PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1501011)

Clipboard (0)
None

Related Articles

1.  The Relationship between BCMO1 Gene Variants and Macular Pigment Optical Density in Persons with and without Age-Related Macular Degeneration 
PLoS ONE  2014;9(2):e89069.
Background
Recent evidence indicates that gene variants related to carotenoid metabolism play a role in the uptake of macular pigments lutein (L) and zeaxanthin (Z). Moreover, these pigments are proposed to reduce the risk for advanced age-related macular degeneration (AMD). This study provides the initial examination of the relationship between the gene variants related to carotenoid metabolism, macular pigment optical density (MPOD) and their combined expression in healthy humans and patients with AMD.
Participants and Methods
Forty-four participants were enrolled from a general population and a private practice including 20 healthy participants and 24 patients with advanced (neovascular) AMD. Participants were genotyped for the three single nucleotide polymorphisms (SNPs) upstream from BCMO1, rs11645428, rs6420424 and rs6564851 that have been shown to either up or down regulate beta-carotene conversion efficiency in the plasma. MPOD was determined by heterochromatic flicker photometry.
Results
Healthy participants with the rs11645428 GG genotype, rs6420424 AA genotype and rs6564851 GG genotype all had on average significantly lower MPOD compared to those with the other genotypes (p<0.01 for all three comparisons). When combining BCMO1 genotypes reported to have “high” (rs11645428 AA/rs6420424 GG/rs6564851 TT) and “low” (rs11645428 GG/rs6420424 AA/rs6564851 GG) beta-carotene conversion efficiency, we demonstrate clear differences in MPOD values (p<0.01). In patients with AMD there were no significant differences in MPOD for any of the three BCMO1 gene variants.
Conclusion
In healthy participants MPOD levels can be related to high and low beta-carotene conversion BCMO1 genotypes. Such relationships were not found in patients with advanced neovascular AMD, indicative of additional processes influencing carotenoid uptake, possibly related to other AMD susceptibility genes. Our findings indicate that specific BCMO1 SNPs should be determined when assessing the effects of carotenoid supplementation on macular pigment and that their expression may be influenced by retinal disease.
doi:10.1371/journal.pone.0089069
PMCID: PMC3929644  PMID: 24586510
2.  Genetic Variants Influencing Biomarkers of Nutrition Are Not Associated with Cognitive Capability in Middle-Aged and Older Adults123 
The Journal of Nutrition  2013;143(5):606-612.
Several investigations have observed positive associations between good nutritional status, as indicated by micronutrients, and cognitive measures; however, these associations may not be causal. Genetic polymorphisms that affect nutritional biomarkers may be useful for providing evidence for associations between micronutrients and cognitive measures. As part of the Healthy Ageing across the Life Course (HALCyon) program, men and women aged between 44 and 90 y from 6 UK cohorts were genotyped for polymorphisms associated with circulating concentrations of iron [rs4820268 transmembrane protease, serine 6 (TMPRSS6) and rs1800562 hemochromatosis (HFE)], vitamin B-12 [(rs492602 fucosyltransferase 2 (FUT2)], vitamin D ([rs2282679 group-specific component (GC)] and β-carotene ([rs6564851 beta-carotene 15,15'-monooxygenase 1 (BCMO1)]. Meta-analysis was used to pool within-study effects of the associations between these polymorphisms and the following measures of cognitive capability: word recall, phonemic fluency, semantic fluency, and search speed. Among the several statistical tests conducted, we found little evidence for associations. We found the minor allele of rs1800562 was associated with poorer word recall scores [pooled β on Z-score for carriers vs. noncarriers: −0.05 (95% CI: −0.09, −0.004); P = 0.03, n = 14,105] and poorer word recall scores for the vitamin D–raising allele of rs2282679 [pooled β per T allele: −0.03 (95% CI: −0.05, −0.003); P = 0.03, n = 16,527]. However, there was no evidence for other associations. Our findings provide little evidence to support associations between these genotypes and cognitive capability in older adults. Further investigations are required to elucidate whether the previous positive associations from observational studies between circulating measures of these micronutrients and cognitive performance are due to confounding and reverse causality.
doi:10.3945/jn.112.171520
PMCID: PMC3738233  PMID: 23468552
3.  Mendelian Randomization Study of B-Type Natriuretic Peptide and Type 2 Diabetes: Evidence of Causal Association from Population Studies 
PLoS Medicine  2011;8(10):e1001112.
Using mendelian randomization, Roman Pfister and colleagues demonstrate a potentially causal link between low levels of B-type natriuretic peptide (BNP), a hormone released by damaged hearts, and the development of type 2 diabetes.
Background
Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded.
Methods and Findings
We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%–36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91–0.97) was similar to that expected (0.96, 0.93–0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74–0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15–0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders.
Conclusions
Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, nearly 250 million people have diabetes, and this number is increasing rapidly. Diabetes is characterized by dangerous amounts of sugar (glucose) in the blood. Blood sugar levels are normally controlled by insulin, a hormone that the pancreas releases after meals (digestion of food produces glucose). In people with type 2 diabetes (the most common form of diabetes), blood sugar control fails because the fat and muscle cells that usually respond to insulin by removing sugar from the blood become insulin resistant. Type 2 diabetes can be controlled with diet and exercise, and with drugs that help the pancreas make more insulin or that make cells more sensitive to insulin. The long-term complications of diabetes, which include kidney failure and an increased risk of cardiovascular problems such as heart disease and stroke, reduce the life expectancy of people with diabetes by about 10 years compared to people without diabetes.
Why Was This Study Done?
Because the causes of type 2 diabetes are poorly understood, it is hard to devise ways to prevent the condition. Recently, B-type natriuretic peptide (BNP, a hormone released by damaged hearts) has been implicated in type 2 diabetes development in cross-sectional studies (investigations in which data are collected at a single time point from a population to look for associations between an illness and potential risk factors). Although these studies suggest that high levels of BNP may protect against type 2 diabetes, they cannot prove a causal link between BNP levels and diabetes because the study participants with low BNP levels may share some another unknown factor (a confounding factor) that is the real cause of both diabetes and altered BNP levels. Here, the researchers use an approach called “Mendelian randomization” to examine whether reduced BNP levels contribute to causing type 2 diabetes. It is known that a common genetic variant (rs198389) within the genome region that encodes BNP is associated with a reduced risk of type 2 diabetes. Because gene variants are inherited randomly, they are not subject to confounding. So, by investigating the association between BNP gene variants that alter NT-pro-BNP (a molecule created when BNP is being produced) levels and the development of type 2 diabetes, the researchers can discover whether BNP is causally involved in this chronic condition.
What Did the Researchers Do and Find?
The researchers analyzed the association between blood levels of NT-pro-BNP at baseline in 440 participants of the EPIC-Norfolk study (a prospective population-based study of lifestyle factors and the risk of chronic diseases) who subsequently developed diabetes and in 740 participants who did not develop diabetes. In this prospective case-cohort study, the risk of developing type 2 diabetes was associated with lower NT-pro-BNP levels. They also genotyped (sequenced) rs198389 in the participants of three case-control studies of type 2 diabetes (studies in which potential risk factors for type 2 diabetes were examined in people with type 2 diabetes and matched controls living in the East of England), and combined these results with those of eight similar published case-control studies. Finally, the researchers showed that the association between rs198389 and type 2 diabetes measured in the case-control studies was similar to the expected association calculated from the association between NT-pro-BNP level and type 2 diabetes obtained from the prospective case-cohort study and the association between rs198389 and BNP levels obtained from the EPIC-Norfolk study and other published studies.
What Do These Findings Mean?
The results of this Mendelian randomization study provide evidence for a causal, protective role of the BNP hormone system in the development of type 2 diabetes. That is, these findings suggest that low levels of BNP are partly responsible for the development of type 2 diabetes. Because the participants in all the individual studies included in this analysis were of European descent, these findings may not be generalizable to other ethnicities. Moreover, they provide no explanation of how alterations in the BNP hormone system might affect the development of type 2 diabetes. Nevertheless, the demonstration of a causal link between the BNP hormone system and type 2 diabetes suggests that BNP may be a potential target for interventions designed to prevent type 2 diabetes, particularly since the feasibility of altering BNP levels with drugs has already been proven in patients with cardiovascular disease.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001112.
