PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1427289)

Clipboard (0)
None

Related Articles

1.  Axon Regeneration through Scaffold into Distal Spinal Cord after Transection 
Journal of neurotrauma  2009;26(10):1759-1771.
We employed Fast Blue (FB) axonal tracing to determine the origin of regenerating axons after thoracic spinal cord transection injury in rats. Schwann cell (SC)-loaded, biodegradable, poly(lactic-co-glycolic acid) (PLGA) scaffolds were implanted after transection. Scaffolds loaded with solubilized basement membrane preparation (without SCs) were used for negative controls, and nontransected cords were positive controls. One or 2 months after injury and scaffold implantation, FB was injected 0–15 mm caudal or about 5 mm rostral to the scaffold. One week later, tissue was harvested and the scaffold and cord sectioned longitudinally (30 μm) on a cryostat. Trans-scaffold labeling of neuron cell bodies was identified with confocal microscopy in all cell-transplanted groups. Large (30–50 μm diameter) neuron cell bodies were predominantly labeled in the ventral horn region. Most labeled neurons were seen 1–10 mm rostral to the scaffold, although some neurons were also labeled in the cervical cord. Axonal growth occurred bidirectionally after cord transection, and axons regenerated up to 14 mm beyond the PLGA scaffolds and into distal cord. The extent of FB labeling was negatively correlated with distance from the injection site to the scaffold. Electron microscopy showed myelinated axons in the transverse sections of the implanted scaffold 2 months after implantation. The pattern of myelination, with extracellular collagen and basal lamina, was characteristic of SC myelination. Our results show that FB labeling is an effective way to measure the origin of regenerating axons.
doi:10.1089/neu.2008-0610
PMCID: PMC2763055  PMID: 19413501
axonal tracing; biodegradable polymers; Fast Blue; Schwann cells; spinal cord injury
2.  Neural Stem Cell– and Schwann Cell–Loaded Biodegradable Polymer Scaffolds Support Axonal Regeneration in the Transected Spinal Cord 
Tissue Engineering. Part A  2009;15(7):1797-1805.
Biodegradable polymer scaffolds provide an excellent approach to quantifying critical factors necessary for restoration of function after a transection spinal cord injury. Neural stem cells (NSCs) and Schwann cells (SCs) support axonal regeneration. This study examines the compatibility of NSCs and SCs with the poly-lactic-co-glycolic acid polymer scaffold and quantitatively assesses their potential to promote regeneration after a spinal cord transection injury in rats. NSCs were cultured as neurospheres and characterized by immunostaining for nestin (NSCs), glial fibrillary acidic protein (GFAP) (astrocytes), βIII-tubulin (immature neurons), oligodendrocyte-4 (immature oligodendrocytes), and myelin oligodendrocyte (mature oligodendrocytes), while SCs were characterized by immunostaining for S-100. Rats with transection injuries received scaffold implants containing NSCs (n = 17), SCs (n = 17), and no cells (control) (n = 8). The degree of axonal regeneration was determined by counting neurofilament-stained axons through the scaffold channels 1 month after transplantation. Serial sectioning through the scaffold channels in NSC- and SC-treated groups revealed the presence of nestin, neurofilament, S-100, and βIII tubulin–positive cells. GFAP-positive cells were only seen at the spinal cord–scaffold border. There were significantly more axons in the NSC- and SC- treated groups compared to the control group. In conclusion, biodegradable scaffolds with aligned columns seeded with NSCs or SCs facilitate regeneration across the transected spinal cord. Further, these multichannel biodegradable polymer scaffolds effectively serve as platforms for quantitative analysis of axonal regeneration.
doi:10.1089/ten.tea.2008.0364
PMCID: PMC2792101  PMID: 19191513
3.  Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of combinatorial approaches to spinal cord repair 
Biomaterials  2011;32(32):8077-8086.
The transected rat thoracic (T9/10) spinal cord model is a platform for quantitatively compa0ring biodegradable polymer scaffolds. Schwann cell-loaded scaffolds constructed from poly (lactic co-glycolic acid) (PLGA), poly(ε-caprolactone fumarate) (PCLF), oligo(polyethylene glycol) fumarate (OPF) hydrogel or positively charged OPF (OPF+) hydrogel were implanted into the model. We demonstrated that the mechanical properties (3-point bending and stiffness) of OPF and OPF+ hydrogels closely resembled rat spinal cord. After one month, tissues were harvested and analyzed by morphometry of neurofilament-stained sections at rostral, midlevel, and caudal scaffold. All polymers supported axonal growth. Significantly higher numbers of axons were found in PCLF (P < 0.01) and OPF+ (P < 0.05) groups, compared to that of the PLGA group. OPF+ polymers showed more centrally distributed axonal regeneration within the channels while other polymers (PLGA, PCLF and OPF) tended to show more evenly dispersed axons within the channels. The centralized distribution was associated with significantly more axons regenerating (P < 0.05). Volume of scar and cyst rostral and caudal to the implanted scaffold was measured and compared. There were significantly smaller cyst volumes in PLGA compared to PCLF groups. The model provides a quantitative basis for assessing individual and combined tissue engineering strategies.
doi:10.1016/j.biomaterials.2011.07.029
PMCID: PMC3163757  PMID: 21803415
OPF; PLGA; PCLF; axon regeneration; spinal cord injury; Schwann cell
4.  Relationship between Scaffold Channel Diameter and Number of Regenerating Axons in the Transected Rat Spinal Cord 
Acta biomaterialia  2009;5(7):2551-2559.
