Search tips
Search criteria

Results 1-25 (1214646)

Clipboard (0)

Related Articles

1.  Genome-Scale Analysis of Mycoplasma agalactiae Loci Involved in Interaction with Host Cells 
PLoS ONE  2011;6(9):e25291.
Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions.
PMCID: PMC3179502  PMID: 21966487
2.  Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein 
BMC Biochemistry  2009;10:3.
Iron-sulfur clusters are ubiquitous and evolutionarily ancient inorganic prosthetic groups, the biosynthesis of which depends on complex protein machineries. Three distinct assembly systems involved in the maturation of cellular Fe-S proteins have been determined, designated the NIF, ISC and SUF systems. Although well described in several organisms, these machineries are poorly understood in Gram-positive bacteria. Within the Firmicutes phylum, the Enterococcus spp. genus have recently assumed importance in clinical microbiology being considered as emerging pathogens for humans, wherein Enterococcus faecalis represents the major species associated with nosocomial infections. The aim of this study was to carry out a phylogenetic analysis in Enterococcus faecalis V583 and a structural and conformational characterisation of it SufU protein.
BLAST searches of the Enterococcus genome revealed a series of genes with sequence similarity to the Escherichia coli SUF machinery of [Fe-S] cluster biosynthesis, namely sufB, sufC, sufD and SufS. In addition, the E. coli IscU ortholog SufU was found to be the scaffold protein of Enterococcus spp., containing all features considered essential for its biological activity, including conserved amino acid residues involved in substrate and/or co-factor binding (Cys50,76,138 and Asp52) and, phylogenetic analyses showed a close relationship with orthologues from other Gram-positive bacteria. Molecular dynamics for structural determinations and molecular modeling using E. faecalis SufU primary sequence protein over the PDB:1su0 crystallographic model from Streptococcus pyogenes were carried out with a subsequent 50 ns molecular dynamic trajectory. This presented a stable model, showing secondary structure modifications near the active site and conserved cysteine residues. Molecular modeling using Haemophilus influenzae IscU primary sequence over the PDB:1su0 crystal followed by a MD trajectory was performed to analyse differences in the C-terminus region of Gram-positive SufU and Gram-negative orthologous proteins, in which several modifications in secondary structure were observed.
The data describe the identification of the SUF machinery for [Fe-S] cluster biosynthesis present in the Firmicutes genome, showing conserved sufB, sufC, sufD and sufS genes and the presence of the sufU gene coding for scaffold protein, instead of sufA; neither sufE nor sufR are present. Primary sequences and structural analysis of the SufU protein demonstrated its structural-like pattern to the scaffold protein IscU nearby on the ISC machinery. E. faecalis SufU molecular modeling showed high flexibility over the active site regions, and demonstrated the existence of a specific region in Firmicutes denoting the Gram positive region (GPR), suggested as a possible candidate for interaction with other factors and/or regulators.
PMCID: PMC2644719  PMID: 19187533
3.  Being Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial Genome 
PLoS Genetics  2007;3(5):e75.
Mycoplasmas are commonly described as the simplest self-replicating organisms, whose evolution was mainly characterized by genome downsizing with a proposed evolutionary scenario similar to that of obligate intracellular bacteria such as insect endosymbionts. Thus far, analysis of mycoplasma genomes indicates a low level of horizontal gene transfer (HGT) implying that DNA acquisition is strongly limited in these minimal bacteria. In this study, the genome of the ruminant pathogen Mycoplasma agalactiae was sequenced. Comparative genomic data and phylogenetic tree reconstruction revealed that ∼18% of its small genome (877,438 bp) has undergone HGT with the phylogenetically distinct mycoides cluster, which is composed of significant ruminant pathogens. HGT involves genes often found as clusters, several of which encode lipoproteins that usually play an important role in mycoplasma–host interaction. A decayed form of a conjugative element also described in a member of the mycoides cluster was found in the M. agalactiae genome, suggesting that HGT may have occurred by mobilizing a related genetic element. The possibility of HGT events among other mycoplasmas was evaluated with the available sequenced genomes. Our data indicate marginal levels of HGT among Mycoplasma species except for those described above and, to a lesser extent, for those observed in between the two bird pathogens, M. gallisepticum and M. synoviae. This first description of large-scale HGT among mycoplasmas sharing the same ecological niche challenges the generally accepted evolutionary scenario in which gene loss is the main driving force of mycoplasma evolution. The latter clearly differs from that of other bacteria with small genomes, particularly obligate intracellular bacteria that are isolated within host cells. Consequently, mycoplasmas are not only able to subvert complex hosts but presumably have retained sexual competence, a trait that may prevent them from genome stasis and contribute to adaptation to new hosts.
Author Summary
Mycoplasmas are cell wall–lacking prokaryotes that evolved from ancestors common to Gram-positive bacteria by way of massive losses of genetic material. With their minimal genome, mycoplasmas are considered to be the simplest free-living organisms, yet several species are successful pathogens of man and animal. In this study, we challenged the commonly accepted view in which mycoplasma evolution is driven only by genome down-sizing. Indeed, we showed that a significant amount of genes underwent horizontal transfer among different mycoplasma species that share the same ruminant hosts. In these species, the occurrence of a genetic element that can promote DNA transfer via cell-to-cell contact suggests that some mycoplasmas may have retained or acquired sexual competence. Transferred genes were found to encode proteins that are likely to be associated with mycoplasma–host interactions. Sharing genetic resources via horizontal gene transfer may provide mycoplasmas with a means for adapting to new niches or to new hosts and for avoiding irreversible genome erosion.