The International Diabetes Federation provides information about all aspects of diabetes
The US National Diabetes Information Clearinghouse provides detailed information about diabetes for patients, health-care professionals, and the general public (in English and Spanish)
The UK National Health Service Choices website also provides information for patients and carers about type 2 diabetes and includes people's stories about diabetes
MedlinePlus provides links to further resources and advice about diabetes (in English and Spanish)
Wikipedia has pages on BNP and on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The charity Healthtalkonline has interviews with people about their experiences of diabetes; the charity Diabetes UK has a further selection of stories from people with diabetes
doi:10.1371/journal.pmed.1001112
PMCID: PMC3201934  PMID: 22039354
4.  Hepatic stellate cells are an important cellular site for β-carotene conversion to retinoid 
Hepatic stellate cells (HSCs) are responsible for storing 90–95% of the retinoid present in the liver. These cells have been reported in the literature also to accumulate dietary β-carotene, but the ability of HSCs to metabolize β-carotene in situ has not been explored. To gain understanding of this, we investigated whether β-carotene-15,15′-monooxygensase (Bcmo1) and β-carotene-9′,10′-monooxygenase (Bcmo2) are expressed in HSCs. Using primary HSCs and hepatocytes purified from wild type and Bcmo1-deficient mice, we establish that Bcmo1 is highly expressed in HSCs; whereas Bcmo2 is expressed primarily in hepatocytes. We also confirmed that HSCs are an important cellular site within the liver for accumulation of dietary β-carotene. Bcmo2 expression was found to be significantly elevated for livers and hepatocytes isolated from Bcmo1-deficient compared to wild type mice. This elevation in Bcmo2 expression was accompanied by a statistically significant increase in hepatic apo-12′-carotenal levels of Bcmo1-deficient mice. Although apo-10′-carotenal, like apo-12′-carotenal, was readily detectable in livers and serum from both wild type and Bcmo1-deficient mice, we were unable to detect either apo-8′- or apo-14′-carotenals in livers or serum from the two strains. We further observed that hepatic triglyceride levels were significantly elevated in livers of Bcmo1-deficient mice fed a β-carotene-containing diet compared to mice receiving no β-carotene. Collectively, our data establish that HSCs are an important cellular site for β-carotene accumulation and metabolism within the liver.
doi:10.1016/j.abb.2010.05.010
PMCID: PMC3692274  PMID: 20470748
Vitamin A; Carotenoid; Carotene cleavage; Chylomicron; Diet
5.  The Causal Effect of Vitamin D Binding Protein (DBP) Levels on Calcemic and Cardiometabolic Diseases: A Mendelian Randomization Study 
PLoS Medicine  2014;11(10):e1001751.
In this study, Richards and colleagues undertook a Mendelian randomization study to determine whether vitamin D binding protein (DBP) levels have a causal effect on common calcemic and cardiometabolic diseases. They concluded that DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except Vit D levels.
Please see later in the article for the Editors' Summary
Background
Observational studies have shown that vitamin D binding protein (DBP) levels, a key determinant of 25-hydroxy-vitamin D (25OHD) levels, and 25OHD levels themselves both associate with risk of disease. If 25OHD levels have a causal influence on disease, and DBP lies in this causal pathway, then DBP levels should likewise be causally associated with disease. We undertook a Mendelian randomization study to determine whether DBP levels have causal effects on common calcemic and cardiometabolic disease.
Methods and Findings
We measured DBP and 25OHD levels in 2,254 individuals, followed for up to 10 y, in the Canadian Multicentre Osteoporosis Study (CaMos). Using the single nucleotide polymorphism rs2282679 as an instrumental variable, we applied Mendelian randomization methods to determine the causal effect of DBP on calcemic (osteoporosis and hyperparathyroidism) and cardiometabolic diseases (hypertension, type 2 diabetes, coronary artery disease, and stroke) and related traits, first in CaMos and then in large-scale genome-wide association study consortia. The effect allele was associated with an age- and sex-adjusted decrease in DBP level of 27.4 mg/l (95% CI 24.7, 30.0; n = 2,254). DBP had a strong observational and causal association with 25OHD levels (p = 3.2×10−19). While DBP levels were observationally associated with calcium and body mass index (BMI), these associations were not supported by causal analyses. Despite well-powered sample sizes from consortia, there were no associations of rs2282679 with any other traits and diseases: fasting glucose (0.00 mmol/l [95% CI −0.01, 0.01]; p = 1.00; n = 46,186); fasting insulin (0.01 pmol/l [95% CI −0.00, 0.01,]; p = 0.22; n = 46,186); BMI (0.00 kg/m2 [95% CI −0.01, 0.01]; p = 0.80; n = 127,587); bone mineral density (0.01 g/cm2 [95% CI −0.01, 0.03]; p = 0.36; n = 32,961); mean arterial pressure (−0.06 mm Hg [95% CI −0.19, 0.07]); p = 0.36; n = 28,775); ischemic stroke (odds ratio [OR] = 1.00 [95% CI 0.97, 1.04]; p = 0.92; n = 12,389/62,004 cases/controls); coronary artery disease (OR = 1.02 [95% CI 0.99, 1.05]; p = 0.31; n = 22,233/64,762); or type 2 diabetes (OR = 1.01 [95% CI 0.97, 1.05]; p = 0.76; n = 9,580/53,810).
Conclusions
DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except 25OHD levels. It remains to be determined whether 25OHD has a causal effect on these outcomes independent of DBP.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Vitamin D deficiency is an increasingly common public health concern. According to some estimates, more than a billion people worldwide may be vitamin D deficient. Indeed, many people living in the US and Europe (in particular, elderly people, breastfed infants, people with dark skin, and obese individuals) have serum (circulating) 25-hydroxy-vitamin D (25OHD) levels below 50 nmol/l, the threshold for vitamin D deficiency. Vitamin D helps the body absorb calcium, a mineral that is essential for healthy bones. Consequently, vitamin D deficiency can lead to calcemic diseases such as rickets (a condition that affects bone development in children), osteomalacia (soft bones in adults), and osteoporosis (a condition in which the bones weaken and become susceptible to fracture). We get most of our vitamin D needs from our skin, which makes vitamin D after exposure to sunlight. Vitamin D is also found naturally in oily fish and eggs, and is added to some other foods, including cereals and milk, but some people need to take vitamin D supplements to avoid vitamin D deficiency.
Why Was This Study Done?
Observational studies have reported that the low levels of serum 25OHD and serum vitamin D binding protein (DBP, a key determinant of serum 25OHD level) are both associated with the risk of several common diseases and traits. Such studies have implicated vitamin D deficiency in cardiometabolic disease (cardiovascular diseases that affect the heart and/or blood vessels and metabolic diseases that affect the cellular chemical reactions needed to sustain life), in some cancers, and in Alzheimer disease. But observational studies cannot prove that vitamin D deficiency or DBP levels actually cause any of these diseases. So, for example, an observational study might report an association between vitamin D deficiency and type 2 diabetes (a metabolic disease), but the individuals who develop type 2 diabetes might share another unknown characteristic that is actually responsible for disease development (a confounding factor). Alternatively, type 2 diabetes might reduce circulating vitamin D levels (reverse causation). Here, the researchers undertake a Mendelian randomization study to determine whether circulating DBP levels have causal effects on calcemic and cardiometabolic diseases. In Mendelian randomization, causality is inferred from associations between genetic variants that mimic the influence of a modifiable environmental exposure and the outcome of interest. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. So, if low DBP levels lead to low serum 25OHD levels, and vitamin D levels have a causal effect on common diseases, genetic variants associated with low DBP levels should be associated with the development of common diseases.
What Did the Researchers Do and Find?
The researchers analyzed the association between a genetic variant called single nucleotide polymorphism (SNP) rs2282679, which is known to alter DBP levels, and calcemic and cardiometabolic diseases and related traits in 2,254 participants in the Canadian Multicentre Osteoporosis Study (CaMos). The researchers report that there was a strong association between SNP rs2282679 and both serum DBP and 25OHD levels among the CaMos participants. However, there were no significant associations (associations unlikely to have occurred by chance) between SNP rs2282679 and calcium level, osteoporosis, or several cardiometabolic diseases, including heart attacks and diabetes. Moreover, when the researchers examined publically available genome-wide association study data collected by several international consortia investigating genetic influences on disease, they found no significant associations between rs2282679 and a wide range of calcemic and cardiometabolic diseases.
What Do These Findings Mean?
In this Mendelian randomization study, DBP level had no demonstrable causal effect on any of the calcemic or cardiometabolic diseases or traits investigated, except 25OHD level. Because most of the participants in CaMos and the international consortia were of European descent, these findings are applicable only to people of European ancestry. Moreover, like all Mendelian randomization studies, the reliability of these findings depends on several assumptions made by the researchers. Notably, although this study strongly suggests that DBP level does not have a causal influence on several common diseases, it remains to be determined whether 25OHD has a causal effect on any calcemic or cardiometabolic outcomes independent of DBP level.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001751.
The UK National Health Service Choices website provides information about vitamin D and about how to get vitamin D from sunshine; “Behind the Headlines” articles describe a recent observational study that reported an association between vitamin D deficiency and Alzheimer disease and the media coverage of this study, other health claims made for vitamin D, and a randomized control trial that questioned the role of vitamin D in disease
The US National Institutes of Health Office of Dietary Supplements provides information about vitamin D (in English and Spanish)
The US Centers for Disease Control and Prevention provides information about the vitamin D status of the US population
MedlinePlus has links to further information about vitamin D (in English and Spanish)
Information about the Canadian Multicentre Osteoporosis Study is available
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001751
PMCID: PMC4211663  PMID: 25350643
6.  Detection of a Cis eQTL Controlling BMCO1 Gene Expression Leads to the Identification of a QTG for Chicken Breast Meat Color 
PLoS ONE  2011;6(7):e14825.