Regeneration of endogenous axons through a Schwann cell (SC)-seeded scaffold implant has been demonstrated in the transected rat spinal cord. The formation of a cellular lining in the scaffold channel may limit the degree of axonal regeneration. Spinal cords of adult rats were transected and implanted with the SC-loaded polylactic co-glycollic acid (PLGA) scaffold implants containing seven parallel-aligned channels, either 450-μm (n=19) or 660-μm in diameter (n=14). Animals were sacrificed after 1, 2, and 3 months. Immunohistochemistry for neurofilament-expression was performed. The cross-sectional area of fibrous tissue and regenerative core was calculated. We found that the 450-μm scaffolds had significantly greater axon fibers per channel at the one month (186 ± 37) and three month (78 ± 11) endpoints than the 660-μm scaffolds (90 ± 19 and 40 ± 6, respectively) (P=0.0164 & 0.0149, respectively). The difference in the area of fibrous rim between the 450-μm and 660-μm channels was most pronounced at the one month endpoint, at 28,046 μm2 ± 6,551 and 58,633 μm2 ± 7,063, respectively (P=0.0105). Our study suggests that fabricating scaffolds with smaller diameter channels promotes greater regeneration over larger diameter channels. Axonal regeneration was reduced in the larger channels due to the generation of a large fibrous rim. Optimization of this scaffold environment establishes a platform for future studies of the effects of cell types, trophic factors or pharmacological agents on the regenerative capacity of the injured spinal cord.
doi:10.1016/j.actbio.2009.03.021
PMCID: PMC2731813  PMID: 19409869
Biomedical Engineering; Tissue Development and Growth; Central Nervous System; Polymeric Scaffolds
5.  Development of a tissue-engineered composite implant for treating traumatic paraplegia in rats 
European Spine Journal  2005;15(2):234-245.
This study was designed to assess a new composite implant to induce regeneration of injured spinal cord in paraplegic rats following complete cord transection. Neuronal xenogeneic cells from biopsies of adult nasal olfactory mucosa (NOM) of human origin, or spinal cords of human embryos, were cultured in two consecutive stages: stationary cultures in a viscous semi-solid gel (NVR-N-Gel) and in suspension on positively charged microcarriers (MCs). A tissue-engineered tubular scaffold, containing bundles of parallel nanofibers, was developed. Both the tube and the nanofibers were made of a biodegradable dextran sulphate–gelatin co-precipitate. The suturable scaffold anchored the implant at the site of injury and provided guidance for the regenerating axons. Implants of adult human NOM cells were implanted into eight rats, from which a 4 mm segment of the spinal cord had been completely removed. Another four rats whose spinal cords had also been transected were implanted with a composite implant of cultured human embryonic spinal cord cells. Eight other cord-transected rats served as a control group. Physiological and behavioral analysis, performed 3 months after implantation, revealed partial recovery of function in one or two limbs in three out of eight animals of the NOM implanted group and in all the four rats that were implanted with cultured human embryonic spinal cord cells. Animals of the control group remained completely paralyzed and did not show transmission of stimuli to the brain. The utilization of an innovative composite implant to bridge a gap resulting from the transection and removal of a 4 mm spinal cord segment shows promise, suggesting the feasibility of this approach for partial reconstruction of spinal cord lesions. Such an implant may serve as a vital bridging station in acute and chronic cases of paraplegia.
doi:10.1007/s00586-005-0981-8
PMCID: PMC3489403  PMID: 16292587
Olfactory mucosa; Spinal cord; Transection; Transplantation
6.  Fetal Spinal Cord Tissue in Mini-Guidance Channels Promotes Longitudinal Axonal Growth after Grafting into Hemisected Adult Rat Spinal Cords 
Neural Plasticity  1999;6(4):103-121.
Solid fetal spinal cord (FSC) tissue, seeded into semipermeable mini-guidance channels, was tested for the ability to promote axonal growth across the gap created by a midthoracic (T8) hemisection in adult rats. Fetal thoracic spinal cords, at embryonic days 13 to 15, were harvested and gently aspirated into mini-guidance channels (1.25 mm in diameter and 3.0 mm in length). Care was taken to maintain the rostro-caudal orientation of the FSC. In control rats, the FSC-channel congraft struct was exposed to 5 freeze/thaw cycles to produce non-viable grafts before implantation into the hemisected cord. All cases revealed intact tissue cables of various diameters spanning the rostro-caudal extent of the lesion cavity, with integration of host-graft tissues at both interfaces. Immunofluorescence results indicated that numerous neurofilament-positive axons were present within the FSC tissue cable. Double-labeling of a subpopulation of these axons with calcitonin generelated peptide indicated their peripheral nervous system (PNS) origin. Descending serotonergic and noradrenergic axons were found in the proximity of the rostral host-graft interface, but were not observed to grow into the FSC-graft. Anterograde tracing of propriospinal axons with Phaseolus vulgaris-leucoagglutinin demonstrated that axons had regenerated into the FSC-graft and had traveled longitudinally to the distal end of the channel. Few axons were observed to cross the distal host-graft interface to enter the host spinal cord. Cross-sectional analysis at the midpoint of the tissue cable stained with toluidine blue demonstrated a significant increase (P<0.01) in myelinated axons in viable FSC grafts (1455±663, mean±S.E.M.; n=6) versus freeze-thaw control grafts (155±50; n=5). In addition to the myelinated axons, many unmyelinated axons were observed in the tissue cable at the electron microscopic level. Areas resembling the PNS with typical Schwann cells, as well as those resembling the central nervous system with neurons and central neuropil, were also seen. In freeze-thaw control grafts, neither viable neurons nor central neuropil were observed. Retrograde tracing with Fast Blue and Diamidino Yellow demonstrated that neurons within the FSC graft extended axons into the host spinal cord at least for 2 mm from both the rostral and caudal host-graft interfaces. We conclude that viable FSC grafts within semipermeable guidance channels may serve both as a permissive bridge for longitudinally directed axonal growth and a potential relay for conveying information across a lesion site in the adult rat spinal cord.
doi:10.1155/NP.1999.103
PMCID: PMC2565321  PMID: 10714264
7.  Cell proliferation and cytoarchitectural remodeling during spinal cord reconnection in the fresh-water turtle Trachemys dorbignyi 
Cell and tissue research  2011;344(3):415-433.