PMCID: PMC1868952  PMID: 17511520
4.  SufU Is an Essential Iron-Sulfur Cluster Scaffold Protein in Bacillus subtilis▿ 
Journal of Bacteriology  2010;192(6):1643-1651.
Bacteria use three distinct systems for iron-sulfur (Fe/S) cluster biogenesis: the ISC, SUF, and NIF machineries. The ISC and SUF systems are widely distributed, and many bacteria possess both of them. In Escherichia coli, ISC is the major and constitutive system, whereas SUF is induced under iron starvation and/or oxidative stress. Genomic analysis of the Fe/S cluster biosynthesis genes in Bacillus subtilis suggests that this bacterium's genome encodes only a SUF system consisting of a sufCDSUB gene cluster and a distant sufA gene. Mutant analysis of the putative Fe/S scaffold genes sufU and sufA revealed that sufU is essential for growth under minimal standard conditions, but not sufA. The drastic growth retardation of a conditional mutant depleted of SufU was coupled with a severe reduction of aconitase and succinate dehydrogenase activities in total-cell lysates, suggesting a crucial function of SufU in Fe/S protein biogenesis. Recombinant SufU was devoid of Fe/S clusters after aerobic purification. Upon in vitro reconstitution, SufU bound an Fe/S cluster with up to ∼1.5 Fe and S per monomer. The assembled Fe/S cluster could be transferred from SufU to the apo form of isopropylmalate isomerase Leu1, rapidly forming catalytically active [4Fe-4S]-containing holo-enzyme. In contrast to native SufU, its D43A variant carried a Fe/S cluster after aerobic purification, indicating that the cluster is stabilized by this mutation. Further, we show that apo-SufU is an activator of the cysteine desulfurase SufS by enhancing its activity about 40-fold in vitro. SufS-dependent formation of holo-SufU suggests that SufU functions as an Fe/S cluster scaffold protein tightly cooperating with the SufS cysteine desulfurase.
PMCID: PMC2832514  PMID: 20097860
5.  Experimental Infections with Mycoplasma agalactiae Identify Key Factors Involved in Host-Colonization 
PLoS ONE  2014;9(4):e93970.
Mechanisms underlying pathogenic processes in mycoplasma infections are poorly understood, mainly because of limited sequence similarities with classical, bacterial virulence factors. Recently, large-scale transposon mutagenesis in the ruminant pathogen Mycoplasma agalactiae identified the NIF locus, including nifS and nifU, as essential for mycoplasma growth in cell culture, while dispensable in axenic media. To evaluate the importance of this locus in vivo, the infectivity of two knock-out mutants was tested upon experimental infection in the natural host. In this model, the parental PG2 strain was able to establish a systemic infection in lactating ewes, colonizing various body sites such as lymph nodes and the mammary gland, even when inoculated at low doses. In these PG2-infected ewes, we observed over the course of infection (i) the development of a specific antibody response and (ii) dynamic changes in expression of M. agalactiae surface variable proteins (Vpma), with multiple Vpma profiles co-existing in the same animal. In contrast and despite a sensitive model, none of the knock-out mutants were able to survive and colonize the host. The extreme avirulent phenotype of the two mutants was further supported by the absence of an IgG response in inoculated animals. The exact role of the NIF locus remains to be elucidated but these data demonstrate that it plays a key role in the infectious process of M. agalactiae and most likely of other pathogenic mycoplasma species as many carry closely related homologs.
PMCID: PMC3974822  PMID: 24699671
6.  Chromosomal Transfers in Mycoplasmas: When Minimal Genomes Go Mobile 
mBio  2014;5(6):e01958-14.
Horizontal gene transfer (HGT) is a main driving force of bacterial evolution and innovation. This phenomenon was long thought to be marginal in mycoplasmas, a large group of self-replicating bacteria characterized by minute genomes as a result of successive gene losses during evolution. Recent comparative genomic analyses challenged this paradigm, but the occurrence of chromosomal exchanges had never been formally addressed in mycoplasmas. Here, we demonstrated the conjugal transfer of large chromosomal regions within and among ruminant mycoplasma species, with the incorporation of the incoming DNA occurring by homologous recombination into the recipient chromosome. By combining classical mating experiments with high-throughput next-generation sequencing, we documented the transfer of almost every position of the mycoplasma chromosome. Mycoplasma conjugation relies on the occurrence of an integrative conjugative element (ICE) in at least one parent cell. While ICE propagates horizontally from ICE-positive to ICE-negative cells, chromosomal transfers (CTs) occurred in the opposite direction, from ICE-negative to ICE-positive cells, independently of ICE movement. These findings challenged the classical mechanisms proposed for other bacteria in which conjugative CTs are driven by conjugative elements, bringing into the spotlight a new means for rapid mycoplasma innovation. Overall, they radically change our current views concerning the evolution of mycoplasmas, with particularly far-reaching implications given that over 50 species are human or animal pathogens.
Horizontal gene transfers (HGT) shape bacterial genomes and are key contributors to microbial diversity and innovation. One main mechanism involves conjugation, a process that allows the simultaneous transfer of significant amounts of DNA upon cell-to-cell contact. Recognizing and deciphering conjugal mechanisms are thus essential in understanding the impact of gene flux on bacterial evolution. We addressed this issue in mycoplasmas, the smallest and simplest self-replicating bacteria. In these organisms, HGT was long thought to be marginal. We showed here that nearly every position of the Mycoplasma agalactiae chromosome could be transferred via conjugation, using an unconventional mechanism. The transfer involved DNA blocks containing up to 80 genes that were incorporated into the host chromosome by homologous recombination. These findings radically change our views concerning mycoplasma evolution and adaptation with particularly far-reaching implications given that over 50 species are human or animal pathogens.