Classical quantitative trait loci (QTL) analysis and gene expression QTL (eQTL) were combined to identify the causal gene (or QTG) underlying a highly significant QTL controlling the variation of breast meat color in a F2 cross between divergent high-growth (HG) and low-growth (LG) chicken lines. Within this meat quality QTL, BCMO1 (Accession number GenBank: AJ271386), encoding the β-carotene 15, 15′-monooxygenase, a key enzyme in the conversion of β-carotene into colorless retinal, was a good functional candidate. Analysis of the abundance of BCMO1 mRNA in breast muscle of the HG x LG F2 population allowed for the identification of a strong cis eQTL. Moreover, reevaluation of the color QTL taking BCMO1 mRNA levels as a covariate indicated that BCMO1 mRNA levels entirely explained the variations in meat color. Two fully-linked single nucleotide polymorphisms (SNP) located within the proximal promoter of BCMO1 gene were identified. Haplotype substitution resulted in a marked difference in BCMO1 promoter activity in vitro. The association study in the F2 population revealed a three-fold difference in BCMO1 expression leading to a difference of 1 standard deviation in yellow color between the homozygous birds at this haplotype. This difference in meat yellow color was fully consistent with the difference in carotenoid content (i.e. lutein and zeaxanthin) evidenced between the two alternative haplotypes. A significant association between the haplotype, the level of BCMO1 expression and the yellow color of the meat was also recovered in an unrelated commercial broiler population. The mutation could be of economic importance for poultry production by making possible a gene-assisted selection for color, a determining aspect of meat quality. Moreover, this natural genetic diversity constitutes a new model for the study of β-carotene metabolism which may act upon diverse biological processes as precursor of the vitamin A.
doi:10.1371/journal.pone.0014825
PMCID: PMC3130028  PMID: 21750696
7.  Inflammation, Insulin Resistance, and Diabetes—Mendelian Randomization Using CRP Haplotypes Points Upstream 
PLoS Medicine  2008;5(8):e155.
Background
Raised C-reactive protein (CRP) is a risk factor for type 2 diabetes. According to the Mendelian randomization method, the association is likely to be causal if genetic variants that affect CRP level are associated with markers of diabetes development and diabetes. Our objective was to examine the nature of the association between CRP phenotype and diabetes development using CRP haplotypes as instrumental variables.
Methods and Findings
We genotyped three tagging SNPs (CRP + 2302G > A; CRP + 1444T > C; CRP + 4899T > G) in the CRP gene and measured serum CRP in 5,274 men and women at mean ages 49 and 61 y (Whitehall II Study). Homeostasis model assessment-insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) were measured at age 61 y. Diabetes was ascertained by glucose tolerance test and self-report. Common major haplotypes were strongly associated with serum CRP levels, but unrelated to obesity, blood pressure, and socioeconomic position, which may confound the association between CRP and diabetes risk. Serum CRP was associated with these potential confounding factors. After adjustment for age and sex, baseline serum CRP was associated with incident diabetes (hazard ratio = 1.39 [95% confidence interval 1.29–1.51], HOMA-IR, and HbA1c, but the associations were considerably attenuated on adjustment for potential confounding factors. In contrast, CRP haplotypes were not associated with HOMA-IR or HbA1c (p = 0.52–0.92). The associations of CRP with HOMA-IR and HbA1c were all null when examined using instrumental variables analysis, with genetic variants as the instrument for serum CRP. Instrumental variables estimates differed from the directly observed associations (p = 0.007–0.11). Pooled analysis of CRP haplotypes and diabetes in Whitehall II and Northwick Park Heart Study II produced null findings (p = 0.25–0.88). Analyses based on the Wellcome Trust Case Control Consortium (1,923 diabetes cases, 2,932 controls) using three SNPs in tight linkage disequilibrium with our tagging SNPs also demonstrated null associations.
Conclusions
Observed associations between serum CRP and insulin resistance, glycemia, and diabetes are likely to be noncausal. Inflammation may play a causal role via upstream effectors rather than the downstream marker CRP.
Using a Mendelian randomization approach, Eric Brunner and colleagues show that the associations between serum C-reactive protein and insulin resistance, glycemia, and diabetes are likely to be noncausal.
Editors' Summary
Background.
Diabetes—a common, long-term (chronic) disease that causes heart, kidney, nerve, and eye problems and shortens life expectancy—is characterized by high levels of sugar (glucose) in the blood. In people without diabetes, blood sugar levels are controlled by the hormone insulin. Insulin is released by the pancreas after eating and “instructs” insulin-responsive muscle and fat cells to take up the glucose from the bloodstream that is produced by the digestion of food. In the early stages of type 2 diabetes (the commonest type of diabetes), the muscle and fat cells become nonresponsive to insulin (a condition called insulin resistance), and blood sugar levels increase. The pancreas responds by making more insulin—people with insulin resistance have high blood levels of both insulin and glucose. Eventually, however, the insulin-producing cells in the pancreas start to malfunction, insulin secretion decreases, and frank diabetes develops.
Why Was This Study Done?
Globally, about 200 million people have diabetes, but experts believe this number will double by 2030. Ways to prevent or delay the onset of diabetes are, therefore, urgently needed. One major risk factor for insulin resistance and diabetes is being overweight. According to one theory, increased body fat causes mild, chronic tissue inflammation, which leads to insulin resistance. Consistent with this idea, people with higher than normal amounts of the inflammatory protein C-reactive protein (CRP) in their blood have a high risk of developing diabetes. If inflammation does cause diabetes, then drugs that inhibit CRP might prevent diabetes. However, simply measuring CRP and determining whether the people with high levels develop diabetes cannot prove that CRP causes diabetes. Those people with high blood levels of CRP might have other unknown factors in common (confounding factors) that are the real causes of diabetes. In this study, the researchers use “Mendelian randomization” to examine whether increased blood CRP causes diabetes. Some variants of CRP (the gene that encodes CRP) increase the amount of CRP in the blood. Because these variants are inherited randomly, there is no likelihood of confounding factors, and an association between these variants and the development of insulin resistance and diabetes indicates, therefore, that increased CRP levels cause diabetes.
What Did the Researchers Do and Find?
The researchers measured blood CRP levels in more than 5,000 people enrolled in the Whitehall II study, which is investigating factors that affect disease development. They also used the “homeostasis model assessment-insulin resistance” (HOMA-IR) method to estimate insulin sensitivity from blood glucose and insulin measurements, and measured levels of hemoglobin A1c (HbA1c, hemoglobin with sugar attached—a measure of long-term blood sugar control) in these people. Finally, they looked at three “single polynucleotide polymorphisms” (SNPs, single nucleotide changes in a gene's DNA sequence; combinations of SNPs that are inherited as a block are called haplotypes) in CRP in each study participant. Common haplotypes of CRP were related to blood serum CRP levels and, as previously reported, increased blood CRP levels were associated with diabetes and with HOMA-IR and HbA1c values indicative of insulin resistance and poor blood sugar control, respectively. By contrast, CRP haplotypes were not related to HOMA-IR or HbA1c values. Similarly, pooled analysis of CRP haplotypes and diabetes in Whitehall II and another large study on health determinants (the Northwick Park Heart Study II) showed no association between CRP variants and diabetes risk. Finally, data from the Wellcome Trust Case Control Consortium also showed no association between CRP haplotypes and diabetes risk.
What Do These Findings Mean?
Together, these findings suggest that increased blood CRP levels are not responsible for the development of insulin resistance or diabetes, at least in European populations. It may be that there is a causal relationship between CRP levels and diabetes risk in other ethnic populations—further Mendelian randomization studies are needed to discover whether this is the case. For now, though, these findings suggest that drugs targeted against CRP are unlikely to prevent or delay the onset of diabetes. However, they do not discount the possibility that proteins involved earlier in the inflammatory process might cause diabetes and might thus represent good drug targets for diabetes prevention.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050155.
This study is further discussed in a PLoS Medicine Perspective by Bernard Keavney
The MedlinePlus encyclopedia provides information about diabetes and about C-reactive protein (in English and Spanish)
US National Institute of Diabetes and Digestive and Kidney Diseases provides patient information on all aspects of diabetes, including information on insulin resistance (in English and Spanish)
The International Diabetes Federation provides information about diabetes, including information on the global diabetes epidemic
The US Centers for Disease Control and Prevention provides information for the public and professionals on all aspects of diabetes (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0050155
PMCID: PMC2504484  PMID: 18700811
8.  Plasma carotenoid- and retinol-weighted multi-SNP scores and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium 
Background
Dietary and circulating carotenoids have been inversely associated with breast cancer risk, but observed associations may be due to confounding. Single nucleotide polymorphisms (SNPs) in β-carotene 15,15′-monooxygenase 1 (BCMO1), a gene encoding the enzyme involved in the first step of synthesizing vitamin A from dietary carotenoids, have been associated with circulating carotenoid concentrations and may serve as unconfounded surrogates for those biomarkers. We determined associations between variants in BCMO1 and breast cancer risk in a large cohort consortium.