In fresh-water turtles, the bridge connecting the proximal and caudal stumps of transected spinal cords consists of regenerating axons running through a glial cellular matrix. To understand the process leading to the generation of the scaffold bridging the lesion, we analyzed the mitotic activity triggered by spinal injury in animals maintained alive for 20–30 days after spinal cord transection. Flow cytometry and bromodeoxyuridine (BrdU)-labeling experiments revealed a significant increment of cycling cells around the lesion epicenter. BrdU-tagged cells maintained a close association with regenerating axons. Most dividing cells expressed the brain lipid-binding protein (BLBP). Cells with BrdU-positive nuclei expressed glial fibrillary acidic protein. As spinal cord regeneration involves dynamic cell rearrangements, we explored the ultra-structure of the bridge and found cells with the aspect of immature oligodendrocytes forming an embryonic-like microenvironment. These cells supported and ensheathed regenerating axons that were recognized by immunocytological and electron-microscopical procedures. Since functional recovery depends on proper impulse transmission, we examined the anatomical axon-glia relationships near the lesion epicenter. Computer-assisted three-dimensional models revealed helical axon-glial junctions in which the intercellular space appeared to be reduced (5–7 nm). Serial-sectioning analysis revealed that fibril-containing processes provided myelinating axon sheaths. Thus, disruption of the ependymal layer elicits mitotic activity predominantly in radial glia expressing BLBP on the lateral aspects of the ependyma. These cycling cells seem to migrate and contribute to the bridge providing the main support and sheaths for regenerating axons.
doi:10.1007/s00441-011-1173-y
PMCID: PMC3131533  PMID: 21574060
Spinal cord; Cell proliferation; Regeneration; Radial glia; Re-myelination; Turtle; Trachemys dorbignyi (Chelonia)
8.  Effects of Dibutyryl Cyclic-AMP on Survival and Neuronal Differentiation of Neural Stem/Progenitor Cells Transplanted into Spinal Cord Injured Rats 
PLoS ONE  2011;6(6):e21744.
Neural stem/progenitor cells (NSPCs) have great potential as a cell replacement therapy for spinal cord injury. However, poor control over transplant cell differentiation and survival remain major obstacles. In this study, we asked whether dibutyryl cyclic-AMP (dbcAMP), which was shown to induce up to 85% in vitro differentiation of NSPCs into neurons would enhance survival of transplanted NSPCs through prolonged exposure either in vitro or in vivo through the controlled release of dbcAMP encapsulated within poly(lactic-co-glycolic acid) (PLGA) microspheres and embedded within chitosan guidance channels. NSPCs, seeded in fibrin scaffolds within the channels, differentiated in vitro to betaIII-tubulin positive neurons by immunostaining and mRNA expression, in response to dbcAMP released from PLGA microspheres. After transplantation in spinal cord injured rats, the survival and differentiation of NSPCs was evaluated. Untreated NSPCs, NSPCs transplanted with dbcAMP-releasing microspheres, and NSPCs pre-differentiated with dbcAMP for 4 days in vitro were transplanted after rat spinal cord transection and assessed 2 and 6 weeks later. Interestingly, NSPC survival was highest in the dbcAMP pre-treated group, having approximately 80% survival at both time points, which is remarkable given that stem cell transplantation often results in less than 1% survival at similar times. Importantly, dbcAMP pre-treatment also resulted in the greatest number of in vivo NSPCs differentiated into neurons (37±4%), followed by dbcAMP-microsphere treated NSPCs (27±14%) and untreated NSPCs (15±7%). The reverse trend was observed for NSPC-derived oligodendrocytes and astrocytes, with these populations being highest in untreated NSPCs. This combination strategy of stem cell-loaded chitosan channels implanted in a fully transected spinal cord resulted in extensive axonal regeneration into the injury site, with improved functional recovery after 6 weeks in animals implanted with pre-differentiated stem cells in chitosan channels.
doi:10.1371/journal.pone.0021744
PMCID: PMC3128087  PMID: 21738784
9.  Sustained Delivery of Dibutyryl Cyclic Adenosine Monophosphate to the Transected Spinal Cord Via Oligo [(Polyethylene Glycol) Fumarate] Hydrogels 
Tissue Engineering. Part A  2011;17(9-10):1287-1302.
This study describes the use of oligo [(polyethylene glycol) fumarate] (OPF) hydrogel scaffolds as vehicles for sustained delivery of dibutyryl cyclic adenosine monophosphate (dbcAMP) to the transected spinal cord. dbcAMP was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within the scaffolds architecture. Functionality of the released dbcAMP was assessed using neurite outgrowth assays in PC12 cells and by delivery to the transected spinal cord within OPF seven channel scaffolds, which had been loaded with Schwann cells or mesenchymal stem cells (MSCs). Our results showed that encapsulation of dbcAMP in microspheres lead to prolonged release and continued functionality in vitro. These microspheres were then successfully incorporated into OPF scaffolds and implanted in the transected thoracic spinal cord. Sustained delivery of dbcAMP inhibited axonal regeneration in the presence of Schwann cells but rescued MSC-induced inhibition of axonal regeneration. dbcAMP was also shown to reduce capillary formation in the presence of MSCs, which was coupled with significant functional improvements. Our findings demonstrate the feasibility of incorporating PLGA microsphere technology for spinal cord transection studies. It represents a novel sustained delivery mechanism within the transected spinal cord and provides a platform for potential delivery of other therapeutic agents.
doi:10.1089/ten.tea.2010.0396
PMCID: PMC3079174  PMID: 21198413
10.  Templated Agarose Scaffolds for the Support of Motor Axon Regeneration Into Sites of Complete Spinal Cord Transection 
Biomaterials  2012;34(5):1529-1536.