PMCID: PMC4251992  PMID: 25425234
7.  Genes Found Essential in Other Mycoplasmas Are Dispensable in Mycoplasma bovis 
PLoS ONE  2014;9(6):e97100.
Mycoplasmas are regarded to be useful models for studying the minimum genetic complement required for independent survival of an organism. Mycoplasma bovis is a globally distributed pathogen causing pneumonia, mastitis, arthritis, otitis media and reproductive tract disease, and genome sequences of three strains, the type strain PG45 and two strains isolated in China, have been published. In this study, several Tn4001 based transposon constructs were generated and used to create a M. bovis PG45 insertional mutant library. Direct genome sequencing of 319 independent insertions detected disruptions in 129 genes in M. bovis, 48 of which had homologues in Mycoplasma mycoides subspecies mycoides SC and 99 of which had homologues in Mycoplasma agalactiae. Sixteen genes found to be essential in previous studies on other mycoplasma species were found to be dispensable. Five of these genes have previously been predicted to be part of the core set of 153 essential genes in mycoplasmas. Thus this study has extended the list of non-essential genes of mycoplasmas from that previously generated by studies in other species.
PMCID: PMC4045577  PMID: 24897538
8.  In vitro and in vivo cell invasion and systemic spreading of Mycoplasma agalactiae in the sheep infection model 
Generally regarded as extracellular pathogens, molecular mechanisms of mycoplasma persistence, chronicity and disease spread are largely unknown. Mycoplasma agalactiae, an economically important pathogen of small ruminants, causes chronic infections that are difficult to eradicate. Animals continue to shed the agent for several months and even years after the initial infection, in spite of long antibiotic treatment. However, little is known about the strategies that M. agalactiae employs to survive and spread within an immunocompetent host to cause chronic disease. Here, we demonstrate for the first time its ability to invade cultured human (HeLa) and ruminant (BEND and BLF) host cells. Presence of intracellular mycoplasmas is clearly substantiated using differential immunofluorescence technique and quantitative gentamicin invasion assays. Internalized M. agalactiae could survive and exit the cells in a viable state to repopulate the extracellular environment after complete removal of extracellular bacteria with gentamicin. Furthermore, an experimental sheep intramammary infection was carried out to evaluate its systemic spread to organs and host niches distant from the site of initial infection. Positive results obtained via PCR, culture and immunohistochemistry, especially the latter depicting the presence of M. agalactiae in the cytoplasm of mammary duct epithelium and macrophages, clearly provide the first formal proof of M. agalactiae's capability to translocate across the mammary epithelium and systemically disseminate to distant inner organs. Altogether, the findings of these in vitro and in vivo studies indicate that M. agalactiae is capable of entering host cells and this might be the strategy that it employs at a population level to ward off the host immune response and antibiotic action, and to disseminate to new and safer niches to later egress and once again proliferate upon the return of favorable conditions to cause persistent chronic infections.
PMCID: PMC4282308  PMID: 25129554
Mycoplasma agalactiae; Cell invasion; Systemic spreading; Persistence; Immunohistochemistry; Intracellular
9.  Identification and Functional Mapping of the Mycoplasma fermentans P29 Adhesin  
Infection and Immunity  2002;70(9):4925-4935.
Initial adherence interactions between mycoplasmas and mammalian cells are important for host colonization and may contribute to subsequent pathogenic processes. Despite significant progress toward understanding the role of specialized, complex tip structures in the adherence of some mycoplasmas, particularly those that infect humans, less is known about adhesins through which other mycoplasmas of this host bind to diverse cell types, even though simpler surface components are likely to be involved. We show by flow cytometric analysis that a soluble recombinant fusion protein (FP29), representing the abundant P29 surface lipoprotein of Mycoplasma fermentans, binds human HeLa cells and inhibits M. fermentans binding to these cells, in both a quantitative and a saturable manner, whereas analogous fusion proteins representing other mycoplasma surface proteins did not. Constructs representing nested N- or C-terminal truncations of FP29 allowed initial mapping of this specific adherence function to a central region of the P29 sequence containing a 36-amino-acid disulfide loop. A derivative of FP29 containing a mutation converting one participating Cys to Ser, precluding intrachain disulfide bond formation, retained full activity. Together these results suggest that the direct interaction of M. fermentans with a ligand on the HeLa cell surface involves a limited segment of the P29 surface lipoprotein and requires neither the disulfide bond nor the contribution of adjacent portions of the protein. Earlier results indicating phase-variable display of monoclonal antibody surface epitopes on P29, now recognized to be outside this ligand binding region, raise the possibility that variation of mycoplasma surface architecture might alter the presentation of the binding region and the adherence phenotype. Preliminary results further indicated that FP29 could inhibit binding to HeLa cells by Mycoplasma hominis, a distinct human mycoplasma species displaying the phase-variable adhesin Vaa, but not that by Mycoplasma capricolum, an organism infecting caprine species. This result raises the additional, testable possibility that a common host cell ligand for two human mycoplasma species may be recognized through structurally dissimilar adhesins that undergo phase variation by two distinct mechanisms, governing protein expression (Vaa) or surface masking (P29).
PMCID: PMC128281  PMID: 12183538
10.  Variable Lipoprotein Genes of Mycoplasma agalactiae Are Activated In Vivo by Promoter Addition via Site-Specific DNA Inversions  
Infection and Immunity  2003;71(7):3821-3830.
