PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (996277)

Clipboard (0)
None

Related Articles

1.  PROSESS: a protein structure evaluation suite and server 
Nucleic Acids Research  2010;38(Web Server issue):W633-W640.
PROSESS (PROtein Structure Evaluation Suite and Server) is a web server designed to evaluate and validate protein structures generated by X-ray crystallography, NMR spectroscopy or computational modeling. While many structure evaluation packages have been developed over the past 20 years, PROSESS is unique in its comprehensiveness, its capacity to evaluate X-ray, NMR and predicted structures as well as its ability to evaluate a variety of experimental NMR data. PROSESS integrates a variety of previously developed, well-known and thoroughly tested methods to evaluate both global and residue specific: (i) covalent and geometric quality; (ii) non-bonded/packing quality; (iii) torsion angle quality; (iv) chemical shift quality and (v) NOE quality. In particular, PROSESS uses VADAR for coordinate, packing, H-bond, secondary structure and geometric analysis, GeNMR for calculating folding, threading and solvent energetics, ShiftX for calculating chemical shift correlations, RCI for correlating structure mobility to chemical shift and PREDITOR for calculating torsion angle-chemical shifts agreement. PROSESS also incorporates several other programs including MolProbity to assess atomic clashes, Xplor-NIH to identify and quantify NOE restraint violations and NAMD to assess structure energetics. PROSESS produces detailed tables, explanations, structural images and graphs that summarize the results and compare them to values observed in high-quality or high-resolution protein structures. Using a simplified red–amber–green coloring scheme PROSESS also alerts users about both general and residue-specific structural problems. PROSESS is intended to serve as a tool that can be used by structure biologists as well as database curators to assess and validate newly determined protein structures. PROSESS is freely available at http://www.prosess.ca.
doi:10.1093/nar/gkq375
PMCID: PMC2896095  PMID: 20460469
2.  Gaia: automated quality assessment of protein structure models 
Bioinformatics  2011;27(16):2209-2215.
Motivation: Increasing use of structural modeling for understanding structure–function relationships in proteins has led to the need to ensure that the protein models being used are of acceptable quality. Quality of a given protein structure can be assessed by comparing various intrinsic structural properties of the protein to those observed in high-resolution protein structures.
Results: In this study, we present tools to compare a given structure to high-resolution crystal structures. We assess packing by calculating the total void volume, the percentage of unsatisfied hydrogen bonds, the number of steric clashes and the scaling of the accessible surface area. We assess covalent geometry by determining bond lengths, angles, dihedrals and rotamers. The statistical parameters for the above measures, obtained from high-resolution crystal structures enable us to provide a quality-score that points to specific areas where a given protein structural model needs improvement.
Availability and Implementation: We provide these tools that appraise protein structures in the form of a web server Gaia (http://chiron.dokhlab.org). Gaia evaluates the packing and covalent geometry of a given protein structure and provides quantitative comparison of the given structure to high-resolution crystal structures.
Contact: dokh@unc.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btr374
PMCID: PMC3150034  PMID: 21700672
3.  ANCHOR: a web server and database for analysis of protein–protein interaction binding pockets for drug discovery 
Nucleic Acids Research  2010;38(Web Server issue):W407-W411.
ANCHOR is a web-based tool whose aim is to facilitate the analysis of protein–protein interfaces with regard to its suitability for small molecule drug design. To this end, ANCHOR exploits the so-called anchor residues, i.e. amino acid side-chains deeply buried at protein–protein interfaces, to indicate possible druggable pockets to be targeted by small molecules. For a given protein–protein complex submitted by the user, ANCHOR calculates the change in solvent accessible surface area (ΔSASA) upon binding for each side-chain, along with an estimate of its contribution to the binding free energy. A Jmol-based tool allows the user to interactively visualize selected anchor residues in their pockets as well as the stereochemical properties of the surrounding region such as hydrogen bonding. ANCHOR includes a Protein Data Bank (PDB) wide database of pre-computed anchor residues from more than 30 000 PDB entries with at least two protein chains. The user can query according to amino acids, buried area (SASA), energy or keywords related to indication areas, e.g. oncogene or diabetes. This database provides a resource to rapidly assess protein–protein interactions for the suitability of small molecules or fragments with bioisostere anchor analogues as possible compounds for pharmaceutical intervention. ANCHOR web server and database are freely available at http://structure.pitt.edu/anchor.
doi:10.1093/nar/gkq502
PMCID: PMC2896143  PMID: 20525787
4.  MolProbity: all-atom contacts and structure validation for proteins and nucleic acids 
Nucleic Acids Research  2007;35(Web Server issue):W375-W383.
