = 297) patients. Demographic characteristics, diagnostic workup, Mini-Mental State Examination (MMSE) score, and medications were compared between DLB and PDD groups.
No gender differences were observed between the two study groups (P = 0.706). PDD patients were significantly younger than DLB patients at the time of diagnosis (74.8 versus 76.8 years, respectively; P < 0.001). A significantly higher prevalence of patients with MMSE score ≤24 were found in the PDD group (75.2% versus 67.6%; P = 0.030). The mean number of performed diagnostic modalities was significantly higher in the DLB group (4.9 ± 1.7) than in the PDD group (4.1 ± 1.6; P < 0.001). DLB patients were more likely than PDD patients to be treated with cholinesterase inhibitors (odds ratio = 2.5, 95% confidence interval = 1.8–3.5), whereas the use of memantine, antidepressants, and antipsychotics did not differ between the groups.
This study demonstrates several differences in the dementia work-up between DLB and PDD. The onset of dementia was significantly earlier in PDD, while treatment with cholinesterase inhibitors was more common in DLB patients. Severe cognitive impairment (MMSE score ≤24) was more frequent in the PDD group, whereas more diagnostic tests were used to confirm a DLB diagnosis. Some similarities also were found, such as gender distribution and use of memantine, antidepressants, and antipsychotics drugs. Further follow-up cost-effectiveness studies are needed to provide more evidence for workup and treatment guidelines of DLB and PDD.
PMCID: PMC3700781  PMID: 23847419
dementia with Lewy bodies; Parkinson’s disease with dementia; age; diagnostic approach; medication; Mini-Mental State Examination
20.  Early Visuospatial Deficits Predict the Occurrence of Visual Hallucinations in Autopsy-Confirmed Dementia with Lewy Bodies 
The current study explored the value of visuospatial findings for predicting the occurrence of visual hallucinations (VH) in a sample of patients with Dementia with Lewy bodies (DLB) compared to patients with Alzheimer’s disease (AD).
Retrospective analysis of 55 autopsy-confirmed DLB and 55 demographically-similar, autopsy-confirmed AD cases determined whether severe initial visuospatial deficits on the WISC-R Block Design subtest predicted the development of VH. Visuospatial deficits were considered severe if Block Design z-scores were 2.5 or more standard deviations below the mean of a well-characterized normal control group (Severe-VIS; DLB: n=35, AD: n=26) and otherwise were considered mild (Mild-VIS; DLB: n=20, AD: n=29).
Forty percent of the Severe-VIS DLB group had baseline VH compared to 0% of Mild-VIS DLB patients. Only 8% of the Severe-VIS and 3% Mild-VIS AD patients had baseline VH. During the follow-up period (mean=5.0 years), an additional 61% of the Severe-VIS but only 11% of the Mild-VIS DLB patients developed VH. In that period, 38% of the Severe-VIS and 20% of the Mild-VIS AD patients developed VH. After considering initial MMSE score and rate of decline, logistic regression analyses found that performance on Block Design significantly predicted the presence of VH in the DLB group but not the AD group.
The presence of early, severe deficits on neuropsychological tests of visuospatial skill increases the likelihood that patients with suspected DLB will develop the prototypical DLB syndrome. The presence of such deficits may identify those DLB patients whose syndrome is driven by alpha-synuclein pathology rather than AD pathology and may inform treatment plans as well as future research.
PMCID: PMC3260388  PMID: 21997600
Lewy body disease; Hallucinations, visual; Alzheimer’s disease; Visuospatial cognition
21.  Comparison of Clinical Manifestation in Familial Alzheimer's disease and Dementia with Lewy Bodies 
Archives of neurology  2008;65(12):1634-1639.
The clinical delineation of Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) remains unclear.
To compare the neuropsychological profiles of patients with clinically diagnosed Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD).
We first compared measures of memory, orientation, language, executive, visual perception and visual construction function between persons with DLB and AD in two Caribbean Hispanic cohorts, including a family dataset (DLB =89; AD: n=118) and an epidemiologic dataset (DLB: n=70; AD: n=157). DLB in the family sample was further divided into i) families with two or more affected family members (DLB), or ii) one affected family member (DLB). To determine whether observed differences in cognitive profiles were driven by heritable factors, we then repeated the analyses in the epidemiologic cohort excluding all familial cases. We applied general linear models adjusting for age, sex, education, disease duration, and APOE-ε4 genotype.