Mycoplasma agalactiae, the etiological agent of contagious agalactia of small ruminants, has a family of related genes (avg genes) which encode surface lipoprotein antigens that undergo phase variation. A series of 13 M. agalactiae clonal isolates, obtained from one chronically infected animal over a period of 7 months, were found to undergo major rearrangement events within the avg genomic locus. We show that these rearrangements regulate the phase-variable expression of individual avg genes. Northern blot analysis and reverse transcription-PCR showed that only one avg gene is transcribed, while the other avg genes are transcriptionally silent. Sequence analysis and primer extension experiments with two M. agalactiae clonal isolates showed that a specific 182-bp avg 5′ upstream region (avg-B2) that is present as a single chromosomal copy serves as an active promoter and exhibits a high level of homology with the vsp promoter of the bovine pathogen Mycoplasma bovis. PCR analysis showed that each avg gene is associated with the avg-B2 promoter in a subpopulation of cells that is present in each subclone. Multiple sequence-specific sites for DNA recombination (vis-like), which are presumably recognized by site-specific recombinase, were identified within the conserved avg 5′ upstream regions of all avg genes and were found to be identical to the recombination sites of the M. bovis vsp locus. In addition, a gene encoding a member of the integrase family of tyrosine site-specific recombinases was identified adjacent to the variable avg locus. The molecular genetic basis for avg phase-variable expression appears to be mediated by site-specific DNA inversions occurring in vivo that allow activation of a silent avg gene by promoter addition. A model for the control of avg genes is proposed.
PMCID: PMC162021  PMID: 12819065
11.  Large-Scale Transposon Mutagenesis of Mycoplasma pulmonis 
Molecular microbiology  2008;69(1):67-76.
To obtain mutants for the study of the basic biology and pathogenic mechanisms of mycoplasmas, the insertion site of transposon Tn4001T was determined for 1,700 members of a library of Mycoplasma pulmonis mutants. After evaluating several criteria for gene disruption, we concluded that 321 of the 782 protein coding regions were inactivated. The dispensable and essential genes of M. pulmonis were compared to those reported for Mycoplasma genitalium and Bacillus subtilis. Perhaps the most surprising result of the current study was that unlike other bacteria, ribosomal proteins S18 and L28 were dispensable. Carbohydrate transport and the susceptibility of selected mutants to UV irradiation were examined to assess whether active transposition of Tn4001T within the genome would confound phenotypic analysis. In contrast to earlier reports suggesting that mycoplasmas were limited in their DNA repair machinery, mutations in recA, uvrA, uvrB and uvrC resulted in a DNA-repair deficient phenotype. A mutant with a defect in transport of N-acetylglucosamine was identified.
PMCID: PMC2453687  PMID: 18452587
12.  Occurrence, Plasticity, and Evolution of the vpma Gene Family, a Genetic System Devoted to High-Frequency Surface Variation in Mycoplasma agalactiae▿ † 
Journal of Bacteriology  2009;191(13):4111-4121.
Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits a very versatile surface architecture by switching multiple, related lipoproteins (Vpmas) on and off. In the type strain, PG2, Vpma phase variation is generated by a cluster of six vpma genes that undergo frequent DNA rearrangements via site-specific recombination. To further comprehend the degree of diversity that can be generated at the M. agalactiae surface, the vpma gene repertoire of a field strain, 5632, was analyzed and shown to contain an extended repertoire of 23 vpma genes distributed between two loci located 250 kbp apart. Loci I and II include 16 and 7 vpma genes, respectively, with all vpma genes of locus II being duplicated at locus I. Several Vpmas displayed a chimeric structure suggestive of homologous recombination, and a global proteomic analysis further indicated that at least 13 of the 16 Vpmas can be expressed by the 5632 strain. Because a single promoter is present in each vpma locus, concomitant Vpma expression can occur in a strain with duplicated loci. Consequently, the number of possible surface combinations is much higher for strain 5632 than for the type strain. Finally, our data suggested that insertion sequences are likely to be involved in 5632 vpma locus duplication at a remote chromosomal position. The role of such mobile genetic elements in chromosomal shuffling of genes encoding major surface components may have important evolutionary and epidemiological consequences for pathogens, such as mycoplasmas, that have a reduced genome and no cell wall.
PMCID: PMC2698505  PMID: 19376859
13.  Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm Formation in Streptococcus agalactiae 
PLoS Pathogens  2009;5(5):e1000422.
Streptococcus agalactiae is a common human commensal and a major life-threatening pathogen in neonates. Adherence to host epithelial cells is the first critical step of the infectious process. Pili have been observed on the surface of several gram-positive bacteria including S. agalactiae. We previously characterized the pilus-encoding operon gbs1479-1474 in strain NEM316. This pilus is composed of three structural subunit proteins: Gbs1478 (PilA), Gbs1477 (PilB), and Gbs1474 (PilC), and its assembly involves two class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component; PilA, the pilus associated adhesin, and PilC, are both accessory proteins incorporated into the pilus backbone. We first addressed the role of the housekeeping sortase A in pilus biogenesis and showed that it is essential for the covalent anchoring of the pilus fiber to the peptidoglycan. We next aimed at understanding the role of the pilus fiber in bacterial adherence and at resolving the paradox of an adhesive but dispensable pilus. Combining immunoblotting and electron microscopy analyses, we showed that the PilB fiber is essential for efficient PilA display on the surface of the capsulated strain NEM316. We then demonstrated that pilus integrity becomes critical for adherence to respiratory epithelial cells under flow-conditions mimicking an in vivo situation and revealing the limitations of the commonly used static adherence model. Interestingly, PilA exhibits a von Willebrand adhesion domain (VWA) found in many extracellular eucaryotic proteins. We show here that the VWA domain of PilA is essential for its adhesive function, demonstrating for the first time the functionality of a prokaryotic VWA homolog. Furthermore, the auto aggregative phenotype of NEM316 observed in standing liquid culture was strongly reduced in all three individual pilus mutants. S. agalactiae strain NEM316 was able to form biofilm in microtiter plate and, strikingly, the PilA and PilB mutants were strongly impaired in biofilm formation. Surprisingly, the VWA domain involved in adherence to epithelial cells was not required for biofilm formation.