Methods
We used unconditional logistic regression to test four SNPs in BCMO1 for associations with breast cancer risk in 9,226 cases and 10,420 controls from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). We also tested weighted multi-SNP scores composed of the two SNPs with strong, confirmed associations with circulating carotenoid concentrations.
Results
Neither the individual SNPs nor the weighted multi-SNP scores were associated with breast cancer risk (odds ratio (95% confidence interval) comparing extreme quintiles of weighted multi-SNP scores =1.04 (0.94–1.16) for β-carotene, 1.08 (0.98–1.20) for α-carotene, 1.04 (0.94–1.16) for β-cryptoxanthin, 0.95 (0.87–1.05) for lutein/zeaxanthin, and 0.92 (0.83–1.02) for retinol). Furthermore, no associations were observed when stratifying by estrogen receptor status, but power was limited.
Conclusions
Our results do not support an association between SNPs associated with circulating carotenoid concentrations and breast cancer risk.
Impact
Future studies will need additional genetic surrogates and/or sample sizes at least three times larger to contribute evidence of a causal link between carotenoids and breast cancer.
doi:10.1158/1055-9965.EPI-13-0017
PMCID: PMC3650115  PMID: 23515144
breast cancer; BCMO1; β-carotene 15,15′-monooxygenase 1; carotenoids; single nucleotide polymorphism
9.  The Inhibition of Macrophage Foam Cell Formation by 9-Cis β-Carotene Is Driven by BCMO1 Activity 
PLoS ONE  2015;10(1):e0115272.
Atherosclerosis is a major cause of morbidity and mortality in developed societies, and begins when activated endothelial cells recruit monocytes and T-cells from the bloodstream into the arterial wall. Macrophages that accumulate cholesterol and other fatty materials are transformed into foam cells. Several epidemiological studies have demonstrated that a diet rich in carotenoids is associated with a reduced risk of heart disease; while previous work in our laboratory has shown that the 9-cis β-carotene rich alga Dunaliella inhibits atherogenesis in mice. The effect of 9-cis β-carotene on macrophage foam cell formation has not yet been investigated. In the present work, we sought to study whether the 9-cis β-carotene isomer, isolated from the alga Dunaliella, can inhibit macrophage foam cell formation upon its conversion to retinoids. The 9-cis β-carotene and Dunaliella lipid extract inhibited foam cell formation in the RAW264.7 cell line, similar to 9-cis retinoic acid. Furthermore, dietary enrichment with the algal powder in mice resulted in carotenoid accumulation in the peritoneal macrophages and in the inhibition of foam cell formation ex-vivo and in-vivo. We also found that the β-carotene cleavage enzyme β-carotene 15,15’-monooxygenase (BCMO1) is expressed and active in macrophages. Finally, 9-cis β-carotene, as well as the Dunaliella extract, activated the nuclear receptor RXR in hepa1-6 cells. These results indicate that dietary carotenoids, such as 9-cis β-carotene, accumulate in macrophages and can be locally cleaved by endogenous BCMO1 to form 9-cis retinoic acid and other retinoids. Subsequently, these retinoids activate the nuclear receptor RXR that, along with additional nuclear receptors, can affect various metabolic pathways, including those involved in foam cell formation and atherosclerosis.
doi:10.1371/journal.pone.0115272
PMCID: PMC4309590  PMID: 25629601
10.  Differential Expression of the Demosponge (Suberites domuncula) Carotenoid Oxygenases in Response to Light: Protection Mechanism Against the Self-Produced Toxic Protein (Suberitine) 
Marine Drugs  2012;10(1):177-199.
The demosponge Suberites domuncula has been described to contain high levels of a proteinaceous toxin, Suberitine, that displays haemolytic activityIn the present study this 7–8 kDa polypeptide has been isolated and was shown to exhibit also cytotoxic effects on cells of the same species. Addition of retinal, a recently identified metabolite of β-carotene that is abundantly present in S. domuncula was found to reduce both the haemolytic and the cell toxic activity of Suberitine at a molar ratio of 1:1. Spectroscopic analyses revealed that the interaction between β-carotene and Suberitine can be ascribed to a reversible energy transfer reaction. The enzyme that synthesises retinal in the sponge system is the β,β-carotene-15,15′-dioxygenase [carotene dioxygenase]. In order to clarify if this enzyme is the only β-carotene-metabolizing enzyme a further oxygenase had been identified and cloned, the (related) carotenoid oxygenase. In contrast to the dioxygenase, the carotenoid oxygenase could not degrade β-carotene or lycopene in Escherichia coli strains that produced these two carotenoids; therefore it had been termed related-carotenoid oxygenase. Exposure of primmorphs to light of different wavelengths from the visible spectrum resulted after 3 days in a strong upregulation of the dioxygenase in those 3D-cell aggregates that had been incubated with β-carotene. The strongest effect is seen with blue light at a maximum around 490 nm. It is concluded that the toxin Suberitine is non-covalently modified by retinal, the cleavage product from β-carotene via the enzyme carotene dioxygenase, a light inducible oxygenase. Hence, this study highlights that in S. domuncula the bioactive metabolite, retinal, has the property to detoxify its homologous toxin.
doi:10.3390/md10010177
PMCID: PMC3280542  PMID: 22363229
Suberitine; β-carotene; retinal; β-carotene dioxygenase; sponges; Suberites domuncula
11.  Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes 
Human Molecular Genetics  2009;19(3):535-544.
Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 × 10−5], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
doi:10.1093/hmg/ddp522
PMCID: PMC2798726  PMID: 19933169
12.  The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis 
Fall, Tove | Hägg, Sara | Mägi, Reedik | Ploner, Alexander | Fischer, Krista | Horikoshi, Momoko | Sarin, Antti-Pekka | Thorleifsson, Gudmar | Ladenvall, Claes | Kals, Mart | Kuningas, Maris | Draisma, Harmen H. M. | Ried, Janina S. | van Zuydam, Natalie R. | Huikari, Ville | Mangino, Massimo | Sonestedt, Emily | Benyamin, Beben | Nelson, Christopher P. | Rivera, Natalia V. | Kristiansson, Kati | Shen, Huei-yi | Havulinna, Aki S. | Dehghan, Abbas | Donnelly, Louise A. | Kaakinen, Marika | Nuotio, Marja-Liisa | Robertson, Neil | de Bruijn, Renée F. A. G. | Ikram, M. Arfan | Amin, Najaf | Balmforth, Anthony J. | Braund, Peter S. | Doney, Alexander S. F. | Döring, Angela | Elliott, Paul | Esko, Tõnu | Franco, Oscar H. | Gretarsdottir, Solveig | Hartikainen, Anna-Liisa | Heikkilä, Kauko | Herzig, Karl-Heinz | Holm, Hilma | Hottenga, Jouke Jan | Hyppönen, Elina | Illig, Thomas | Isaacs, Aaron | Isomaa, Bo | Karssen, Lennart C. | Kettunen, Johannes | Koenig, Wolfgang | Kuulasmaa, Kari | Laatikainen, Tiina | Laitinen, Jaana | Lindgren, Cecilia | Lyssenko, Valeriya | Läärä, Esa | Rayner, Nigel W. | Männistö, Satu | Pouta, Anneli | Rathmann, Wolfgang | Rivadeneira, Fernando | Ruokonen, Aimo | Savolainen, Markku J. | Sijbrands, Eric J. G. | Small, Kerrin S. | Smit, Jan H. | Steinthorsdottir, Valgerdur | Syvänen, Ann-Christine | Taanila, Anja | Tobin, Martin D. | Uitterlinden, Andre G. | Willems, Sara M. | Willemsen, Gonneke | Witteman, Jacqueline | Perola, Markus | Evans, Alun | Ferrières, Jean | Virtamo, Jarmo | Kee, Frank | Tregouet, David-Alexandre | Arveiler, Dominique | Amouyel, Philippe | Ferrario, Marco M. | Brambilla, Paolo | Hall, Alistair S. | Heath, Andrew C. | Madden, Pamela A. F. | Martin, Nicholas G. | Montgomery, Grant W. | Whitfield, John B. | Jula, Antti | Knekt, Paul | Oostra, Ben | van Duijn, Cornelia M. | Penninx, Brenda W. J. H. | Davey Smith, George | Kaprio, Jaakko | Samani, Nilesh J. | Gieger, Christian | Peters, Annette | Wichmann, H.-Erich | Boomsma, Dorret I. | de Geus, Eco J. C. | Tuomi, TiinaMaija | Power, Chris | Hammond, Christopher J. | Spector, Tim D. | Lind, Lars | Orho-Melander, Marju | Palmer, Colin Neil Alexander | Morris, Andrew D. | Groop, Leif | Järvelin, Marjo-Riitta | Salomaa, Veikko | Vartiainen, Erkki | Hofman, Albert | Ripatti, Samuli | Metspalu, Andres | Thorsteinsdottir, Unnur | Stefansson, Kari | Pedersen, Nancy L. | McCarthy, Mark I. | Ingelsson, Erik | Prokopenko, Inga
PLoS Medicine  2013;10(6):e1001474.
In this study, Prokopenko and colleagues provide novel evidence for causal relationship between adiposity and heart failure and increased liver enzymes using a Mendelian randomization study design.