Bioengineered scaffolds have the potential to support and guide injured axons after spinal cord injury, contributing to neural repair. In previous studies we have reported that templated agarose scaffolds can be fabricated into precise linear arrays and implanted into the partially injured spinal cord, organizing growth and enhancing the distance over which local spinal cord axons and ascending sensory axons extend into a lesion site. However, most human injuries are severe, sparing only thin rims of spinal cord tissue in the margins of a lesion site. Accordingly, in the present study we examined whether template agarose scaffolds seeded with bone marrow stromal cells secreting Brain-Derived Neurotrophic Factor (BDNF) would support regeneration into severe, complete spinal cord transection sites. Moreover, we tested responses of motor axon populations originating from the brainstem. We find that templated agarose scaffolds support motor axon regeneration into a severe spinal cord injury model and organize axons into fascicles of highly linear configuration. BDNF significantly enhances axonal growth. Collectively, these findings support the feasibility of scaffold implantation for enhancing central regeneration after even severe central nervous system injury.
doi:10.1016/j.biomaterials.2012.10.070
PMCID: PMC3518618  PMID: 23182350
11.  Macro-Architectures in Spinal Cord Scaffold Implants Influence Regeneration 
Journal of Neurotrauma  2008;25(8):1027-1037.
Abstract
Biomaterial scaffold architecture has not been investigated as a tunable source of influence on spinal cord regeneration. This study compared regeneration in a transected spinal cord within various designed-macro-architecture scaffolds to determine if these architectures alone could enhance regeneration. Three-dimensional (3-D) designs were created and molds were built on a 3-D printer. Salt-leached porous poly(ɛ-caprolactone) was cast in five different macro-architectures: cylinder, tube, channel, open-path with core, and open-path without core. The two open-path designs were created in this experiment to compare different supportive aspects of architecture provided by scaffolds and their influence on regeneration. Rats received T8 transections and implanted scaffolds for 1 and 3 months. Overall morphology and orientation of sections were characterized by H&E, luxol fast blue, and cresyl violet staining. Borders between intact gray matter and non-regenerated defect were observed from GFAP immunolabeling. Nerve fibers and regenerating axons were identified with Tuj-1 immunolabeling. The open-path designs allowed extension of myelinated fibers along the length of the defect both exterior to and inside the scaffolds and maintained their original defect length up to 3 months. In contrast, the cylinder, tube, and channel implants had a doubling of defect length from secondary damage and large scar and cyst formation with no neural tissue bridging. The open-path scaffold architectures enhanced spinal cord regeneration compared to the three other designs without the use of biological factors.
doi:10.1089/neu.2007.0473
PMCID: PMC2946879  PMID: 18721107
immunohistochemistry; in vivo studies; neural injury; polycaprolactone; regeneration; scaffold architecture; traumatic spinal cord injury
12.  Transplantation of Nogo-66 receptor gene-silenced cells in a poly(D,L-lactic-co-glycolic acid) scaffold for the treatment of spinal cord injury★ 
Neural Regeneration Research  2013;8(8):677-685.
Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced cells plus the poly(D,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury.
doi:10.3969/j.issn.1673-5374.2013.08.001
PMCID: PMC4146076  PMID: 25206713
neural regeneration; spinal cord injury; bone marrow mesenchymal stem cells; Schwann cells; poly(D; L-lactide-co-glycolic acid); Nogo-66 receptor gene; rats; gene silencing; grants-supported paper; photographs-containing paper; neuroregeneration
13.  Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site 
Neuroscience  2009;166(1):23.
Rats receiving a complete spinal cord transection (ST) at a neonatal stage spontaneously can recover significant stepping ability, whereas minimal recovery is attained in rats transected as adults. In addition, neonatally spinal cord transected rats trained to step more readily improve their locomotor ability. We hypothesized that recovery of stepping in rats receiving a complete spinal cord transection at postnatal day 5 (P5) is attributable to changes in the lumbosacral neural circuitry and not to regeneration of axons across the lesion. As expected, stepping performance measured by several kinematics parameters was significantly better in ST (at P5) trained (treadmill stepping for 8 weeks) than age-matched non-trained spinal rats. Anterograde tracing with biotinylated dextran amine showed an absence of labeling of corticospinal or rubrospinal tract axons below the transection. Retrograde tracing with Fast Blue from the spinal cord below the transection showed no labeled neurons in the somatosensory motor cortex of the hindlimb area, red nucleus, spinal vestibular nucleus, and medullary reticular nucleus. Retrograde labeling transsynaptically via injection of pseudorabies virus (Bartha) into the soleus and tibialis anterior muscles showed no labeling in the same brain nuclei. Furthermore, re-transection of the spinal cord at or rostral to the original transection did not affect stepping ability. Combined, these results clearly indicate that there was no regeneration across the lesion after a complete spinal cord transection in neonatal rats and suggest that this is an important model to understand the higher level of locomotor recovery in rats attributable to lumbosacral mechanisms after receiving a complete ST at a neonatal compared to an adult stage.
doi:10.1016/j.neuroscience.2009.12.010
PMCID: PMC2820384  PMID: 20006680
locomotion; retrograde labeling; spinal cord injury; training; rubrospinal; corticospinal
14.  Rigid Fixation of the Spinal Column Improves Scaffold Alignment and Prevents Scoliosis in the Transected Rat Spinal Cord 
Spine  2008;33(24):E914-E919.
Study Design
A controlled study to evaluate a new technique for spinal rod fixation after spinal cord injury in rats. Alignment of implanted tissue-engineered scaffolds was assessed radiographically and by magnetic resonance imaging.
Objective
To evaluate the stability of implanted scaffolds and the extent of kyphoscoliotic deformities after spinal fixation.
Summary of Background Data
Biodegradable scaffolds provide an excellent platform for the quantitative assessment of cellular and molecular factors that promote regeneration within the transected cord. Successful delivery of scaffolds to the damaged cord can be hampered by malalignment following transplantation, which in turn, hinders the assessment of neural regeneration.
Methods
Radio-opaque barium sulfate-impregnated poly-lactic-co-glycolic acid scaffolds were implanted into spinal transection injuries in adult rats. Spinal fixation was performed in one group of animals using a metal rod fixed to the spinous processes above and below the site of injury, while the control group received no fixation. Radiographic morphometry was performed after 2 and 4 weeks, and 3-dimensional magnetic resonance microscopy analysis 4 weeks after surgery.