Author Summary
Streptococcus agalactiae (Group B Streptococcus) is a leading cause of sepsis (blood infection) and meningitis (brain infection) in newborns. Most bacterial pathogens have long filamentous structures known as pili or fimbriae, which are often involved in the initial adhesion of bacteria to host tissues but also in bacteria–bacteria interactions, resulting in biofilm formation. Our previous functional characterization of the pilus locus in S. agalactiae showed that it encodes a major pilin and two minor pilin subunits that are covalently polymerized by the action of two enzymes belonging to the sortase C family. One of the accessory pilins is responsible for the adhesive property of the pilus. However, this initial study raised two major questions that were addressed in the present work: i) what anchors the pilus to the cell wall and ii) what is the function of the pilus fiber itself. We showed that the pilus is essential for optimal display of the pilus-associated adhesin and overcomes the masking effect of the capsule. Pilus integrity was shown to be critical in adherence assays under flow conditions. We also report that GBS can form biofilms and that pili play an important role in this process.
PMCID: PMC2674936  PMID: 19424490
14.  The liposoluble proteome of Mycoplasma agalactiae: an insight into the minimal protein complement of a bacterial membrane 
BMC Microbiology  2010;10:225.
Mycoplasmas are the simplest bacteria capable of autonomous replication. Their evolution proceeded from gram-positive bacteria, with the loss of many biosynthetic pathways and of the cell wall. In this work, the liposoluble protein complement of Mycoplasma agalactiae, a minimal bacterial pathogen causing mastitis, polyarthritis, keratoconjunctivitis, and abortion in small ruminants, was subjected to systematic characterization in order to gain insights into its membrane proteome composition.
The selective enrichment for M. agalactiae PG2T liposoluble proteins was accomplished by means of Triton X-114 fractionation. Liposoluble proteins were subjected to 2-D PAGE-MS, leading to the identification of 40 unique proteins and to the generation of a reference 2D map of the M. agalactiae liposoluble proteome. Liposoluble proteins from the type strain PG2 and two field isolates were then compared by means of 2D DIGE, revealing reproducible differences in protein expression among isolates. An in-depth analysis was then performed by GeLC-MS/MS in order to achieve a higher coverage of the liposoluble proteome. Using this approach, a total of 194 unique proteins were identified, corresponding to 26% of all M. agalactiae PG2T genes. A gene ontology analysis and classification for localization and function was also carried out on all protein identifications. Interestingly, the 11.5% of expressed membrane proteins derived from putative horizontal gene transfer events.
This study led to the in-depth systematic characterization of the M. agalactiae liposoluble protein component, providing useful insights into its membrane organization.
PMCID: PMC2941501  PMID: 20738845
15.  Homologue of Macrophage-Activating Lipoprotein in Mycoplasma gallisepticum Is Not Essential for Growth and Pathogenicity in Tracheal Organ Cultures 
Journal of Bacteriology  2003;185(8):2538-2547.
While the genomes of a number of Mycoplasma species have been fully determined, there has been limited characterization of which genes are essential. The surface protein (p47) identified by monoclonal antibody B3 is the basis for an enzyme-linked immunosorbent assay for serological detection of Mycoplasma gallisepticum infection and appears to be constitutively expressed. Its gene was cloned, and the DNA sequence was determined. Subsequent analysis of the p47 amino acid sequence and searches of DNA databases found homologous gene sequences in the genomes of M. pneumoniae and M. genitalium and identity with a gene family in Ureaplasma urealyticum and genes in M. agalactiae and M. fermentans. The proteins encoded by these genes were found to belong to a family of basic membrane proteins (BMP) that are found in a wide range of bacteria, including a number of pathogens. Several of the BMP family members, including p47, contain selective lipoprotein-associated motifs that are found in macrophage-activating lipoprotein 404 of M. fermentans and lipoprotein P48 of M. agalactiae. The p47 gene was predicted to encode a 59-kDa peptide, but affinity-purified p47 had a molecular mass of approximately 47 kDa, as determined by polyacrylamide gel analysis. Analysis of native and recombinant p47 by mass peptide fingerprinting revealed the absence of the carboxyl end of the protein encoded by the p47 gene in native p47, which would account for the difference seen in the predicted and measured molecular weights and indicated posttranslational cleavage of the lipoprotein at its carboxyl end. A DNA construct containing the p47 gene interrupted by the gene encoding tetracycline resistance was used to transform M. gallisepticum cells. A tetracycline-resistant mycoplasma clone, P2, contained the construct inserted within the genomic p47 gene, with crossovers occurring between 73 bp upstream and 304 bp downstream of the inserted tetracycline resistance gene. The absence of p47 protein in clone P2 was determined by the lack of reactivity with rabbit anti-p47 sera or monoclonal antibody B3 in Western blots of whole-cell proteins. There was no difference between the p47− mutant and wild-type M. gallisepticum in pathogenicity in chicken tracheal organ cultures. Thus, p47, although homologous to genes that occur in many prokaryotes, is not essential for growth in vitro or for attachment and the initial stages of pathogenesis in chickens.
PMCID: PMC152605  PMID: 12670978
16.  RovS and Its Associated Signaling Peptide Form a Cell-To-Cell Communication System Required for Streptococcus agalactiae Pathogenesis 
mBio  2015;6(1):e02306-14.
Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae’s ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies.