Please see later in the article for the Editors' Summary
Background
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Methods and Findings
We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses.
Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001).
Conclusions
We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Globally, both the incidence of CVD (the number of new cases in a population every year) and its prevalence (the proportion of the population with CVD) are increasing, particularly in low- and middle-income countries. This increasing burden of CVD is occurring in parallel with a global increase in the incidence and prevalence of obesity—having an unhealthy amount of body fat (adiposity)—and of metabolic diseases—conditions such as diabetes in which metabolism (the processes that the body uses to make energy from food) is disrupted, with resulting high blood sugar and damage to the blood vessels.
Why Was This Study Done?
Epidemiological studies—investigations that record the patterns and causes of disease in populations—have reported an association between adiposity (indicated by an increased body mass index [BMI], which is calculated by dividing body weight in kilograms by height in meters squared) and cardiometabolic traits such as coronary heart disease, stroke, heart failure (a condition in which the heart is incapable of pumping sufficient amounts of blood around the body), diabetes, high blood pressure (hypertension), and high blood cholesterol (dyslipidemia). However, observational studies cannot prove that adiposity causes any particular cardiometabolic trait because overweight individuals may share other characteristics (confounding factors) that are the real causes of both obesity and the cardiometabolic disease. Moreover, it is possible that having CVD or a metabolic disease causes obesity (reverse causation). For example, individuals with heart failure cannot do much exercise, so heart failure may cause obesity rather than vice versa. Here, the researchers use “Mendelian randomization” to examine whether adiposity is causally related to various cardiometabolic traits. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. It is known that a genetic variant (rs9939609) within the genome region that encodes the fat-mass- and obesity-associated gene (FTO) is associated with increased BMI. Thus, an investigation of the associations between rs9939609 and cardiometabolic traits can indicate whether obesity is causally related to these traits.
What Did the Researchers Do and Find?
The researchers analyzed the association between rs9939609 (the “instrumental variable,” or IV) and BMI, between rs9939609 and 24 cardiometabolic traits, and between BMI and the same traits using genetic and health data collected in 36 population-based studies of nearly 200,000 individuals of European descent. They then quantified the strength of the causal association between BMI and the cardiometabolic traits by calculating “IV estimators.” Higher BMI showed a causal relationship with heart failure, metabolic syndrome (a combination of medical disorders that increases the risk of developing CVD), type 2 diabetes, dyslipidemia, hypertension, increased blood levels of liver enzymes (an indicator of liver damage; some metabolic disorders involve liver damage), and several other cardiometabolic traits. All the IV estimators were similar to the BMI–cardiovascular trait associations (observational estimates) derived from the same individuals, with the exception of diabetes, where the causal estimate was higher than the observational estimate, probably because the observational estimate is based on a single BMI measurement, whereas the causal estimate considers lifetime changes in BMI.
What Do These Findings Mean?
Like all Mendelian randomization studies, the reliability of the causal associations reported here depends on several assumptions made by the researchers. Nevertheless, these findings provide support for many previously suspected and biologically plausible causal relationships, such as that between adiposity and hypertension. They also provide new insights into the causal effect of obesity on liver enzyme levels and on heart failure. In the latter case, these findings suggest that a one-unit increase in BMI might increase the incidence of heart failure by 17%. In the US, this corresponds to 113,000 additional cases of heart failure for every unit increase in BMI at the population level. Although additional studies are needed to confirm and extend these findings, these results suggest that global efforts to reduce the burden of obesity will likely also reduce the occurrence of CVD and metabolic disorders.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001474.
The American Heart Association provides information on all aspects of cardiovascular disease and tips on keeping the heart healthy, including weight management (in several languages); its website includes personal stories about stroke and heart attacks
The US Centers for Disease Control and Prevention has information on heart disease, stroke, and all aspects of overweight and obesity (in English and Spanish)
The UK National Health Service Choices website provides information about cardiovascular disease and obesity, including a personal story about losing weight
The World Health Organization provides information on obesity (in several languages)
The International Obesity Taskforce provides information about the global obesity epidemic
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides links to other sources of information on heart disease, on vascular disease, on obesity, and on metabolic disorders (in English and Spanish)
The International Association for the Study of Obesity provides maps and information about obesity worldwide
The International Diabetes Federation has a web page that describes types, complications, and risk factors of diabetes
doi:10.1371/journal.pmed.1001474
PMCID: PMC3692470  PMID: 23824655
13.  β-Carotene conversion products and their effects on adipose tissue 
Genes & Nutrition  2009;4(3):179-187.
Recent epidemiological data suggest that β-carotene may be protective against metabolic diseases in which adipose tissue plays a key role. Adipose tissue constitutes the major β-carotene storage tissue and its functions have been shown to be modulated in response to β-carotene breakdown products, especially retinal produced after cleavage by β-carotene 15,15′-monooxygenase (BCMO1), and retinoic acid arising from oxidation of retinal. However, the possibility exists that β-carotene in its intact form can also affect adipocyte function. Development of a knock out model and identification of a loss-of-function mutation have pointed out BCMO1 as being probably the sole enzyme responsible for provitamin A conversion into retinal in mammals. The utilisation of BCMO1−/−mice should provide insights on β-carotene effect on its own in the future. In humans, intervention studies have highlighted the huge interindividual variation of β-carotene conversion efficiency, possibly due to genetic polymorphisms, which might impact on response to β-carotene. This brief review discusses the processes involved in β-carotene conversion and the effect of cleavage products on body fat and adipose tissue function.
doi:10.1007/s12263-009-0128-3
PMCID: PMC2745744  PMID: 19557453
β-Carotene; Vitamin A; Adipose tissue; Metabolic diseases; Genetic variants
14.  Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCMO1, APOA5, and ABCA1 are significant predictors of plasma HDL in healthy adults 
Background
In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body weight. We used a linear regression model. Selected genes corresponded to folate metabolism, vitamins B-12, A, and E, and cholesterol pathways or lipid metabolism.
Methods
Extracted DNA from both the Sacramento and Beltsville populations was analyzed using an allele discrimination assay with a MALDI-TOF mass spectrometry platform. The adjusted phenotype, y, was HDL levels adjusted for gender and body weight only statistical analyses were performed using the genotype association and regression modules from the SNP Variation Suite v7.
Results
Statistically significant SNP (where P values were adjusted for false discovery rate) included: CETP (rs7499892 and rs5882); SLC46A1 (rs37514694; rs739439); SLC19A1 (rs3788199); CD36 (rs3211956); BCMO1 (rs6564851), APOA5 (rs662799), and ABCA1 (rs4149267). Many prior association trends of the SNP with HDL were replicated in our cross-validation study. Significantly, the association of SNP in folate transporters (SLC46A1 rs37514694 and rs739439; SLC19A1 rs3788199) with HDL was identified in our study.
Conclusions
Given recent literature on the role of niacin in the biogenesis of HDL, focus on status and metabolism of B-vitamins and metabolites of eccentric cleavage of β-carotene with lipid metabolism is exciting for future study.
doi:10.1186/1476-511X-12-66
PMCID: PMC3653731  PMID: 23656756
Single nucleotide polymorphism; HDL; Folate transporter; Cholesterol
15.  Metabolic Signatures of Adiposity in Young Adults: Mendelian Randomization Analysis and Effects of Weight Change 
PLoS Medicine  2014;11(12):e1001765.
In this study, Wurtz and colleagues investigated to what extent elevated body mass index (BMI) within the normal weight range has causal influences on the detailed systemic metabolite profile in early adulthood using Mendelian randomization analysis.
Please see later in the article for the Editors' Summary
Background
Increased adiposity is linked with higher risk for cardiometabolic diseases. We aimed to determine to what extent elevated body mass index (BMI) within the normal weight range has causal effects on the detailed systemic metabolite profile in early adulthood.
Methods and Findings
We used Mendelian randomization to estimate causal effects of BMI on 82 metabolic measures in 12,664 adolescents and young adults from four population-based cohorts in Finland (mean age 26 y, range 16–39 y; 51% women; mean ± standard deviation BMI 24±4 kg/m2). Circulating metabolites were quantified by high-throughput nuclear magnetic resonance metabolomics and biochemical assays. In cross-sectional analyses, elevated BMI was adversely associated with cardiometabolic risk markers throughout the systemic metabolite profile, including lipoprotein subclasses, fatty acid composition, amino acids, inflammatory markers, and various hormones (p<0.0005 for 68 measures). Metabolite associations with BMI were generally stronger for men than for women (median 136%, interquartile range 125%–183%). A gene score for predisposition to elevated BMI, composed of 32 established genetic correlates, was used as the instrument to assess causality. Causal effects of elevated BMI closely matched observational estimates (correspondence 87%±3%; R2 = 0.89), suggesting causative influences of adiposity on the levels of numerous metabolites (p<0.0005 for 24 measures), including lipoprotein lipid subclasses and particle size, branched-chain and aromatic amino acids, and inflammation-related glycoprotein acetyls. Causal analyses of certain metabolites and potential sex differences warrant stronger statistical power. Metabolite changes associated with change in BMI during 6 y of follow-up were examined for 1,488 individuals. Change in BMI was accompanied by widespread metabolite changes, which had an association pattern similar to that of the cross-sectional observations, yet with greater metabolic effects (correspondence 160%±2%; R2 = 0.92).