Results
Over the course of 4 weeks, progressive scoliosis was evident in the unfixed group, where a Cobb angle of 8.13 ± 2.03° was measured. The fixed group demonstrated significantly less scoliosis, with a Cobb angle measurement of 1.89 ± 0.75° (P = 0.0004). Similarly, a trend for less kyphosis was evident in the fixed group (7.33 ± 1.68°) compared with the unfixed group (10.13 ± 1.46°). Quantitative measurements of the degree of malalignment of the scaffolds were also significantly less in the fixed group (5 ± 1.23°) compared with the unfixed group (11 ± 2.82°) (P = 0.0143).
Conclusion
Radio-opaque barium sulfate allows for visualization of scaffolds in vivo using radiographic analysis. Spinal fixation was shown to prevent scoliosis, reduce kyphosis, and reduce scaffold malalignment within the transected rat spinal cord. Using a highly optimized model will increase the potential for finding a therapy for restoring function to the injured cord.
doi:10.1097/BRS.0b013e318186b2b1
PMCID: PMC2773001  PMID: 19011531
spine fixation; transection spinal cord injury; scaffold; scoliosis
15.  Extensive Neuronal Differentiation of Human Neural Stem Cell Grafts in Adult Rat Spinal Cord 
PLoS Medicine  2007;4(2):e39.
Background
Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC) transplants have shown either poor differentiation or a preferential choice of glial lineages.
Methods and Findings
In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter.
Conclusions
NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major challenges remain, especially with respect to the establishment of neuromuscular connections.
When neural stem cells from human fetal spinal cord were grafted into the lumbar cord of normal or injured adult nude rats, substantial neuronal differentiation was found.
Editors' Summary
Background.
Every year, spinal cord injuries, many caused by road traffic accidents, paralyze about 11,000 people in the US. This paralysis occurs because the spinal cord is the main communication highway between the body and the brain. Information from the skin and other sensory organs is transmitted to the brain along the spinal cord by bundles of neurons, nervous system cells that transmit and receive messages. The brain then sends information back down the spinal cord to control movement, breathing, and other bodily functions. The bones of the spine normally protect the spinal cord but, if these are broken or dislocated, the spinal cord can be cut or compressed, which interrupts the information flow. Damage near the top of the spinal cord can paralyze the arms and legs (tetraplegia); damage lower down paralyzes the legs only (paraplegia). Spinal cord injuries also cause many other medical problems, including the loss of bowel and bladder control. Although the deleterious effects of spinal cord injuries can be minimized by quickly immobilizing the patient and using drugs to reduce inflammation, the damaged nerve fibers never regrow. Consequently, spinal cord injury is permanent.
Why Was This Study Done?
Scientists are currently searching for ways to reverse spinal cord damage. One potential approach is to replace the damaged neurons using neural stem cells (NSCs). These cells, which can be isolated from embryos and from some areas of the adult nervous system, are able to develop into all the specialized cells types of the nervous system. However, because most attempts to repair spinal cord damage with NSC transplants have been unsuccessful, many scientists believe that the environment of the spinal cord is unsuitable for nerve regeneration. In this study, the researchers have investigated what happens to NSCs derived from the spinal cord of a human fetus after transplantation into the spinal cord of adult rats.
What Did the Researchers Do and Find?
The researchers injected human NSCs that they had grown in dishes into the spinal cord of intact nude rats (animals that lack a functioning immune system and so do not destroy human cells) and into nude rats whose spinal cord had been damaged at the transplantation site. The survival and fate of the transplanted cells was assessed by staining thin slices of spinal cord with an antibody that binds to a human-specific protein and with antibodies that recognize proteins specific to NSCs, neurons, or other nervous system cells. The researchers report that the human cells survived well in the adult spinal cord of the injured and normal rats and migrated into the gray matter of the spinal cord (which contains neuronal cell bodies) and into the white matter (which contains the long extensions of nerve cells that carry nerve impulses). 75% and 60% of the human cells in the gray and white matter, respectively, contained a neuron-specific protein six months after transplantation but only 10% of those in the membrane surrounding the spinal cord became neurons; the rest developed into astrocytes (another nervous system cell type) or remained as stem cells. Finally, many of the human-derived neurons made the neurotransmitter GABA (one of the chemicals that transfers messages between neurons) and made contacts with host spinal cord neurons.
What Do These Findings Mean?
These findings suggest that human NSC grafts can, after all, develop into neurons (predominantly GABA-producing neurons) in normal and injured adult spinal cord and integrate into the existing spinal cord if the conditions are right. Although these animal experiments suggest that NSC transplants might help people with spinal injuries, they have some important limitations. For example, the spinal cord lesions used here are mild and unlike those seen in human patients. This and the use of nude rats might have reduced the scarring in the damaged spinal cord that is often a major barrier to nerve regeneration. Furthermore, the researchers did not test whether NSC transplants provide functional improvements after spinal cord injury. However, since other researchers have also recently reported that NSCs can grow and develop into neurons in injured adult spinal cord, these new results further strengthen hopes it might eventually be possible to use human NSCs to repair damaged spinal cords.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/doi:10.1371/journal.pmed.0040039.