MolProbity is a general-purpose web server offering quality validation for 3D structures of proteins, nucleic acids and complexes. It provides detailed all-atom contact analysis of any steric problems within the molecules as well as updated dihedral-angle diagnostics, and it can calculate and display the H-bond and van der Waals contacts in the interfaces between components. An integral step in the process is the addition and full optimization of all hydrogen atoms, both polar and nonpolar. New analysis functions have been added for RNA, for interfaces, and for NMR ensembles. Additionally, both the web site and major component programs have been rewritten to improve speed, convenience, clarity and integration with other resources. MolProbity results are reported in multiple forms: as overall numeric scores, as lists or charts of local problems, as downloadable PDB and graphics files, and most notably as informative, manipulable 3D kinemage graphics shown online in the KiNG viewer. This service is available free to all users at http://molprobity.biochem.duke.edu.
doi:10.1093/nar/gkm216
PMCID: PMC1933162  PMID: 17452350
5.  STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins 
Nucleic Acids Research  2004;32(Web Server issue):W500-W502.
STRIDE is a software tool for secondary structure assignment from atomic resolution protein structures. It implements a knowledge-based algorithm that makes combined use of hydrogen bond energy and statistically derived backbone torsional angle information and is optimized to return resulting assignments in maximal agreement with crystallographers' designations. The STRIDE web server provides access to this tool and allows visualization of the secondary structure, as well as contact and Ramachandran maps for any file uploaded by the user with atomic coordinates in the Protein Data Bank (PDB) format. A searchable database of STRIDE assignments for the latest PDB release is also provided. The STRIDE server is accessible from http://webclu.bio.wzw.tum.de/stride/.
doi:10.1093/nar/gkh429
PMCID: PMC441567  PMID: 15215436
6.  PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations 
Nucleic Acids Research  2004;32(Web Server issue):W665-W667.
Continuum solvation models, such as Poisson–Boltzmann and Generalized Born methods, have become increasingly popular tools for investigating the influence of electrostatics on biomolecular structure, energetics and dynamics. However, the use of such methods requires accurate and complete structural data as well as force field parameters such as atomic charges and radii. Unfortunately, the limiting step in continuum electrostatics calculations is often the addition of missing atomic coordinates to molecular structures from the Protein Data Bank and the assignment of parameters to biomolecular structures. To address this problem, we have developed the PDB2PQR web service (http://agave.wustl.edu/pdb2pqr/). This server automates many of the common tasks of preparing structures for continuum electrostatics calculations, including adding a limited number of missing heavy atoms to biomolecular structures, estimating titration states and protonating biomolecules in a manner consistent with favorable hydrogen bonding, assigning charge and radius parameters from a variety of force fields, and finally generating ‘PQR’ output compatible with several popular computational biology packages. This service is intended to facilitate the setup and execution of electrostatics calculations for both experts and non-experts and thereby broaden the accessibility to the biological community of continuum electrostatics analyses of biomolecular systems.
doi:10.1093/nar/gkh381
PMCID: PMC441519  PMID: 15215472
7.  The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli 
Nucleic Acids Research  2004;32(Database issue):D293-D295.
The CyberCell Database (CCDB: http://redpoll.pharmacy.ualberta.ca/CCDB) is a comprehensive, web-accessible database designed to support and coordinate international efforts in modeling an Escherichia coli cell on a computer. The CCDB brings together both observed and derived quantitative data from numerous independent sources covering many aspects of the genomic, proteomic and metabolomic character of E.coli (strain K12). The database is self-updating but also supports ‘community’ annotation, and provides an extensive array of viewing, querying and search options including a powerful, easy-to-use relational data extraction system.
doi:10.1093/nar/gkh108
PMCID: PMC308842  PMID: 14681416
8.  3D-partner: a web server to infer interacting partners and binding models 
Nucleic Acids Research  2007;35(Web Server issue):W561-W567.