Conclusions
Mendelian randomization indicates causal adverse effects of increased adiposity with multiple cardiometabolic risk markers across the metabolite profile in adolescents and young adults within the non-obese weight range. Consistent with the causal influences of adiposity, weight changes were paralleled by extensive metabolic changes, suggesting a broadly modifiable systemic metabolite profile in early adulthood.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Adiposity—having excessive body fat—is a growing global threat to public health. Body mass index (BMI, calculated by dividing a person's weight in kilograms by their height in meters squared) is a coarse indicator of excess body weight, but the measure is useful in large population studies. Compared to people with a lean body weight (a BMI of 18.5–24.9 kg/m2), individuals with higher BMI have an elevated risk of developing life-shortening cardiometabolic diseases—cardiovascular diseases that affect the heart and/or the blood vessels (for example, heart failure and stroke) and metabolic diseases that affect the cellular chemical reactions that sustain life (for example, diabetes). People become unhealthily fat by consuming food and drink that contains more energy (calories) than they need for their daily activities. So adiposity can be prevented and reversed by eating less and exercising more.
Why Was This Study Done?
Epidemiological studies, which record the patterns of risk factors and disease in populations, suggest that the illness and death associated with excess body weight is partly attributable to abnormalities in how individuals with high adiposity metabolize carbohydrates and fats, leading to higher blood sugar and cholesterol levels. Further, adiposity is also associated with many other deviations in the metabolic profile than these commonly measured risk factors. However, epidemiological studies cannot prove that adiposity causes specific changes in a person's systemic (overall) metabolic profile because individuals with high BMI may share other characteristics (confounding factors) that are the actual causes of both adiposity and metabolic abnormalities. Moreover, having a change in some aspect of metabolism could also lead to adiposity, rather than vice versa (reverse causation). Importantly, if there is a causal effect of adiposity on cardiometabolic risk factor levels, it might be possible to prevent the progression towards cardiometabolic diseases by weight loss. Here, the researchers use “Mendelian randomization” to examine whether increased BMI within the normal and overweight range is causally influencing the metabolic risk factors from many biological pathways during early adulthood. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. Several gene variants are known to lead to modestly increased BMI. Thus, an investigation of the associations between these gene variants and risk factors across the systemic metabolite profile in a population of healthy individuals can indicate whether higher BMI is causally related to known and novel metabolic risk factors and higher cardiometabolic disease risk.
What Did the Researchers Do and Find?
The researchers measured the BMI of 12,664 adolescents and young adults (average BMI 24.7 kg/m2) living in Finland and the blood levels of 82 metabolites in these young individuals at a single time point. Statistical analysis of these data indicated that elevated BMI was adversely associated with numerous cardiometabolic risk factors. For example, elevated BMI was associated with raised levels of low-density lipoprotein, “bad” cholesterol that increases cardiovascular disease risk. Next, the researchers used a gene score for predisposition to increased BMI, composed of 32 gene variants correlated with increased BMI, as an “instrumental variable” to assess whether adiposity causes metabolite abnormalities. The effects on the systemic metabolite profile of a 1-kg/m2 increment in BMI due to genetic predisposition closely matched the effects of an observed 1-kg/m2 increment in adulthood BMI on the metabolic profile. That is, higher levels of adiposity had causal effects on the levels of numerous blood-based metabolic risk factors, including higher levels of low-density lipoprotein cholesterol and triglyceride-carrying lipoproteins, protein markers of chronic inflammation and adverse liver function, impaired insulin sensitivity, and elevated concentrations of several amino acids that have recently been linked with the risk for developing diabetes. Elevated BMI also causally led to lower levels of certain high-density lipoprotein lipids in the blood, a marker for the risk of future cardiovascular disease. Finally, an examination of the metabolic changes associated with changes in BMI in 1,488 young adults after a period of six years showed that those metabolic measures that were most strongly associated with BMI at a single time point likewise displayed the highest responsiveness to weight change over time.
What Do These Findings Mean?
These findings suggest that increased adiposity has causal adverse effects on multiple cardiometabolic risk markers in non-obese young adults beyond the effects on cholesterol and blood sugar. Like all Mendelian randomization studies, the reliability of the causal association reported here depends on several assumptions made by the researchers. Nevertheless, these findings suggest that increased adiposity has causal adverse effects on multiple cardiometabolic risk markers in non-obese young adults. Importantly, the results of both the causal effect analyses and the longitudinal study suggest that there is no threshold below which a BMI increase does not adversely affect the metabolic profile, and that a systemic metabolic profile linked with high cardiometabolic disease risk that becomes established during early adulthood can be reversed. Overall, these findings therefore highlight the importance of weight reduction as a key target for metabolic risk factor control among young adults.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001765.
The Computational Medicine Research Team of the University of Oulu has a webpage that provides further information on metabolite profiling by high-throughput NMR metabolomics
The World Health Organization provides information on obesity (in several languages)
The Global Burden of Disease Study website provides the latest details about global obesity trends
The UK National Health Service Choices website provides information about obesity, cardiovascular disease, and type 2 diabetes (including some personal stories)
The American Heart Association provides information on all aspects of cardiovascular disease and diabetes and on keeping healthy; its website includes personal stories about heart attacks, stroke, and diabetes
The US Centers for Disease Control and Prevention has information on all aspects of overweight and obesity and information about heart disease, stroke, and diabetes
MedlinePlus provides links to other sources of information on heart disease, vascular disease, and obesity (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001765
PMCID: PMC4260795  PMID: 25490400
16.  Effects of β-carotene supplementation on molecular markers of lung carcinogenesis in male smokers 
Two primary prevention trials unexpectedly demonstrated adverse effects of supplemental β-carotene on lung cancer incidence in cigarette smokers. To elucidate the molecular mechanisms that might underlie these effects, we studied the immunohistochemical expression of cytochrome P450 (CYP) 1A1, 1A2, and 2E1, retinoic acid receptor-β (RAR-β), activated protein-1 (AP-1) elements, cyclin D1, and Ki67 in lung tumors and, when available, adjacent normal tissues obtained from incident cases in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Archival lung tissue was available from 52 men randomized to receive 20 mg of β-carotene per day and 30 men randomized to the placebo arm, all of whom were diagnosed with incident non-small cell lung carcinoma during the course of the trial and subsequently underwent radical pulmonary resection. In normal appearing bronchial epithelium, positive staining for cyclin D1 was observed in 23% of cases in the β-carotene group and 0% of cases in the placebo group (based on only 3 of 13 versus 0 of 11 cases staining positively, however; p=0.04), with no differences in expression noted in lung tumor tissue (p=0.48). There were no statistically significant differences in Ki67 expression in normal or cancerous lung tissue between intervention groups, although a small increase in staining was noted among cases in the β-carotene versus placebo group (88% versus 71% of cases stained positive, respectively; p=0.13). Contrary to expectation, β-carotene supplementation had no apparent effect on RAR-β expression. These findings suggest that male smokers supplemented with β-carotene may have had an increased risk of lung cancer due to aberrant cell growth, although our results are based on a relatively small number of cases and require confirmation in other completed trials of β-carotene supplementation.
doi:10.1158/1940-6207.CAPR-09-0107
PMCID: PMC3496925  PMID: 20484175
β-carotene; immunohistochemistry; lung cancer; smoking; supplementation
17.  Associations Between α-Tocopherol, β-Carotene, and Retinol and Prostate Cancer Survival 
Cancer research  2009;69(9):3833-3841.
Previous studies suggest that carotenoids and tocopherols (vitamin E compounds) may be inversely associated with prostate cancer risk, yet little is known about how they affect prostate cancer progression and survival. We investigated whether serum α-tocopherol, β-carotene, and retinol concentrations, or the α-tocopherol and β-carotene trial supplementation, affected survival of men diagnosed with prostate cancer during the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, a randomized, double-blind, placebo-controlled primary prevention trial testing the effects of β-carotene and α-tocopherol supplements on cancer incidence in adult male smokers in southwestern Finland (n=29,133). Prostate cancer survival was examined using the Kaplan-Meier method with deaths from other causes treated as censoring, and using Cox proportional hazards regression models with hazard ratios (HR) and 95% confidence intervals (95% CI) adjusted for family history of prostate cancer, age at randomization, benign prostatic hyperplasia, age and stage at diagnosis, height, BMI, and serum cholesterol. As of April 2005, 1,891 men were diagnosed with prostate cancer and 395 died of their disease. Higher serum α-tocopherol at baseline was associated with improved prostate cancer survival (HR=0.67, 0.45–1.00), especially among cases who had received the trial’s α-tocopherol intervention and who were in the highest quintile of α-tocopherol at baseline (HR=0.51, 0.20–0.90) or at the 3-year follow-up measurement (HR=0.26, 0.09–0.71). Serum β-carotene, serum retinol, and supplemental β-carotene had no apparent effects on survival. These findings suggest that higher α-tocopherol (and not β-carotene or retinol) status increases overall prostate cancer survival. Further investigations, possibly including randomized studies, are needed to confirm this observation.
doi:10.1158/0008-5472.CAN-08-4640
PMCID: PMC2787239  PMID: 19383902
18.  Vitamin E Serum Levels and Controlled Supplementation and Risk of Amyotrophic Lateral Sclerosis 
Objective
There are no observational studies or controlled trials of amyotrophic lateral sclerosis (ALS) and circulating α-tocopherol (vitamin E) for prevention of ALS. This study addresses that gap.