The US National Institute of Neurological Disorders and Stroke provides information on spinal cord injury and current spinal cord research
Spinal Research (a UK charity) offers information on spinal cord injury and repair
The US National Spinal Cord Injury Association Web site contains factsheets on spinal cord injuries
MedlinePlus encyclopedia has pages on spinal cord trauma and interactive tutorials on spinal cord injury
The International Society for Stem Cell Research offers information on all sorts of stem cells including NSCs
The US National Human Neural Stem Cell Resource provides information on human NSCs, including the current US government's stance on stem cell research
doi:10.1371/journal.pmed.0040039
PMCID: PMC1796906  PMID: 17298165
16.  Conditioning Lesions Enhance Axonal Regeneration of Descending Brain Neurons in Spinal-Cord-Transected Larval Lamprey 
In larval lamprey, with increasing recovery times after a transection of the rostral spinal cord, there is a gradual recovery of locomotor behavior, and descending brain neurons regenerate their axons for progressively greater distances below the transection site. In the present study, spinal cord “conditioning lesions” (i.e., transections) were performed in the spinal cord at 30% body length (BL; normalized distance from the head) or 50% BL. After various “lesion delay times” (D), a more proximal spinal cord “test lesion” (i.e., transection) was performed at 10% BL, and then, after various recovery times (R), horseradish peroxidase was applied to the spinal cord at 20% BL to determine the extent of axonal regeneration of descending brain neurons. Conditioning lesions at 30% BL, lesion delay times of 2 weeks, and recovery times of 4 weeks (D-R = 2–4 group) resulted in a significant enhancement of axonal regeneration for the total numbers of descending brain neurons as well as neurons in certain brain cell groups compared to control animals without conditioning lesions. Experiments with hemiconditioning lesions, which reduce interanimal variability, confirmed that conditioning lesions do significantly enhance axonal regeneration and indicate that axotomy rather than diffusible factors released at the injury site is primarily involved in this enhancement. Results from the present study suggest that conditioning lesions “prime” descending brain neurons via cell body responses and enhance subsequent axonal regeneration, probably by reducing the initial delay and/or increasing the initial rate of axonal outgrowth.
doi:10.1002/cne.20297
PMCID: PMC2915934  PMID: 15384066
axotomy; reticulospinal neurons; spinal cord injury; conditioning lesion; test lesion
17.  Bridging a Complete Transection Lesion of Adult Rat Spinal Cord with Growth Factor-Treated Nitrocellulose Implants 
The ability of a substrate bound neurotrophic factor to promote growth of ascending sensory axons across a complete transection lesion of the rat spinal cord was examined in a transplantation model. Aspiration lesions created a 3 mm long cavity in the upper lumbar spinal cord of adult rats. Five weeks after injury two strips of nerve growth factortreated nitrocellulose, were implanted, each in a medio-lateral position, and apposed to the rostral and caudal surfaces of the cavity. Control animals received untreated nitrocellulose implants. Fetal spinal cord tissue was transplanted alongsideand between these strips. Six weeks post transplantation, animals were sacrificed and vibratome sections through the grafts were processed for immunocytochemical demonstration of ingrowing axons expressing calcitonin gene-related peptide (CGRP-IR), Immunolabeled axons were abundant at the caudal interface between host tissue and the NGF-treated nitrocellulose implants, with dense fascicles of fibers abutting the grafts. As the distance from the caudal surface increased some CGRP-IR fibers extended into the fetal tissue although most appeared to remain oriented in a longitudinal course adjacent to the nitrocellulose. Labeled axons were evident along the entire length of the nitrocellulose and appeared to aggregate at the rostral tip of the implant, with many fibers extending into the host spinal cord rostral to the lesion/transplant site. When untreated nitrocellulose was implanted, fewer labeled axons appeared to extend beyond the caudal host-graft interface. Most CGRP-IR axons displayed limited association or contact with the untreated nitrocellulose in this condition. Computer-assisted quantitative analysis indicated that NGF-treated nitrocellulose supported regrowing host axons for nearly three times the length exhibited by axons associated with non-treated nitrocellulose implants. These results indicate that substrate bound nerve growth factor has the capacity to enhance the regrowth of ascending sensory axons across a traumatic spinal cord injury site. The potential to reestablish functional contacts across such a lesion may be heightened by the ability of neurotrophic factors to promote more extensive axonal regrowth.
doi:10.1155/NP.1994.115
PMCID: PMC2565283  PMID: 7703291
18.  Nanofibrous Patches for Spinal Cord Regeneration 
Advanced functional materials  2010;20(9):1433-1440.
The difficulty in spinal cord regeneration is related to the inhibitory factors for axon growth and the lack of appropriate axon guidance in the lesion region. Here we developed scaffolds with aligned nanofibers for nerve guidance and drug delivery in spinal cord. Blended polymers including Poly (l-lactic acid) (PLLA) and Poly (lactide-co-glycolide) (PLGA) were used to electrospin nanofibrous scaffolds with two-layer structure: aligned nanofibers in the inner layer and random nanofibers in the outer layer. Rolipram, a small molecule that can enhance cAMP activity in neurons and suppress inflammatory responses, was immobilized onto nanofibers. To test the therapeutic effects of nanofibrous scaffolds, the nanofibrous scaffolds loaded with rolipram were used to bridge the hemisection lesion in 8-week old athymic rats. The scaffolds with rolipram increased axon growth through the scaffolds and in the lesion, promoted angiogenesis through the scaffold, and decreased the population of astrocytes and chondroitin sulfate proteoglycans in the lesion. Locomotor scale rating analysis showed that the scaffolds with rolipram significantly improved hindlimb function after 3 weeks. This study demonstrated that nanofibrous scaffolds offered a valuable platform for drug delivery for spinal cord regeneration.
doi:10.1002/adfm.200901889
PMCID: PMC3558949  PMID: 23378825
Nanofibers; spinal cord; drug delivery; regeneration
19.  Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts 
Neural Development  2011;6:1.
Background
Newts have the remarkable ability to regenerate their spinal cords as adults. Their spinal cords regenerate with the regenerating tail after tail amputation, as well as after a gap-inducing spinal cord injury (SCI), such as a complete transection. While most studies on newt spinal cord regeneration have focused on events occurring after tail amputation, less attention has been given to events occurring after an SCI, a context that is more relevant to human SCI. Our goal was to use modern labeling and imaging techniques to observe axons regenerating across a complete transection injury and determine how cells and the extracellular matrix in the injury site might contribute to the regenerative process.