The 3D-partner is a web tool to predict interacting partners and binding models of a query protein sequence through structure complexes and a new scoring function. 3D-partner first utilizes IMPALA to identify homologous structures (templates) of a query from a heterodimer profile library. The interacting-partner sequence profiles of these templates are then used to search interacting candidates of the query from protein sequence databases (e.g. SwissProt) by PSI-BLAST. We developed a new scoring function, which includes the contact-residue interacting score (e.g. the steric, hydrogen bonds, and electrostatic interactions) and the template consensus score (e.g. couple-conserved residue and the template similarity scores), to evaluate how well the interfaces between the query and interacting candidates. Based on this scoring function, 3D-partner provides the statistic significance, the binding models (e.g. hydrogen bonds and conserved amino acids) and functional annotations of interacting partners. The correlation between experimental energies and predicted binding affinities of our scoring function is 0.91 on 275 mutated residues from the ASEdb. The average precision of the server is 0.72 on 563 queries and the execution time of this server for a query is ∼15 s on average. These results suggest that the 3D-partner server can be useful in protein-protein interaction predictions and binding model visualizations. The server is available online at: http://3D-partner.life.nctu.edu.tw.
doi:10.1093/nar/gkm346
PMCID: PMC1933210  PMID: 17517763
9.  The PDB_REDO server for macromolecular structure model optimization 
IUCrJ  2014;1(Pt 4):213-220.
The PDB_REDO pipeline aims to improve macromolecular structures by optimizing the crystallographic refinement parameters and performing partial model building. Here, algorithms are presented that allowed a web-server implementation of PDB_REDO, and the first user results are discussed.
The refinement and validation of a crystallographic structure model is the last step before the coordinates and the associated data are submitted to the Protein Data Bank (PDB). The success of the refinement procedure is typically assessed by validating the models against geometrical criteria and the diffraction data, and is an important step in ensuring the quality of the PDB public archive [Read et al. (2011 ▶), Structure, 19, 1395–1412]. The PDB_REDO procedure aims for ‘constructive validation’, aspiring to consistent and optimal refinement parameterization and pro-active model rebuilding, not only correcting errors but striving for optimal interpretation of the electron density. A web server for PDB_REDO has been implemented, allowing thorough, consistent and fully automated optimization of the refinement procedure in REFMAC and partial model rebuilding. The goal of the web server is to help practicing crystallo­graphers to improve their model prior to submission to the PDB. For this, additional steps were implemented in the PDB_REDO pipeline, both in the refinement procedure, e.g. testing of resolution limits and k-fold cross-validation for small test sets, and as new validation criteria, e.g. the density-fit metrics implemented in EDSTATS and ligand validation as implemented in YASARA. Innovative ways to present the refinement and validation results to the user are also described, which together with auto-generated Coot scripts can guide users to subsequent model inspection and improvement. It is demonstrated that using the server can lead to substantial improvement of structure models before they are submitted to the PDB.
doi:10.1107/S2052252514009324
PMCID: PMC4107921  PMID: 25075342
PDB_REDO; validation; model optimization
10.  In silico prediction of exposure amino acid sequences of outer inflammatory protein A of Helicobacter pylori for surface display on Eschierchia coli 
BACKGROUND:
Outer inflammatory protein A (OipA) is an outer membrane protein of Helicobacter pylori that is involved in inducing IL-8 and intracellular signaling. In this study, we have predicted exposure amino acid sequences of OipA for insertion in permissive sites of CstH subunit of Eschierchia coli CS3 pilli for bacterial surface display.
MATERIALS AND METHODS:
Databases: National Center for Biotechnology Institute and Protein Data Bank. Servers: PHD, SABLE, GOR 4, SignalP3.0, TBBpred, PRODIV-TMHMM, TMRPres2D, CPH Models, PHYRE, GETAREA, VADAR, Pep state and pep window. Software: Swiss PDB viewer and Discovery studio.
RESULTS:
In silico prediction of exposure amino acid sequences of OipA led to detection of six sequences of amino acid, 76-87, 106-112, 170-182, 222-230, 242-258, and 278-290. These sequences inserted between amino acid sequences 66-67, 100-101, and 109-110 of CstH that were predicted by Eskandari et al. as permissive sites of CstH.
CONCLUSION:
OipA has the ability to induce IL-8 from gastric epithelial cells and some papers are mentioned that this outer membrane protein involve to attachment and intracellular signaling. Receptor of OipA and adhesion motifs on this protein is unknown. Detection of exposure motifs aids to recognition of adhesion motifs and receptor of OipA on gastric epithelial cells. In this study, we have predicted exposure amino acid sequences for insert to subunit CstH of CS3 pilli E. coli for surface display.
doi:10.4103/0971-6866.96659
PMCID: PMC3385185  PMID: 22754227
CstH; in silico prediction; OipA; surface sequences
11.  Vfold: A Web Server for RNA Structure and Folding Thermodynamics Prediction 
PLoS ONE  2014;9(9):e107504.