Methods
The study population comprised 29,127 Finnish male smokers, aged 50–69 years, who participated in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, which is both a prospective cohort and a randomized, double-blind, placebo-controlled trial of α-tocopherol (50 mg/day) and β-carotene (20 mg/day). Serum α-tocopherol and β-carotene was assayed at baseline (1985–1988). Follow-up (median 16.7 years) continued through 2004. ALS cases were identified through the national Hospital Discharge Register with diagnostic verification by hospital records and death certificates.
Results
During 407,260 person-years of follow-up, 50 men were identified with ALS. For men with serum α-tocopherol concentration above the median (≥11.6 mg/l), the age-adjusted relative risk (RR) compared to α-tocopherol below the median, was 0.56 (95% confidence interval= 0.32–0.99), p=0.046. The RR among α-tocopherol supplement recipients was 0.75 (95% CI=0.32–1.79), p=0.52. Neither serum β-carotene level nor β-carotene supplementation was associated with ALS.
Conclusions
The results are consistent with a hypothesized protective effect of α-tocopherol on ALS risk. However, pooled analyses of cohorts with serum and controlled trials are needed to clarify the role of α-tocopherol in ALS risk.
doi:10.3109/21678421.2012.745570
PMCID: PMC3673294  PMID: 23286756
Amyotrophic lateral sclerosis; vitamin E; cohort studies; risk factors in epidemiology
19.  Beta-carotene affects gene expression in lungs of male and female Bcmo1−/− mice in opposite directions 
Molecular mechanisms triggered by high dietary beta-carotene (BC) intake in lung are largely unknown. We performed microarray gene expression analysis on lung tissue of BC supplemented beta-carotene 15,15′-monooxygenase 1 knockout (Bcmo1−/−) mice, which are—like humans—able to accumulate BC. Our main observation was that the genes were regulated in an opposite direction in male and female Bcmo1−/− mice by BC. The steroid biosynthetic pathway was overrepresented in BC-supplemented male Bcmo1−/− mice. Testosterone levels were higher after BC supplementation only in Bcmo1−/− mice, which had, unlike wild-type (Bcmo1+/+) mice, large variations. We hypothesize that BC possibly affects hormone synthesis or metabolism. Since sex hormones influence lung cancer risk, these data might contribute to an explanation for the previously found increased lung cancer risk after BC supplementation (ATBC and CARET studies). Moreover, effects of BC may depend on the presence of frequent human BCMO1 polymorphisms, since these effects were not found in wild-type mice.
doi:10.1007/s00018-010-0461-0
PMCID: PMC3021199  PMID: 20820853
Sex-hormones; Mouse whole genome microarray gene expression analysis; Beta-carotene 15,15′-monooxygenase 1; Steroids; Retinol; Retinoic acid; Gender effect; Transcriptome
20.  Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study 
PLoS Medicine  2014;11(5):e1001647.
In this study, Wareham and colleagues quantified the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention. The authors found that the relative effect of a type 2 diabetes genetic risk score is greater in younger and leaner participants, and the high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Background
Understanding of the genetic basis of type 2 diabetes (T2D) has progressed rapidly, but the interactions between common genetic variants and lifestyle risk factors have not been systematically investigated in studies with adequate statistical power. Therefore, we aimed to quantify the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention.
Methods and Findings
The InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a cohort of 340,234 European participants with 3.99 million person-years of follow-up. We studied the combined effects of an additive genetic T2D risk score and modifiable and non-modifiable risk factors using Prentice-weighted Cox regression and random effects meta-analysis methods. The effect of the genetic score was significantly greater in younger individuals (p for interaction  = 1.20×10−4). Relative genetic risk (per standard deviation [4.4 risk alleles]) was also larger in participants who were leaner, both in terms of body mass index (p for interaction  = 1.50×10−3) and waist circumference (p for interaction  = 7.49×10−9). Examination of absolute risks by strata showed the importance of obesity for T2D risk. The 10-y cumulative incidence of T2D rose from 0.25% to 0.89% across extreme quartiles of the genetic score in normal weight individuals, compared to 4.22% to 7.99% in obese individuals. We detected no significant interactions between the genetic score and sex, diabetes family history, physical activity, or dietary habits assessed by a Mediterranean diet score.
Conclusions
The relative effect of a T2D genetic risk score is greater in younger and leaner participants. However, this sub-group is at low absolute risk and would not be a logical target for preventive interventions. The high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, more than 380 million people currently have diabetes, and the condition is becoming increasingly common. Diabetes is characterized by high levels of glucose (sugar) in the blood. Blood sugar levels are usually controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest type of diabetes), blood sugar control fails because the fat and muscle cells that normally respond to insulin by removing excess sugar from the blood become less responsive to insulin. Type 2 diabetes can often initially be controlled with diet and exercise (lifestyle changes) and with antidiabetic drugs such as metformin and sulfonylureas, but patients may eventually need insulin injections to control their blood sugar levels. Long-term complications of diabetes, which include an increased risk of heart disease and stroke, reduce the life expectancy of people with diabetes by about ten years compared to people without diabetes.
Why Was This Study Done?
Type 2 diabetes is thought to originate from the interplay between genetic and lifestyle factors. But although rapid progress is being made in understanding the genetic basis of type 2 diabetes, it is not known whether the consequences of adverse lifestyles (for example, being overweight and/or physically inactive) differ according to an individual's underlying genetic risk of diabetes. It is important to investigate this question to inform strategies for prevention. If, for example, obese individuals with a high level of genetic risk have a higher risk of developing diabetes than obese individuals with a low level of genetic risk, then preventative strategies that target lifestyle interventions to obese individuals with a high genetic risk would be more effective than strategies that target all obese individuals. In this case-cohort study, researchers from the InterAct consortium quantify the combined effects of genetic and lifestyle factors on the risk of type 2 diabetes. A case-cohort study measures exposure to potential risk factors in a group (cohort) of people and compares the occurrence of these risk factors in people who later develop the disease with those who remain disease free.
What Did the Researchers Do and Find?
The InterAct study involves 12,403 middle-aged individuals who developed type 2 diabetes after enrollment (incident cases) into the European Prospective Investigation into Cancer and Nutrition (EPIC) and a sub-cohort of 16,154 EPIC participants. The researchers calculated a genetic type 2 diabetes risk score for most of these individuals by determining which of 49 gene variants associated with type 2 diabetes each person carried, and collected baseline information about exposure to lifestyle risk factors for type 2 diabetes. They then used various statistical approaches to examine the combined effects of the genetic risk score and lifestyle factors on diabetes development. The effect of the genetic score was greater in younger individuals than in older individuals and greater in leaner participants than in participants with larger amounts of body fat. The absolute risk of type 2 diabetes, expressed as the ten-year cumulative incidence of type 2 diabetes (the percentage of participants who developed diabetes over a ten-year period) increased with increasing genetic score in normal weight individuals from 0.25% in people with the lowest genetic risk scores to 0.89% in those with the highest scores; in obese people, the ten-year cumulative incidence rose from 4.22% to 7.99% with increasing genetic risk score.
What Do These Findings Mean?
These findings show that in this middle-aged cohort, the relative association with type 2 diabetes of a genetic risk score comprised of a large number of gene variants is greatest in individuals who are younger and leaner at baseline. This finding may in part reflect the methods used to originally identify gene variants associated with type 2 diabetes, and future investigations that include other genetic variants, other lifestyle factors, and individuals living in other settings should be undertaken to confirm this finding. Importantly, however, this study shows that young, lean individuals with a high genetic risk score have a low absolute risk of developing type 2 diabetes. Thus, this sub-group of individuals is not a logical target for preventative interventions. Rather, suggest the researchers, the high absolute risk of type 2 diabetes associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001647.