Results
We identify stages of axon regeneration following a spinal cord transection and find that axon regrowth across the lesion appears to be enabled, in part, because meningeal cells and glia form a permissive environment for axon regeneration. Meningeal and endothelial cells regenerate into the lesion first and are associated with a loose extracellular matrix that allows axon growth cone migration. This matrix, paradoxically, consists of both permissive and inhibitory proteins. Axons grow into the injury site next and are closely associated with meningeal cells and glial processes extending from cell bodies surrounding the central canal. Later, ependymal tubes lined with glia extend into the lesion as well. Finally, the meningeal cells, axons, and glia move as a unit to close the gap in the spinal cord. After crossing the injury site, axons travel through white matter to reach synaptic targets, and though ascending axons regenerate, sensory axons do not appear to be among them. This entire regenerative process occurs even in the presence of an inflammatory response.
Conclusions
These data reveal, in detail, the cellular and extracellular events that occur during newt spinal cord regeneration after a transection injury and uncover an important role for meningeal and glial cells in facilitating axon regeneration. Given that these cell types interact to form inhibitory barriers in mammals, identifying the mechanisms underlying their permissive behaviors in the newt will provide new insights for improving spinal cord regeneration in mammals.
doi:10.1186/1749-8104-6-1
PMCID: PMC3025934  PMID: 21205291
20.  The orthograde flow of tritiated proline in corticospinal neurons at various ages and after spinal cord injury. 
The amount of radioactive proline which reaches the cervical cord by axoplasmic flow after intracortical injection of label is higher in rapidly growing 3 to 6 week old rats but becomes relatively constant in unoperated control rats beyond age 10 weeks. In adult rats with spinal cord transection at T-8, however, the amount of tritiated proline detected in the cervical cord above the site of transection is markedly increased five weeks after surgery, falls to more normal levels by 14 weeks after surgery, and is significantly below normal at 25 weeks after surgery. These findings are consistent with abortive attempts to regenerate axons at five weeks after injury. Twenty-five weeks after injury neuronal death and loss of both cells and axons which would normally project to the caudal cord through the site of spinal cord transection result in a decrease in the axon label found in the cervical region. Recognition of this variability in the amount of radioactivity that reaches the cervical region after spinal cord injury forced a reconsideration of previously reported evidence for regeneration in spinal cord transected animals receiving no specific postoperative therapy. There is no evidence for regeneration in such untreated transected rats.
PMCID: PMC1027991  PMID: 6207271
21.  Altered expression of neuronal cell adhesion molecules induced by nerve injury and repair 
The Journal of Cell Biology  1986;103(3):929-945.
Peripheral nerve injury results in short-term and long-term changes in both neurons and glia. In the present study, immunohistological and immunoblot analyses were used to examine the expression of the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) within different parts of a functionally linked neuromuscular system extending from skeletal muscle to the spinal cord after peripheral nerve injury. Histological samples were taken from 3 to 150 d after crushing or transecting the sciatic nerve in adult chickens and mice. In unperturbed tissues, both N-CAM and Ng-CAM were found on nonmyelinated axons, and to a lesser extent on Schwann cells and myelinated axons. Only N-CAM was found on muscles. After denervation, the following changes were observed: The amount of N-CAM in muscle fibers increased transiently on the surface and in the cytoplasm, and in interstitial spaces between fibers. Restoration of normal N-CAM levels in muscle was dependent on reinnervation; in a chronically denervated state, N-CAM levels remained high. After crushing or cutting the nerve, the amount of both CAMs increased in the area surrounding the lesion, and the predominant form of N-CAM changed from a discrete Mr 140,000 component to the polydisperse high molecular weight embryonic form. Anti-N-CAM antibodies stained neurites, Schwann cells, and the perineurium of the regenerating sciatic nerve. Anti-Ng- CAM antibodies labeled neurites, Schwann cells and the endoneurial tubes in the distal stump. Changes in CAM distribution were observed in dorsal root ganglia and in the spinal cord only after the nerve was cut. The fibers within affected dorsal root ganglia were more intensely labeled for both CAMs, and the motor neurons in the ventral horn of the spinal cord of the affected segments were stained more intensely in a ring pattern by anti-N-CAM and anti-Ng-CAM than their counterparts on the side contralateral to the lesion. Taken together with the previous studies (Rieger, F., M. Grumet, and G. M. Edelman, J. Cell Biol. 101:285-293), these data suggest that local signals between neurons and glia may regulate CAM expression in the spinal cord and nerve during regeneration, and that activity may regulate N-CAM expression in muscle. Correlations of the present observations are made here with established events of nerve degeneration and suggest a number of roles for the CAMs in regenerative events.(ABSTRACT TRUNCATED AT 400 WORDS)
PMCID: PMC2114294  PMID: 2427528
22.  Further evidence of olfactory ensheathing glia facilitating axonal regeneration after a complete spinal cord transection 
Experimental neurology  2011;229(1):109-119.
Spinal Wistar Hannover rats injected with olfactory ensheathing glia (OEG) have been shown to recover some bipedal stepping and climbing abilities. Given the intrinsic ability of the spinal cord to regain stepping with pharmacological agents or epidural stimulation after a complete mid-thoracic transection, we asked if functional recovery after OEG injections is due to changes in the caudal stump or facilitation of functional regeneration of axons across the transection site. OEG were injected rostral and caudal to the transection site immediately after transection. Robotically assisted step training in the presence of intrathecal injections of a 5-HT2A receptor agonist (quipazine) was used to facilitate recovery of stepping. Bipedal stepping as well as climbing abilities were tested over a 6-month period post-transection to determine any improvement in hindlimb functional due to OEG injections and/or step training. The ability for OEG to facilitate regeneration was analyzed electrophysiologically by transcranially stimulating the brainstem and recording motor evoked potentials (MEP) with chronically implanted intramuscular EMG electrodes in the soleus and tibalis anterior with and without intrathecal injections of noradrenergic, serotonergic, and glycinergic receptor antagonists. Analyses confirmed that along with improved stepping ability and increased use of the hindlimbs during climbing, only OEG rats showed recovery of MEP. In addition the MEP signals were eliminated after a re-transection of the spinal cord rostral to the original transection and were modified in the presence of receptor antagonists. These data indicate that improved hindlimb function after a complete transection was coupled with OEG-facilitated functional regeneration of axons.