Background
The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies.
Results
The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization.
Conclusions
The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at “http://rna.physics.missouri.edu”.
doi:10.1371/journal.pone.0107504
PMCID: PMC4162592  PMID: 25215508
12.  2P2Idb: a structural database dedicated to orthosteric modulation of protein–protein interactions 
Nucleic Acids Research  2012;41(Database issue):D824-D827.
Protein–protein interactions are considered as one of the next generation of therapeutic targets. Specific tools thus need to be developed to tackle this challenging chemical space. In an effort to derive some common principles from recent successes, we have built 2P2Idb (freely accessible at http://2p2idb.cnrs-mrs.fr), a hand-curated structural database dedicated to protein–protein interactions with known orthosteric modulators. It includes all interactions for which both the protein–protein and protein–ligand complexes have been structurally characterized. A web server provides links to related sites of interest, binding affinity data, pre-calculated structural information about protein–protein interfaces and 3D interactive views through java applets. Comparison of interfaces in 2P2Idb to those of representative datasets of heterodimeric complexes has led to the identification of geometrical parameters and residue properties to assess the druggability of protein–protein complexes. A tool is proposed to calculate a series of biophysical and geometrical parameters that characterize protein–protein interfaces. A large range of descriptors are computed including, buried accessible surface area, gap volume, non-bonded contacts, hydrogen-bonds, atom and residue composition, number of segments and secondary structure contribution. All together the 2P2I database represents a structural source of information for scientists from academic institutions or pharmaceutical industries.
doi:10.1093/nar/gks1002
PMCID: PMC3531195  PMID: 23203891
13.  HARMONY: a server for the assessment of protein structures 
Nucleic Acids Research  2006;34(Web Server issue):W231-W234.
Protein structure validation is an important step in computational modeling and structure determination. Stereochemical assessment of protein structures examine internal parameters such as bond lengths and Ramachandran (φ,ψ) angles. Gross structure prediction methods such as inverse folding procedure and structure determination especially at low resolution can sometimes give rise to models that are incorrect due to assignment of misfolds or mistracing of electron density maps. Such errors are not reflected as strain in internal parameters. HARMONY is a procedure that examines the compatibility between the sequence and the structure of a protein by assigning scores to individual residues and their amino acid exchange patterns after considering their local environments. Local environments are described by the backbone conformation, solvent accessibility and hydrogen bonding patterns. We are now providing HARMONY through a web server such that users can submit their protein structure files and, if required, the alignment of homologous sequences. Scores are mapped on the structure for subsequent examination that is useful to also recognize regions of possible local errors in protein structures. HARMONY server is located at
doi:10.1093/nar/gkl314
PMCID: PMC1538917  PMID: 16844999
14.  DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins 
Nucleic Acids Research  2011;39(Web Server issue):W242-W248.
Depth measures the extent of atom/residue burial within a protein. It correlates with properties such as protein stability, hydrogen exchange rate, protein–protein interaction hot spots, post-translational modification sites and sequence variability. Our server, DEPTH, accurately computes depth and solvent-accessible surface area (SASA) values. We show that depth can be used to predict small molecule ligand binding cavities in proteins. Often, some of the residues lining a ligand binding cavity are both deep and solvent exposed. Using the depth-SASA pair values for a residue, its likelihood to form part of a small molecule binding cavity is estimated. The parameters of the method were calibrated over a training set of 900 high-resolution X-ray crystal structures of single-domain proteins bound to small molecules (molecular weight <1.5 KDa). The prediction accuracy of DEPTH is comparable to that of other geometry-based prediction methods including LIGSITE, SURFNET and Pocket-Finder (all with Matthew’s correlation coefficient of ∼0.4) over a testing set of 225 single and multi-chain protein structures. Users have the option of tuning several parameters to detect cavities of different sizes, for example, geometrically flat binding sites. The input to the server is a protein 3D structure in PDB format. The users have the option of tuning the values of four parameters associated with the computation of residue depth and the prediction of binding cavities. The computed depths, SASA and binding cavity predictions are displayed in 2D plots and mapped onto 3D representations of the protein structure using Jmol. Links are provided to download the outputs. Our server is useful for all structural analysis based on residue depth and SASA, such as guiding site-directed mutagenesis experiments and small molecule docking exercises, in the context of protein functional annotation and drug discovery.
doi:10.1093/nar/gkr356
PMCID: PMC3125764  PMID: 21576233
15.  Rigidity analysis of protein biological assemblies and periodic crystal structures 
BMC Bioinformatics  2013;14(Suppl 18):S2.