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals and the general public, including detailed information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes and about living with diabetes; it also provides people's stories about diabetes
The charity Diabetes UK provides detailed information for patients and carers in several languages, including information on healthy lifestyles for people with diabetes
The UK-based non-profit organization Healthtalkonline has interviews with people about their experiences of diabetes
The Genetic Landscape of Diabetes is published by the US National Center for Biotechnology Information
More information on the InterAct study is available
MedlinePlus provides links to further resources and advice about diabetes and diabetes prevention (in English and Spanish)
doi:10.1371/journal.pmed.1001647
PMCID: PMC4028183  PMID: 24845081
21.  Relationships between Serum and Colon Concentrations of Carotenoids and Fatty Acids in a Randomized Dietary Intervention Trial 
Little is known about dietary effect on colonic nutrient concentrations associated with preventive foods. This study observed 120 persons at increased risk of colon cancer randomized to a Mediterranean versus a Healthy Eating diet for six months. The former targeted increases in whole grains, fruits, vegetables, monounsaturated and n3 fats. Healthy Eating diet was based on Healthy People 2010 recommendations. At baseline, dietary fat and carotenoid intakes were poorly associated (Spearman ρ < 0.4) with serum and colon concentrations. Strong associations were observed between serum and colon measurements of β-cryptoxanthin (ρ = 0.58, p-value < 0.001), α-carotene (ρ = 0.48, p-value < 0.001), and β-carotene (ρ = 0.45, p-value < 0.001). After six months, the Healthy Eating arm increased serum lutein, β- and α-carotene significantly (p-value < 0.05). In the Mediterranean arm the significant increases were in serum lutein, β-cryptoxanthin, β-carotene, monounsaturated and n3 fats. A significant group-by-time interaction (p-value = 0.03) was obtained for monounsaturated fats. Colonic increases in carotenoids and n3 fats were significant only in Healthy Eating arm, while group-by-time interaction were significant for β-carotene (p-value = 0.02), and α-carotene (p-value = 0.03). Changes in colon concentrations were not significantly associated with reported dietary changes. Changes in colon and serum concentrations were strongly associated for β-cryptoxanthin (ρ = 0.56, p-value < 0.001), and α-carotene (ρ = 0.40, p-value < 0.001). The associations between colonic and serum concentrations suggest the potential utility of using serum concentration as a target in dietary interventions aimed at reducing colon cancer risk.
doi:10.1158/1940-6207.CAPR-13-0019
PMCID: PMC4021591  PMID: 23592741
Mediterranean diet; Healthy People diet; Carotenoids; Fatty Acids; Spearman Correlation
22.  Incidence of cataract operations in Finnish male smokers unaffected by alpha tocopherol or beta carotene supplements 
OBJECTIVE: To examine the effect of alpha tocopherol and beta carotene supplementation on the incidence of age related cataract extraction. SETTING: The Alpha-tocopherol Beta-carotene (ATBC) Study was a randomised, double blind, placebo controlled, 2 x 2 factorial trial conducted in south western Finland. The cataract surgery study population of 28,934 male smokers 50-69 years of age at the start. INTERVENTION: Random assignment to one of four regimens: alpha tocopherol 50 mg per day, beta carotene 20 mg per day, both alpha tocopherol and beta carotene, or placebo. Follow up continued for five to eight years (median 5.7 years) with a total of 159,199 person years. OUTCOME MEASURE: Cataract extraction, ascertained from the National Hospital Discharge Registry. RESULTS: 425 men had cataract surgery because of senile or presenile cataract during the follow up. Of these, 112 men were in the alpha tocopherol alone group, 112 men in the beta carotene alone group, 96 men in the alpha tocopherol and beta carotene group, and 105 men in the placebo group. When supplementation with alpha tocopherol and with beta carotene were introduced to a Cox proportional hazards model with baseline characteristics (age, education, history of diabetes, body mass index, alcohol consumption, number of cigarettes smoked daily, smoking duration, visual acuity, and total cholesterol), neither alpha tocopherol (relative risk, RR, 0.91, 95% confidence intervals, CI, 0.74, 1.11) nor beta carotene (RR 0.97, 95% CI 0.79, 1.19) supplementation affected the incidence of cataract surgery. CONCLUSION: Supplementation with alpha tocopherol or beta carotene does not affect the incidence of cataract extractions among male smokers.
 
PMCID: PMC1756731  PMID: 9799882
23.  Association Between Serum Levels of Carotenoids and Serum Asymmetric Dimethylarginine Levels in Japanese Subjects 
Journal of Epidemiology  2014;24(3):250-257.
Background
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelium nitric oxide synthase (NOS). ADMA binds to a substrate-binding site of NOS and then inhibits nitric oxide production from vascular endothelial cells. Elevated ADMA levels are a risk factor for cardiovascular disease. Recently, it was reported that plasma ADMA levels were negatively correlated with vegetable and fruit consumption. The purpose of this study was to examine the association between serum levels of carotenoids and serum ADMA levels in Japanese subjects.
Methods
We conducted a cross-sectional study of 470 subjects (203 men and 267 women) who attended a health examination in August 2011. Serum levels of several carotenoids were separately measured by high-performance liquid chromatography. Serum ADMA levels were determined by using an enzyme-linked immunosorbent assay kit.
Results
In women, the multivariate-adjusted odds ratios (ORs) of elevated serum ADMA levels were significantly decreased in the highest tertile for β-cryptoxanthin (OR 0.47, 95% CI 0.23–0.95), α-carotene (OR 0.39, 95% CI 0.18–0.79), and β-carotene (OR 0.36, 95% CI 0.17–0.73) compared to the lowest tertile. In men, significantly decreased ORs were observed in the highest tertiles of serum zeaxanthin/lutein (OR 0.23, 95% CI 0.06–0.69) and α-carotene (OR 0.26, 95% CI 0.07–0.82), and in the middle and the highest tertiles of serum β-carotene (OR 0.27, 95% CI 0.09–0.74 and OR 0.20, 95% CI 0.03–0.88, respectively) when the tertile cutoff points of women were extrapolated to men.
Conclusions
Higher serum levels of carotenoids, such as α-carotene and β-carotene, may help to prevent elevated serum ADMA levels in Japanese subjects.
doi:10.2188/jea.JE20130137
PMCID: PMC4000773  PMID: 24727752
asymmetric dimethylarginine; carotenoids; cross-sectional study
24.  Cooperation between MEF2 and PPARγ in human intestinal β,β-carotene 15,15'-monooxygenase gene expression 
Background
Vitamin A and its derivatives, the retinoids, are essential for normal embryonic development and maintenance of cell differentiation. β, β-carotene 15,15'-monooxygenase 1 (BCMO1) catalyzes the central cleavage of β-carotene to all-trans retinal and is the key enzyme in the intestinal metabolism of carotenes to vitamin A. However, human and various rodent species show markedly different efficiencies in intestinal BCMO1-mediated carotene to retinoid conversion. The aim of this study is to identify potentially human-specific regulatory control mechanisms of BCMO1 gene expression.
Results
We identified and functionally characterized the human BCMO1 promoter sequence and determined the transcriptional regulation of the BCMO1 gene in a BCMO1 expressing human intestinal cell line, TC-7. Several functional transcription factor-binding sites were identified in the human promoter that are absent in the mouse BCMO1 promoter. We demonstrate that the proximal promoter sequence, nt -190 to +35, confers basal transcriptional activity of the human BCMO1 gene. Site-directed mutagenesis of the myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) binding elements resulted in decreased basal promoter activity. Mutation of both promoter elements abrogated the expression of intestinal cell BCMO1. Electrophoretic mobility shift and supershift assays and transcription factor co-expression in TC-7 cells showed MEF2C and PPARγ bind to their respective DNA elements and synergistically transactivate BCMO1 expression.
Conclusion
We demonstrate that human intestinal cell BCMO1 expression is dependent on the functional cooperation between PPARγ and MEF2 isoforms. The findings suggest that the interaction between MEF2 and PPAR factors may provide a molecular basis for interspecies differences in the transcriptional regulation of the BCMO1 gene.
doi:10.1186/1471-2199-7-7
PMCID: PMC1526748  PMID: 16504037
25.  Method for the Determination of β-Carotene in Supplements and Raw Materials by Reversed-Phase Liquid Chromatography: Single Laboratory Validation 
Journal of AOAC International  2004;87(5):1070-1082.
A single laboratory validation (SLV) study was conducted for a liquid Chromatography (LC) method for the determination of total and all-trans-β-carotene in a variety of dietary supplements, including multivitamin tablets, softgels, capsules, and beadlet raw materials. Extraction variants were developed for the different types of supplements tested based upon the supplement type and level of β-carotene. Water dispersible formulations such as powders, emulsions, tablets, and capsules were enzymatically digested with protease and extracted with dichloromethane–ethanol. Oily suspensions were directly dissolved in dichloromethane–ethanol. After appropriate dilution or concentration, the extracts were chromatographed by using either a reversed-phase C18 column or, in products containing high amounts of α-carotene, a reversed-phase C30 column. The LC systems provided linear responses in the range of 0.1–50 μg β-carotene/mL. The main geometrical isomers of β-carotene (all-trans, 9-cis, 13-cis, and 15-cis) were well separated from each other and from other carotenoids such as α-carotene, cryptoxanthin, lutein, lycopene, and zeaxanthin. Duplicate determinations of total β-carotene performed by 2 technicians in 8 different test materials on 5 different days resulted in relative standard deviations of 1.2–4.4%. Recoveries determined for supplements and beadlet raw material spiked with β-carotene levels of 10 μg to 100 mg/test portion and 0.2–40%, respectively, ranged from 97.5 to 102.1%. On the basis of the accuracy, precision, and recovery results from the SLV study, the method is suggested for a collaborative study on the determination of total and all-trans-β-carotene in dietary supplements.
PMCID: PMC2586117  PMID: 15493663

Results 1-25 (1501011)