Importance  Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we identified the different players involved in the SHP/Rgg system in S. agalactiae, which is the leading agent of severe infections in human newborns. We have identified a direct target of the Rgg regulator in S. agalactiae (called RovS) and examined a previously proposed target, all in the context of associated SHP. For the first time, we have also demonstrated the implication of the SHP/RovS mechanism in virulence, as well as its host organ specificity. Thus, this cell-to-cell communication system may represent a future target for S. agalactiae disease treatment.
Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we identified the different players involved in the SHP/Rgg system in S. agalactiae, which is the leading agent of severe infections in human newborns. We have identified a direct target of the Rgg regulator in S. agalactiae (called RovS) and examined a previously proposed target, all in the context of associated SHP. For the first time, we have also demonstrated the implication of the SHP/RovS mechanism in virulence, as well as its host organ specificity. Thus, this cell-to-cell communication system may represent a future target for S. agalactiae disease treatment.
PMCID: PMC4324310  PMID: 25604789
17.  A Metabolic Enzyme as a Primary Virulence Factor of Mycoplasma mycoides subsp. mycoides Small Colony 
Journal of Bacteriology  2005;187(19):6824-6831.
During evolution, pathogenic bacteria have developed complex interactions with their hosts. This has frequently involved the acquisition of virulence factors on pathogenicity islands, plasmids, transposons, or prophages, allowing them to colonize, survive, and replicate within the host. In contrast, Mycoplasma species, the smallest self-replicating organisms, have regressively evolved from gram-positive bacteria by reduction of the genome to a minimal size, with the consequence that they have economized their genetic resources. Hence, pathogenic Mycoplasma species lack typical primary virulence factors such as toxins, cytolysins, and invasins. Consequently, little is known how pathogenic Mycoplasma species cause host cell damage, inflammation, and disease. Here we identify a novel primary virulence determinant in Mycoplasma mycoides subsp. mycoides Small Colony (SC), which causes host cell injury. This virulence factor, released in significant amounts in the presence of glycerol in the growth medium, consists of toxic by-products such as H2O2 formed by l-α-glycerophosphate oxidase (GlpO), a membrane-located enzyme that is involved in the metabolism of glycerol. When embryonic calf nasal epithelial cells are infected with M. mycoides subsp. mycoides SC in the presence of physiological amounts of glycerol, H2O2 is released inside the cells prior to cell death. This process can be inhibited with monospecific anti-GlpO antibodies.
PMCID: PMC1251598  PMID: 16166545
18.  A novel transposon construct expressing PhoA with potential for studying protein expression and translocation in Mycoplasma gallisepticum  
BMC Microbiology  2012;12:138.
Mycoplasma gallisepticum is a major poultry pathogen and causes severe economic loss to the poultry industry. In mycoplasmas lipoproteins are abundant on the membrane surface and play a critical role in interactions with the host, but tools for exploring their molecular biology are limited.
In this study we examined whether the alkaline phosphatase gene (phoA ) from Escherichia coli could be used as a reporter in mycoplasmas. The promoter region from the gene for elongation factor Tu (ltuf) and the signal and acylation sequences from the vlhA 1.1 gene, both from Mycoplasma gallisepticum , together with the coding region of phoA , were assembled in the transposon-containing plasmid pISM2062.2 (pTAP) to enable expression of alkaline phosphatase (AP) as a recombinant lipoprotein. The transposon was used to transform M. gallisepticum strain S6. As a control, a plasmid containing a similar construct, but lacking the signal and acylation sequences, was also produced (pTP) and also introduced into M. gallisepticum . Using a colorimetric substrate for detection of alkaline phosphatase activity, it was possible to detect transformed M. gallisepticum . The level of transcription of phoA in organisms transformed with pTP was lower than in those transformed with pTAP, and alkaline phosphatase was not detected by immunoblotting or enzymatic assays in pTP transformants, eventhough alkaline phosphatase expression could be readily detected by both assays in pTAP transformants. Alkaline phosphatase was shown to be located in the hydrophobic fraction of transformed mycoplasmas following Triton X-114 partitioning and in the membrane fraction after differential fractionation. Trypsin proteolysis confirmed its surface exposure. The inclusion of the VlhA lipoprotein signal sequence in pTAP enabled translocation of PhoA and acylation of the amino terminal cysteine moiety, as confirmed by the effect of treatment with globomycin and radiolabelling studies with [14 C]palmitate. PhoA could be identified by mass-spectrometry after separation by two-dimensional electrophoresis.
This is the first study to express PhoA as a lipoprotein in mycoplasmas. The pTAP plasmid will facilitate investigations of lipoproteins and protein translocation across the cell membrane in mycoplasmas, and the ease of detection of these transformants makes this vector system suitable for the simultaneous screening and detection of cloned genes expressed as membrane proteins in mycoplasmas.
PMCID: PMC3438114  PMID: 22770122
Mycoplasma gallisepticum ; Lipoprotein; Membrane protein; Reporter gene; phoA ; Alkaline phosphatase
19.  Identification and Subtyping of Clinically Relevant Human and Ruminant Mycoplasmas by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry 
Journal of Clinical Microbiology  2013;51(10):3314-3323.
Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) recently emerged as a technology for the identification of bacteria. In this study, we aimed to evaluate its applicability to human and ruminant mycoplasmal identification, which can be demanding and time-consuming when using phenotypic or molecular methods. In addition, MALDI-TOF MS was tested as a subtyping tool for certain species. A total of 29 main spectra (MSP) from 10 human and 13 ruminant mycoplasma (sub)species were included in a mycoplasma MSP database to complete the Bruker MALDI Biotyper database. After broth culture and protein extraction, MALDI-TOF MS was applied for the identification of 119 human and 143 ruminant clinical isolates that were previously identified by antigenic or molecular methods and for subcultures of 73 ruminant clinical specimens that potentially contained several mycoplasma species. MALDI-TOF MS resulted in accurate (sub)species-level identification with a score of ≥1.700 for 96% (251/262) of the isolates. The phylogenetically closest (sub)species were unequivocally distinguished. Although mixtures of the strains were reliably detected up to a certain cellular ratio, only the predominant species was identified from the cultures of polymicrobial clinical specimens. For typing purposes, MALDI-TOF MS proved to cluster Mycoplasma bovis and Mycoplasma agalactiae isolates by their year of isolation and genome profiles, respectively, and Mycoplasma pneumoniae isolates by their adhesin P1 type. In conclusion, MALDI-TOF MS is a rapid, reliable, and cost-effective method for the routine identification of high-density growing mycoplasmal species and shows promising prospects for its capacity for strain typing.
PMCID: PMC3811644  PMID: 23903545
20.  Distribution and diversity of mycoplasma plasmids: lessons from cryptic genetic elements 
BMC Microbiology  2012;12:257.
The evolution of mycoplasmas from a common ancestor with Firmicutes has been characterized not only by genome down-sizing but also by horizontal gene transfer between mycoplasma species sharing a common host. The mechanisms of these gene transfers remain unclear because our knowledge of the mycoplasma mobile genetic elements is limited. In particular, only a few plasmids have been described within the Mycoplasma genus.
We have shown that several species of ruminant mycoplasmas carry plasmids that are members of a large family of elements and replicate via a rolling-circle mechanism. All plasmids were isolated from species that either belonged or were closely related to the Mycoplasma mycoides cluster; none was from the Mycoplasma bovis-Mycoplasma agalactiae group. Twenty one plasmids were completely sequenced, named and compared with each other and with the five mycoplasma plasmids previously reported. All plasmids share similar size and genetic organization, and present a mosaic structure. A peculiar case is that of the plasmid pMyBK1 from M. yeatsii; it is larger in size and is predicted to be mobilizable. Its origin of replication and replication protein were identified. In addition, pMyBK1 derivatives were shown to replicate in various species of the M. mycoides cluster, and therefore hold considerable promise for developing gene vectors. The phylogenetic analysis of these plasmids confirms the uniqueness of pMyBK1 and indicates that the other mycoplasma plasmids cluster together, apart from the related replicons found in phytoplasmas and in species of the clade Firmicutes.
Our results unraveled a totally new picture of mycoplasma plasmids. Although they probably play a limited role in the gene exchanges that participate in mycoplasma evolution, they are abundant in some species. Evidence for the occurrence of frequent genetic recombination strongly suggests they are transmitted between species sharing a common host or niche.
PMCID: PMC3541243  PMID: 23145790
Mycoplasma,Plasmid,Replication,Rep protein,Gene transfer,Evolution,Expression vector,Mycoplasma mycoides,Mycoplasma capricolum,Mycoplasma yeatsii
21.  Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity 
BMC Genomics  2010;11:86.
While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study.
The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms.
Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow among ruminant mycoplasmas and expansion-reduction of gene repertoires encoding surface proteins, the expression of which is driven by localized genetic micro-events.
PMCID: PMC2824730  PMID: 20122262
22.  A Trigger Enzyme in Mycoplasma pneumoniae: Impact of the Glycerophosphodiesterase GlpQ on Virulence and Gene Expression 
PLoS Pathogens  2011;7(9):e1002263.
Mycoplasma pneumoniae is a causative agent of atypical pneumonia. The formation of hydrogen peroxide, a product of glycerol metabolism, is essential for host cell cytotoxicity. Phosphatidylcholine is the major carbon source available on lung epithelia, and its utilization requires the cleavage of deacylated phospholipids to glycerol-3-phosphate and choline. M. pneumoniae possesses two potential glycerophosphodiesterases, MPN420 (GlpQ) and MPN566. In this work, the function of these proteins was analyzed by biochemical, genetic, and physiological studies. The results indicate that only GlpQ is an active glycerophosphodiesterase. MPN566 has no enzymatic activity as glycerophosphodiesterase and the inactivation of the gene did not result in any detectable phenotype. Inactivation of the glpQ gene resulted in reduced growth in medium with glucose as the carbon source, in loss of hydrogen peroxide production when phosphatidylcholine was present, and in a complete loss of cytotoxicity towards HeLa cells. All these phenotypes were reverted upon complementation of the mutant. Moreover, the glpQ mutant strain exhibited a reduced gliding velocity. A comparison of the proteomes of the wild type strain and the glpQ mutant revealed that this enzyme is also implicated in the control of gene expression. Several proteins were present in higher or lower amounts in the mutant. This apparent regulation by GlpQ is exerted at the level of transcription as determined by mRNA slot blot analyses. All genes subject to GlpQ-dependent control have a conserved potential cis-acting element upstream of the coding region. This element overlaps the promoter in the case of the genes that are repressed in a GlpQ-dependent manner and it is located upstream of the promoter for GlpQ-activated genes. We may suggest that GlpQ acts as a trigger enzyme that measures the availability of its product glycerol-3-phosphate and uses this information to differentially control gene expression.