Background
We initiate in silico rigidity-theoretical studies of biological assemblies and small crystals for protein structures. The goal is to determine if, and how, the interactions among neighboring cells and subchains affect the flexibility of a molecule in its crystallized state. We use experimental X-ray crystallography data from the Protein Data Bank (PDB). The analysis relies on an effcient graph-based algorithm. Computational experiments were performed using new protein rigidity analysis tools available in the new release of our KINARI-Web server http://kinari.cs.umass.edu.
Results
We provide two types of results: on biological assemblies and on crystals. We found that when only isolated subchains are considered, structural and functional information may be missed. Indeed, the rigidity of biological assemblies is sometimes dependent on the count and placement of hydrogen bonds and other interactions among the individual subchains of the biological unit. Similarly, the rigidity of small crystals may be affected by the interactions between atoms belonging to different unit cells.
We have analyzed a dataset of approximately 300 proteins, from which we generated 982 crystals (some of which are biological assemblies). We identified two types of behaviors. (a) Some crystals and/or biological assemblies will aggregate into rigid bodies that span multiple unit cells/asymmetric units. Some of them create substantially larger rigid cluster in the crystal/biological assembly form, while in other cases, the aggregation has a smaller effect just at the interface between the units. (b) In other cases, the rigidity properties of the asymmetric units are retained, because the rigid bodies did not combine.
We also identified two interesting cases where rigidity analysis may be correlated with the functional behavior of the protein. This type of information, identified here for the first time, depends critically on the ability to create crystals and biological assemblies, and would not have been observed only from the asymmetric unit.
For the Ribonuclease A protein (PDB file 5RSA), which is functionally active in the crystallized form, we found that the individual protein and its crystal form retain the flexibility parameters between the two states. In contrast, a derivative of Ribonuclease A (PDB file 9RSA), has no functional activity, and the protein in both the asymmetric and crystalline forms, is very rigid.
For the vaccinia virus D13 scaffolding protein (PDB file 3SAQ), which has two biological assemblies, we observed a striking asymmetry in the rigidity cluster decomposition of one of them, which seems implausible, given its symmetry. Upon careful investigation, we tracked the cause to a placement decision by the Reduce software concerning the hydrogen atoms, thus affecting the distribution of certain hydrogen bonds. The surprising result is that the presence or lack of a very few, but critical, hydrogen bonds, can drastically affect the rigid cluster decomposition of the biological assembly.
Conclusion
The rigidity analysis of a single asymmetric unit may not accurately reflect the protein's behavior in the tightly packed crystal environment. Using our KINARI software, we demonstrated that additional functional and rigidity information can be gained by analyzing a protein's biological assembly and/or crystal structure. However, performing a larger scale study would be computationally expensive (due to the size of the molecules involved). Overcoming this limitation will require novel mathematical and computational extensions to our software.
doi:10.1186/1471-2105-14-S18-S2
PMCID: PMC3817814  PMID: 24564201
16.  SuperPose: a simple server for sophisticated structural superposition 
Nucleic Acids Research  2004;32(Web Server issue):W590-W594.
The SuperPose web server rapidly and robustly calculates both pairwise and multiple protein structure superpositions using a modified quaternion eigenvalue approach. SuperPose generates sequence alignments, structure alignments, PDB (Protein Data Bank) coordinates and RMSD statistics, as well as difference distance plots and images (both static and interactive) of the superimposed molecules. SuperPose employs a simple interface that requires only PDB files or accession numbers as input. All other superposition decisions are made by the program. SuperPose is uniquely able to superimpose structures that differ substantially in sequence, size or shape. It is also capable of handling a much larger range of superposition queries and situations than many standalone programs and yields results that are intuitively more in agreement with known biological or structural data. The SuperPose web server is freely accessible at http://wishart.biology.ualberta.ca/SuperPose/.
doi:10.1093/nar/gkh477
PMCID: PMC441615  PMID: 15215457
17.  A decoy set for the thermostable subdomain from chicken villin headpiece, comparison of different free energy estimators 
BMC Bioinformatics  2005;6:301.