Persons with DLB were in both cohorts more severely impaired in orientation, visual construction and non verbal reasoning after controlling for potential confounders. Persons with 2 or more DLB cases per family had the most severe impairment in episodic and semantic memory, followed by those with one DLB case per family, then by those with AD. When familial AD and DLB cases were excluded from the analysis in the epidemiologic cohort, the differences between the AD and DLB groups persisted but were attenuated.
Compared to persons with AD, persons with DLB are more severely impaired in various cognitive domains, particularly orientation, visual perception and visual construction. The difference appears strong in familial rather than sporadic DLB. Whether this divergence in cognitive functions is caused by gene-gene or gene-environmental interactions remains unclear.
PMCID: PMC2633487  PMID: 19064751
22.  PET imaging of amyloid with Florbetapir F 18 and PET imaging of dopamine degeneration with 18F-AV-133 (florbenazine) in patients with Alzheimer’s disease and Lewy body disorders 
BMC Neurology  2014;14:79.
Biomarkers based on the underlying pathology of Alzheimer’s disease (AD) and Dementia with Lewy Bodies (DLB) have the potential to improve diagnosis and understanding of the substrate for cognitive impairment in these disorders. The objective of this study was to compare the patterns of amyloid and dopamine PET imaging in patients with AD, DLB and Parkinson’s disease (PD) using the amyloid imaging agent florbetapir F 18 and 18F-AV-133 (florbenazine), a marker for vesicular monamine type 2 transporters (VMAT2).
Patients with DLB and AD, Parkinson’s disease (PD) and healthy controls (HC) were recruited for this study. On separate days, subjects received intravenous injections of florbetapir, and florbenazine. Amyloid burden and VMAT2 density were assessed quantitatively and by binary clinical interpretation. Imaging results for both tracers were compared across the four individual diagnostic groups and for combined groups based on underlying pathology (AD/DLB vs. PD/HC for amyloid burden and PD/DLB vs. AD/HC for VMAT binding) and correlated with measures of cognition and parkinsonism.
11 DLB, 10 AD, 5 PD, and 5 controls participated in the study. Amyloid binding was significantly higher in the combined AD/DLB patient group (n = 21) compared to the PD/HC groups (n = 10, mean SUVr: 1.42 vs. 1.07; p = 0.0006). VMAT2 density was significantly lower in the PD/DLB group (n = 16) compared to the AD/ HC group (n = 15; 1.83 vs. 2.97; p < 0.0001). Within the DLB group, there was a significant correlation between cognitive performance and striatal florbenazine binding (r = 0.73; p = 0.011).
The results of this study show significant differences in both florbetapir and florbenazine imaging that are consistent with expected pathology. In addition, VMAT density correlated significantly with cognitive impairment in DLB patients ( identifier: NCT00857506, registered March 5, 2009).
PMCID: PMC4027995  PMID: 24716655
PET imaging; Alzheimer’s disease; Parkinson’s disease; Biomarkers
23.  Imaging amyloid deposition in Lewy body diseases 
Neurology  2008;71(12):903-910.
Extrapyramidal motor symptoms precede dementia in Parkinson disease (PDD) by many years, whereas dementia occurs early in dementia with Lewy bodies (DLB). Despite this clinical distinction, the neuropsychological and neuropathologic features of these conditions overlap. In addition to widespread distribution of Lewy bodies, both diseases have variable burdens of neuritic plaques and neurofibrillary tangles characteristic of Alzheimer disease (AD).
To determine whether amyloid deposition, as assessed by PET imaging with the β-amyloid–binding compound Pittsburgh Compound B (PiB), can distinguish DLB from PDD, and to assess whether regional patterns of amyloid deposition correlate with specific motor or cognitive features.
Eight DLB, 7 PDD, 11 Parkinson disease (PD), 15 AD, and 37 normal control (NC) subjects underwent PiB-PET imaging and neuropsychological assessment. Amyloid burden was quantified using the PiB distribution volume ratio.