Author Summary
Mycoplasma pneumoniae serves as a model organism for bacteria with very small genomes that are nonetheless independently viable. These bacteria infect the human lung and cause an atypical pneumonia. The major virulence determinant of M. pneumoniae is hydrogen peroxide that is generated during the utilization of glycerol-3-phosphate, which might be derived from free glycerol or from the degradation of phospholipids. Indeed, lecithin is the by far most abundant carbon source on lung epithelia. In this study, we made use of the recent availability of methods to isolate mutants of M. pneumoniae and characterized the enzyme that generates glycerol-3-phosphate from deacylated lecithin (glycerophosphocholine). This enzyme, called GlpQ, is essential for the formation of hydrogen peroxide when the bacteria are incubated with glycerophosphocholine. Moreover, M. pneumoniae is unable to cause any detectable damage to the host cells in the absence of GlpQ. This underlines the important role of phospholipid metabolism for the virulence of M. pneumoniae. We observed that GlpQ in addition to its enzymatic activity is also involved in the control of expression of several genes, among them the glycerol transporter. Thus, GlpQ is central to the normal physiology and to pathogenicity of the minimal pathogen M. pneumoniae.
PMCID: PMC3178575  PMID: 21966272
23.  Specific Evolution of F1-Like ATPases in Mycoplasmas 
PLoS ONE  2012;7(6):e38793.
F1F0 ATPases have been identified in most bacteria, including mycoplasmas which have very small genomes associated with a host-dependent lifestyle. In addition to the typical operon of eight genes encoding genuine F1F0 ATPase (Type 1), we identified related clusters of seven genes in many mycoplasma species. Four of the encoded proteins have predicted structures similar to the α, β, γ and ε subunits of F1 ATPases and could form an F1-like ATPase. The other three proteins display no similarity to any other known proteins. Two of these proteins are probably located in the membrane, as they have three and twelve predicted transmembrane helices. Phylogenomic studies identified two types of F1-like ATPase clusters, Type 2 and Type 3, characterized by a rapid evolution of sequences with the conservation of structural features. Clusters encoding Type 2 and Type 3 ATPases were assumed to originate from the Hominis group of mycoplasmas. We suggest that Type 3 ATPase clusters may spread to other phylogenetic groups by horizontal gene transfer between mycoplasmas in the same host, based on phylogeny and genomic context. Functional analyses in the ruminant pathogen Mycoplasma mycoides subsp. mycoides showed that the Type 3 cluster genes were organized into an operon. Proteomic analyses demonstrated that the seven encoded proteins were produced during growth in axenic media. Mutagenesis and complementation studies demonstrated an association of the Type 3 cluster with a major ATPase activity of membrane fractions. Thus, despite their tendency toward genome reduction, mycoplasmas have evolved and exchanged specific F1-like ATPases with no known equivalent in other bacteria. We propose a model, in which the F1-like structure is associated with a hypothetical X0 sector located in the membrane of mycoplasma cells.
PMCID: PMC3369863  PMID: 22685606
24.  The Surface Protein Srr-1 of Streptococcus agalactiae Binds Human Keratin 4 and Promotes Adherence to Epithelial HEp-2 Cells▿  
Infection and Immunity  2007;75(11):5405-5414.
Streptococcus agalactiae is frequently the cause of bacterial sepsis and meningitis in neonates. In addition, it is a commensal bacterium that colonizes the mammalian gastrointestinal tract. During its commensal and pathogenic lifestyles, S. agalactiae colonizes and invades a number of host compartments, thereby interacting with different host proteins. In the present study, the serine-rich repeat protein Srr-1 from S. agalactiae was functionally investigated. Immunofluorescence microscopy showed that Srr-1 was localized on the surface of streptococcal cells. The Srr-1 protein was shown to interact with a 62-kDa protein in human saliva, which was identified by matrix-assisted laser desorption ionization-time-of-flight analysis as human keratin 4 (K4). Immunoblot and enzyme-linked immunosorbent assay experiments allowed us to narrow down the K4 binding domain in Srr-1 to a region of 157 amino acids (aa). Furthermore, the Srr-1 binding domain of K4 was identified in the C-terminal 255 aa of human K4. Deletion of the srr-1 gene in the genome of S. agalactiae revealed that this gene plays a role in bacterial binding to human K4 and that it is involved in adherence to epithelial HEp-2 cells. Binding to immobilized K4 and adherence to HEp-2 cells were restored by introducing the srr-1 gene on a shuttle plasmid into the srr-1 mutant. Furthermore, incubation of HEp-2 cells with the K4 binding domain of Srr-1 blocked S. agalactiae adherence to epithelial cells in a dose-dependent fashion. This is the first report describing the interaction of a bacterial protein with human K4.
PMCID: PMC2168289  PMID: 17709412
25.  Surface Diversity in Mycoplasma agalactiae Is Driven by Site-Specific DNA Inversions within the vpma Multigene Locus 
Journal of Bacteriology  2002;184(21):5987-5998.
The ruminant pathogen Mycoplasma agalactiae possesses a family of abundantly expressed variable surface lipoproteins called Vpmas. Phenotypic switches between Vpma members have previously been correlated with DNA rearrangements within a locus of vpma genes and are proposed to play an important role in disease pathogenesis. In this study, six vpma genes were characterized in the M. agalactiae type strain PG2. All vpma genes clustered within an 8-kb region and shared highly conserved 5′ untranslated regions, lipoprotein signal sequences, and short N-terminal sequences. Analyses of the vpma loci from consecutive clonal isolates showed that vpma DNA rearrangements were site specific and that cleavage and strand exchange occurred within a minimal region of 21 bp located within the 5′ untranslated region of all vpma genes. This process controlled expression of vpma genes by effectively linking the open reading frame (ORF) of a silent gene to a unique active promoter sequence within the locus. An ORF (xer1) immediately adjacent to one end of the vpma locus did not undergo rearrangement and had significant homology to a distinct subset of genes belonging to the λ integrase family of site-specific xer recombinases. It is proposed that xer1 codes for a site-specific recombinase that is not involved in chromosome dimer resolution but rather is responsible for the observed vpma-specific recombination in M. agalactiae.
PMCID: PMC135373  PMID: 12374833

Results 1-25 (1214646)