Background
Estimators of free energies are routinely used to judge the quality of protein structural models. As these estimators still present inaccuracies, they are frequently evaluated by discriminating native or native-like conformations from large ensembles of so-called decoy structures.
Results
A decoy set is obtained from snapshots taken from 5 long (100 ns) molecular dynamics (MD) simulations of the thermostable subdomain from chicken villin headpiece.
An evaluation of the energy of the decoys is given using: i) a residue based contact potential supplemented by a term for the quality of dihedral angles; ii) a recently introduced combination of four statistical scoring functions for model quality estimation (FRST); iii) molecular mechanics with solvation energy estimated either according to the generalized Born surface area (GBSA) or iv) the Poisson-Boltzmann surface area (PBSA) method.
Conclusion
The decoy set presented here has the following features which make it attractive for testing energy scoring functions:
1) it covers a broad range of RMSD values (from less than 2.0 Å to more than 12 Å);
2) it has been obtained from molecular dynamics trajectories, starting from different non-native-like conformations which have diverse behaviour, with secondary structure elements correctly or incorrectly formed, and in one case folding to a native-like structure. This allows not only for scoring of static structures, but also for studying, using free energy estimators, the kinetics of folding;
3) all structures have been obtained from accurate MD simulations in explicit solvent and after molecular mechanics (MM) energy minimization using an implicit solvent method. The quality of the covalent structure therefore does not suffer from steric or covalent problems.
The statistical and physical effective energy functions tested on the set behave differently when native simulation snapshots are included or not in the set and when averaging over the trajectory is performed.
doi:10.1186/1471-2105-6-301
PMCID: PMC1351271  PMID: 16354298
18.  CCRXP: exploring clusters of conserved residues in protein structures 
Nucleic Acids Research  2010;38(Web Server issue):W398-W401.
Conserved residues forming tightly packed clusters have been shown to be energy hot spots in both protein–protein and protein–DNA complexes. A number of analyses on these clusters of conserved residues (CCRs) have been reported, all pointing to a crucial role that these clusters play in protein function, especially protein–protein and protein–DNA interactions. However, currently there is no publicly available tool to automatically detect such clusters. Here, we present a web server that takes a coordinate file in PDB format as input and automatically executes all the steps to identify CCRs in protein structures. In addition, it calculates the structural properties of each residue and of the CCRs. We also present statistics to show that CCRs, determined by these procedures, are significantly enriched in ‘hot spots’ in protein–protein and protein–RNA complexes, which supplements our more detailed similar results on protein–DNA complexes. We expect that CCRXP web server will be useful in studies of protein structures and their interactions and selecting mutagenesis targets. The web server can be accessed at http://ccrxp.netasa.org.
doi:10.1093/nar/gkq360
PMCID: PMC2896124  PMID: 20457748
19.  CH5M3D: an HTML5 program for creating 3D molecular structures 
Background
While a number of programs and web-based applications are available for the interactive display of 3-dimensional molecular structures, few of these provide the ability to edit these structures. For this reason, we have developed a library written in JavaScript to allow for the simple creation of web-based applications that should run on any browser capable of rendering HTML5 web pages. While our primary interest in developing this application was for educational use, it may also prove useful to researchers who want a light-weight application for viewing and editing small molecular structures.
Results
Molecular compounds are drawn on the HTML5 Canvas element, with the JavaScript code making use of standard techniques to allow display of three-dimensional structures on a two-dimensional canvas. Information about the structure (bond lengths, bond angles, and dihedral angles) can be obtained using a mouse or other pointing device. Both atoms and bonds can be added or deleted, and rotation about bonds is allowed. Routines are provided to read structures either from the web server or from the user’s computer, and creation of galleries of structures can be accomplished with only a few lines of code. Documentation and examples are provided to demonstrate how users can access all of the molecular information for creation of web pages with more advanced features.
Conclusions
A light-weight (≈ 75 kb) JavaScript library has been made available that allows for the simple creation of web pages containing interactive 3-dimensional molecular structures. Although this library is designed to create web pages, a web server is not required. Installation on a web server is straightforward and does not require any server-side modules or special permissions. The ch5m3d.js library has been released under the GNU GPL version 3 open-source license and is available from http://sourceforge.net/projects/ch5m3d/.
doi:10.1186/1758-2946-5-46
PMCID: PMC4177146  PMID: 24246004
Visualization; Molecular editor; HTML5; 3D; Molecular graphics
20.  ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement 
Nucleic Acids Research  2004;32(Web Server issue):W610-W614.