doi:10.1016/j.expneurol.2011.01.007
PMCID: PMC3085566  PMID: 21272578
23.  Transection method for shortening the rat spine and spinal cord 
Previous studies have presented evidence which indicates that the regeneration of axons in the spinal cord occurs following spinal cord transection in young rats. However, in a transection-regeneration model, the completeness of the transection is often a matter of dispute. We established a method for shortening the rat spine and spinal cord to provide a spinal cord injury (SCI) model in which there was no doubt about whether the axonal transection was complete. In the future, this model may be applied to the chronic period of complete paralysis following SCI. Adult, female Wistar rats (220–250g) were used in the study. The spinal cord was exposed and a 4-mm-long segment of the spinal cord was removed at Th8. Subsequently, the Th7/8 and Th8/9 discs were cut between the stumps of the spinal cord to remove the Th8 vertebra. The stitches which had been passed through the 7th and 9th ribs bilaterally were tied gradually to bring together the stumps of the spinal cord. Almost all the rats survived until the end of the experiment. Uncoordinated movements of the hind limbs in locomotion were observed at 4 weeks after surgery. However coordinated movements of the hind limbs in locomotion were not observed until the end of the experiment. After 12 weeks, an intracardiac perfusion was performed to remove the thoracic spine and the spinal cord. There were no signs of infection. The bone fusion of the Th7 and Th9 vertebrae was observed to be complete in all specimens and the alignment of the thoracic spine was maintained. The spinal canal was also correctly reconstituted. The stumps of the spinal cord were connected. Light microscopy of the cord showed that scar tissue intervened at the connection site. Cavitation inhibiting the axonal regeneration was also observed. This model was also made on the assumption that glial scar tissue inhibits axonal regeneration in chronic SCI. Axonal regeneration was not observed across the transected spinal cord in this model. Attempts should be made to minimize the damage to the spinal cord and the surgery time for successful axonal regeneration to occur. The model developed in this study may be useful in the study of axonal regeneration in SCI.
doi:10.3892/etm.2012.841
PMCID: PMC3570119  PMID: 23403404
spinal cord injury; animal model; rat
24.  Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury 
Journal of neuroscience research  2010;88(14):3161-3170.
Injection into the injured spinal cord of peptide amphiphile (PA) molecules that self-assemble and display the laminin epitope IKVAV at high density improved functional recovery after spinal cord injury (SCI) in two different species, rat and mouse, and in two different injury models, contusion and compression. The improvement required the IKVAV epitope and was not observed with the injection of an amphiphile displaying a non-bioactive sequence. To explore the mechanisms underlying these improvements, the number of serotonergic fibers in the lesioned spinal cord was compared in animals receiving the IKVAV-PA, a non-bioactive PA (PA control), or sham injection. Serotonergic fibers were distributed equally in all three groups rostral to the injury, but showed a significantly higher density caudal to the injury site in the IKVAV PA injected group. Further, this difference was not present in the subacute phase following injury but appeared in the chronically injured cord. The IKVAV PA injected groups also trended higher both in the total number neurons adjacent to the lesion and in the number of long propriospinal tract connections from the thoracic to the lumbar cord. IKVAV PA injection did not alter myelin thickness, total axon number caudal to the lesion, axon size distribution, or total axon area. Since serotonin can promote stepping even in complete transection models, the improved function produced by the IKVAV PA treatment may reflect the increased serotonergic innervation caudal to the lesion in addition to the previously demonstrated regeneration of motor and sensory axons through the lesion.
doi:10.1002/jnr.22472
PMCID: PMC2943558  PMID: 20818775
spinal cord injury; nanotechnology; biomaterials; regeneration; serotonin
25.  Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections 
BMC Biotechnology  2008;8:39.
Background
Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by interrupting his motor-sensory pathways. In the last few decades tissue engineering has opened the door to new approaches;: however most of them make use of rigid channel guides that may cause cell loss due to the lack of physiological local stresses exerted over the nervous tissue during patient's movement. Electrospinning technique makes it possible to spin microfiber and nanofiber flexible tubular scaffolds composed of a number of natural and synthetic components, showing high porosity and remarkable surface/volume ratio.
Results
In this study we used electrospun tubes made of biodegradable polymers (a blend of PLGA/PCL) to regenerate a 10-mm nerve gap in a rat sciatic nerve in vivo. Experimental groups comprise lesioned animals (control group) and lesioned animals subjected to guide conduits implantated at the severed nerve stumps, where the tubular scaffolds are filled with saline solution. Four months after surgery, sciatic nerves failed to reconnect the two stumps of transected nerves in the control animal group. In most of the treated animals the electrospun tubes induced nervous regeneration and functional reconnection of the two severed sciatic nerve tracts. Myelination and collagen IV deposition have been detected in concurrence with regenerated fibers. No significant inflammatory response has been found. Neural tracers revealed the re-establishment of functional neuronal connections and evoked potential results showed the reinnervation of the target muscles in the majority of the treated animals.
Conclusion
Corroborating previous works, this study indicates that electrospun tubes, with no additional biological coating or drug loading treatment, are promising scaffolds for functional nervous regeneration. They can be knitted in meshes and various frames depending on the cytoarchitecture of the tissue to be regenerated. The versatility of this technique gives room for further scaffold improvements, like tuning the mechanical properties of the tubular structure or providing biomimetic functionalization. Moreover, these guidance conduits can be loaded with various fillers like collagen, fibrin, or self-assembling peptide gels or loaded with neurotrophic factors and seeded with cells. Electrospun scaffolds can also be synthesized in different micro-architectures to regenerate lesions in other tissues like skin and bone.
doi:10.1186/1472-6750-8-39
PMCID: PMC2358889  PMID: 18405347

Results 1-25 (1427289)