Cortical amyloid burden was higher in the DLB group than in the PDD group, comparable to the AD group. Amyloid deposition in the PDD group was low, comparable to the PD and NC groups. Relative to global cortical retention, occipital PiB retention was lower in the AD group than in the other groups. For the DLB, PDD, and PD groups, amyloid deposition in the parietal (lateral and precuneus)/posterior cingulate region was related to visuospatial impairment. Striatal PiB retention in the DLB and PDD groups was associated with less impaired motor function.
Global cortical amyloid burden is high in dementia with Lewy bodies (DLB) but low in Parkinson disease dementia. These data suggest that β-amyloid may contribute selectively to the cognitive impairment of DLB and may contribute to the timing of dementia relative to the motor signs of parkinsonism.
PMCID: PMC2637553  PMID: 18794492
24.  Cerebrospinal Fluid Biomarkers for Dementia with Lewy Bodies 
More than 750,000 of the UK population suffer from some form of cognitive impairment and dementia. Of these, 5–20% will have Dementia with Lewy Bodies (DLB). Clinico-pathological studies have shown that it is the low frequency of DLB clinical core features that makes the DLB diagnosis hardly recognisable during life, and easily misdiagnosed for other forms of dementia. This has an impact on the treatment and long-term care of the affected subjects. Having a biochemical test, based on quantification of a specific DLB biomarker within Cerebrospinal Fluid (CSF) could be an effective diagnostic method to improve the differential diagnosis. Although some of the investigated DLB CSF biomarkers are well within the clinical criteria for sensitivity and specificity (>90%), they all seem to be confounded by the contradictory data for each of the major groups of biomarkers (α-synuclein, tau and amyloid proteins). However, a combination of CSF measures appear to emerge, that may well be able to differentiate DLB from other dementias: α-synuclein reduction in early DLB, a correlation between CSF α-synuclein and Aβ42 measures (characteristic for DLB only), and t-tau and p-tau181 profile (differentiating AD from DLB).
PMCID: PMC2965495  PMID: 21048932
25.  The clinical characteristics of dementia with Lewy bodies and a consideration of prodromal diagnosis 
Dementia with Lewy bodies (DLB) is the second most common type of degenerative dementia following Alzheimer’s disease (AD). DLB is clinically and pathologically related to Parkinson's disease (PD) and PD dementia, and the three disorders can be viewed as existing on a spectrum of Lewy body disease. In recent years there has been a concerted effort to establish the phenotypes of AD and PD in the prodromal phase (before the respective syndromes of cognitive and motor impairment are expressed). Evidence for the prodromal presentation of DLB is also emerging. This paper briefly reviews what is known about the clinical presentation of prodromal DLB before discussing the pathology of Lewy body disease and how this relates to potential biomarkers of prodromal DLB. The presenting features of DLB can be broadly placed in three categories: cognitive impairment (particularly nonamnestic cognitive impairments), behavioural/psychiatric phenomena (for example, hallucinations, rapid eye movement sleep behaviour disorder (RBD)) and physical symptoms (for example, parkinsonism, decreased sense of smell, autonomic dysfunction). Some noncognitive symptoms such as constipation, RBD, hyposmia and postural dizziness can predate the onset of memory impairment by several years in DLB. Pathological studies of Lewy body disease have found that the earliest sites of involvement are the olfactory bulb, the dorsal motor nucleus of the vagal nerve, the peripheral autonomic nervous system, including the enteric nervous system, and the brainstem. Some of the most promising early markers for DLB include the presence of RBD, autonomic dysfunction or hyposmia, 123I-metaiodobenzylguanidine cardiac scintigraphy, measures of substantia nigra pathology and skin biopsy for α-synuclein in peripheral autonomic nerves. In the absence of disease-modifying therapies, the diagnosis of prodromal DLB is of limited use in the clinic. That said, knowledge of the prodromal development of DLB could help clinicians identify cases of DLB where the diagnosis is uncertain. Prodromal diagnosis is of great importance in research, where identifying Lewy body disease at an earlier stage may allow researchers to investigate the initial phases of dementia pathophysiology, develop treatments designed to interrupt the development of the dementia syndrome and accurately identify the patients most likely to benefit from these treatments.
PMCID: PMC4255387  PMID: 25484925

Results 1-25 (1322937)