Normal mode analysis (NMA) is a powerful tool for predicting the possible movements of a given macromolecule. It has been shown recently that half of the known protein movements can be modelled by using at most two low-frequency normal modes. Applications of NMA cover wide areas of structural biology, such as the study of protein conformational changes upon ligand binding, membrane channel opening and closure, potential movements of the ribosome, and viral capsid maturation. Another, newly emerging field of NMA is related to protein structure determination by X-ray crystallography, where normal mode perturbed models are used as templates for diffraction data phasing through molecular replacement (MR). Here we present ElNémo, a web interface to the Elastic Network Model that provides a fast and simple tool to compute, visualize and analyse low-frequency normal modes of large macro-molecules and to generate a large number of different starting models for use in MR. Due to the ‘rotation-translation-block’ (RTB) approximation implemented in ElNémo, there is virtually no upper limit to the size of the proteins that can be treated. Upon input of a protein structure in Protein Data Bank (PDB) format, ElNémo computes its 100 lowest-frequency modes and produces a comprehensive set of descriptive parameters and visualizations, such as the degree of collectivity of movement, residue mean square displacements, distance fluctuation maps, and the correlation between observed and normal-mode-derived atomic displacement parameters (B-factors). Any number of normal mode perturbed models for MR can be generated for download. If two conformations of the same (or a homologous) protein are available, ElNémo identifies the normal modes that contribute most to the corresponding protein movement. The web server can be freely accessed at http://igs-server.cnrs-mrs.fr/elnemo/index.html.
doi:10.1093/nar/gkh368
PMCID: PMC441506  PMID: 15215461
21.  CheShift-2 Resolves a Local Inconsistency Between Two X-ray Crystal Structures 
Journal of biomolecular NMR  2012;54(2):193-198.
Since chemical shifts provide important and relatively accessible information about protein structure in solution, a Web server, CheShift-2, was developed for structure interrogation, based on a quantum mechanics database of 13Cα chemical shifts. CheShift-2 to a local inconsistency between two X-ray crystal structures (PDB IDs 1IKN and INFI) of the complex between the p65/p50 heterodimer of NFκB and its inhibitor IκBα. The availability of NMR resonance assignments that included the region of the inconsistency provided an opportunity for independent validation of the CheShift-2 server. Application of the server showed that the 13Cψ chemical shift measured for the Gly270-Pro281 sequence close to the C-terminus of IκBα were unequivocally consistent with the backbone structure modeled in the 1IKN structure, and were inconsistent with the 1NFI structure. Previous NOE measurements had demonstrated that the position of a tryptophan ring in the region immediately N-terminal in this region was not consistent with either structure. Subsequent recalculation of the local structure in this region, based on the electron density of the deposited structure factors for 1IKN, confirmed that the local backbone structure was best modeled by 1IKN, but that the rotamer of Trp258 is consistent with the 1NFI structure, including the presence of a hydrogen bond between the ring NεH of Trp258 and the backbone carbonyl group of Gln278. The consensus between all of these measures suggests that the CheShift-2 server operates well under circumstances in which backbone chemical shifts are available but where local plasticity may render X-ray structural data ambiguous.
doi:10.1007/s10858-012-9663-0
PMCID: PMC3471536  PMID: 22945426
22.  GeNMR: a web server for rapid NMR-based protein structure determination 
Nucleic Acids Research  2009;37(Web Server issue):W670-W677.
GeNMR (GEnerate NMR structures) is a web server for rapidly generating accurate 3D protein structures using sequence data, NOE-based distance restraints and/or NMR chemical shifts as input. GeNMR accepts distance restraints in XPLOR or CYANA format as well as chemical shift files in either SHIFTY or BMRB formats. The web server produces an ensemble of PDB coordinates for the protein within 15–25 min, depending on model complexity and completeness of experimental restraints. GeNMR uses a pipeline of several pre-existing programs and servers to calculate the actual protein structure. In particular, GeNMR combines genetic algorithms for structure optimization along with homology modeling, chemical shift threading, torsion angle and distance predictions from chemical shifts/NOEs as well as ROSETTA-based structure generation and simulated annealing with XPLOR-NIH to generate and/or refine protein coordinates. GeNMR greatly simplifies the task of protein structure determination as users do not have to install or become familiar with complex stand-alone programs or obscure format conversion utilities. Tests conducted on a sample of 90 proteins from the BioMagResBank indicate that GeNMR produces high-quality models for all protein queries, regardless of the type of NMR input data. GeNMR was developed to facilitate rapid, user-friendly structure determination of protein structures via NMR spectroscopy. GeNMR is accessible at http://www.genmr.ca.
doi:10.1093/nar/gkp280
PMCID: PMC2703936  PMID: 19406927
23.  Protein kinase–inhibitor database: Structural variability of and inhibitor interactions with the protein kinase P-loop 
Journal of proteome research  2010;9(9):4433-4442.
Structure based drug design of protein-kinase inhibitors has been facilitated by availability of an enormous number of structures in the Protein Databank (PDB), systematic analyses of which can provide insight into the factors which govern ligand–protein kinase interactions and into the conformational variability of the protein kinases. In this study, a non-redundant database containing 755 unique, curated and annotated PDB protein kinase–inhibitor complexes (each consisting of a single protein kinase chain, a ligand and water molecules around the ligand) was created. With this dataset, analyses were performed of protein conformational variability and interactions of ligands with 11 P-loop residues. Analysis of ligand–protein interactions included ligand atom preference, ligand–protein hydrogen bonds and the number and position of crystallographic water molecules around important P-loop residues. Analysis of variability in the conformation of the P-loop considered backbone and side-chain dihedral angles, and solvent accessible surface area (SASA). A distorted conformation of the P-loop was observed for some of the protein kinase structures. Lower SASA was observed for the hydrophobic residue in β1 of several members of the AGC family of protein kinases. Our systematic studies were performed amino-acid by amino-acid, which is unusual for analyses of protein kinase–inhibitor complexes.
doi:10.1021/pr100662s
PMCID: PMC3235399  PMID: 20681595
Distorted P-loop; Hydrophobic motif; AGC kinase [cAMP-dependent protein kinase (PKA)/protein kinase G/protein kinase C (PKC)]; Kinase structure space; Atom preference; Conformational plasticity
24.  Motivated Proteins: A web application for studying small three-dimensional protein motifs 
BMC Bioinformatics  2009;10:60.
Background
Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are αβ-motifs, asx-motifs, asx-turns, β-bulges, β-bulge loops, β-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns.
We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this.
Description
The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs.
Conclusion
Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema.
doi:10.1186/1471-2105-10-60
PMCID: PMC2651126  PMID: 19210785
25.  SCOWLP: a web-based database for detailed characterization and visualization of protein interfaces 
BMC Bioinformatics  2006;7:104.
Background
Currently there is a strong need for methods that help to obtain an accurate description of protein interfaces in order to be able to understand the principles that govern molecular recognition and protein function. Many of the recent efforts to computationally identify and characterize protein networks extract protein interaction information at atomic resolution from the PDB. However, they pay none or little attention to small protein ligands and solvent. They are key components and mediators of protein interactions and fundamental for a complete description of protein interfaces. Interactome profiling requires the development of computational tools to extract and analyze protein-protein, protein-ligand and detailed solvent interaction information from the PDB in an automatic and comparative fashion. Adding this information to the existing one on protein-protein interactions will allow us to better understand protein interaction networks and protein function.
Description
SCOWLP (Structural Characterization Of Water, Ligands and Proteins) is a user-friendly and publicly accessible web-based relational database for detailed characterization and visualization of the PDB protein interfaces. The SCOWLP database includes proteins, peptidic-ligands and interface water molecules as descriptors of protein interfaces. It contains currently 74,907 protein interfaces and 2,093,976 residue-residue interactions formed by 60,664 structural units (protein domains and peptidic-ligands) and their interacting solvent.
The SCOWLP web-server allows detailed structural analysis and comparisons of protein interfaces at atomic level by text query of PDB codes and/or by navigating a SCOP-based tree. It includes a visualization tool to interactively display the interfaces and label interacting residues and interface solvent by atomic physicochemical properties. SCOWLP is automatically updated with every SCOP release.
Conclusion
SCOWLP enriches substantially the description of protein interfaces by adding detailed interface information of peptidic-ligands and solvent to the existing protein-protein interaction databases. SCOWLP may be of interest to many structural bioinformaticians. It provides a platform for automatic global mapping of protein interfaces at atomic level, representing a useful tool for classification of protein interfaces, protein binding comparative studies, reconstruction of protein complexes and understanding protein networks. The web-server with the database and its additional summary tables used for our analysis are available at .
doi:10.1186/1471-2105-7-104
PMCID: PMC1459204  PMID: 16512892

Results 1-25 (996277)