Search tips
Search criteria

Results 1-25 (1271105)

Clipboard (0)

Related Articles

1.  Molecular consequences of cystic fibrosis transmembrane regulator (CFTR) gene mutations in the exocrine pancreas 
Gut  2003;52(8):1159-1164.
Background and aims: We tested the hypothesis that the actual or predicted consequences of mutations in the cystic fibrosis transmembrane regulator gene correlate with the pancreatic phenotype and with measures of quantitative exocrine pancreatic function.
Methods: We assessed 742 patients with cystic fibrosis for whom genotype and clinical data were available. At diagnosis, 610 were pancreatic insufficient, 110 were pancreatic sufficient, and 22 pancreatic sufficient patients progressed to pancreatic insufficiency after diagnosis.
Results: We identified mutations on both alleles in 633 patients (85.3%), on one allele in 95 (12.8%), and on neither allele in 14 (1.9%). Seventy six different mutations were identified. The most common mutation was ΔF508 (71.3%) followed by G551D (2.9%), G542X (2.3%), 621+1G→T (1.2%), and W1282X (1.2%). Patients were categorized into five classes according to the predicted functional consequences of each mutation. Over 95% of patients with severe class I, II, and III mutations were pancreatic insufficient or progressed to pancreatic insufficiency. In contrast, patients with mild class IV and V mutations were consistently pancreatic sufficient. In all but four cases each genotype correlated exclusively with the pancreatic phenotype. Quantitative data of acinar and ductular secretion were available in 93 patients. Patients with mutations belonging to classes I, II, and III had greatly reduced acinar and ductular function compared with those with class IV or V mutations.
Conclusion: The predicted or known functional consequences of specific mutant alleles correlate with the severity of pancreatic disease in cystic fibrosis.
PMCID: PMC1773762  PMID: 12865275
cystic fibrosis; cystic fibrosis transmembrane regulator; pancreatic insufficiency; pancreas
2.  Early acute pancreatitis in a child with compound heterozygosis ∆F508/R1438W/Y1032C cystic fibrosis: a case report 
Recent studies suggest an important role of the cystic fibrosis transmembrane conductance regulator gene in the development of pancreatitis. It occurs approximately in 20% of patients with cystic fibrosis and almost exclusively in pancreatic sufficient people. Newborn screening and improved panels of deoxyribonucleic acid mutation analysis techniques are revealing more rare and nonclassical pictures of the disease, generally associated with pancreatic sufficiency and with an increased risk of developing pancreatitis. Mutations R1438 and Y1032 are considered rare mutations, and, when singularly associated with ∆F508, lead to a mild phenotype with pancreatic sufficiency and no detectable respiratory involvement.
Case presentation
We present the case of a Caucasian girl, aged six years, whose genotype was characterized by three different mutations ∆F508, R1438W and Y1032C, never reported, together, in the same patient. She presented with a positive immunoreactive trypsinogen screening, a borderline sweat test, and, in the first years, a favorable pulmonary course, and pancreatic sufficiency. At the age of six years, she presented with a sudden episode of acute abdominal pain, anorexia and fever. A diagnosis of pancreatitis was made after clinical and laboratory examinations. Venous rehydration, bowel rest and therapy with ursodeoxycholic acid resulted in complete remission.
The treatment was successful, with normalization of her symptoms and laboratory parameters within four weeks.
There has been a vast expansion in the understanding of the wide range of phenotypes associated with cystic fibrosis transmembrane conductance regulator dysfunction since the discovery of the cystic fibrosis transmembrane conductance regulator gene. The genotype-phenotype correlation in pancreatitis is rare compared to other organ manifestations, since this is seen almost exclusively among pancreatic sufficient patients with cystic fibrosis. Our study supports that compound heterozygosis ∆F508-R1438W/Y1032C is a 'cystic fibrosis-causing genotype' characterized by an immunoreactive trypsinogen positive screening, abnormal sweat chloride testing, and pancreatic sufficiency, with an increased risk of acute pancreatitis at an early age.
PMCID: PMC3750286  PMID: 23883480
Pancreatitis; Cystic fibrosis; CFTR; ∆F508-R1438W and Y1032C; Mild phenotype
3.  Mechanisms of CFTR Functional Variants That Impair Regulated Bicarbonate Permeation and Increase Risk for Pancreatitis but Not for Cystic Fibrosis 
PLoS Genetics  2014;10(7):e1004376.
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.
Author Summary
Genetic disorders of ion channels can affect the body's ability to function properly in many ways. CFTR, an ion channel regulating movement of chloride and bicarbonate across cell membranes, is important for absorbing and secreting fluids. If the gene responsible for the CFTR channel is mutated severely, the result is cystic fibrosis, a hereditary disorder in which the patient develops thick mucus, especially in the lungs, as well as scarring (fibrosis) in the pancreas. Cystic fibrosis also affects the sweat glands, nasal sinuses, intestines, liver, and male reproductive system. Mutations to the CFTR gene that do not cause cystic fibrosis have been considered benign. However, we discovered 9 CFTR mutations that do not cause cystic fibrosis but do cause inflammation and scarring of the pancreas (chronic pancreatitis). These mutant CFTR channels secrete chloride, which is important in the sweat glands, lungs, and intestines, but not bicarbonate, which is important in the pancreas, sinuses, and male reproductive tract. We found patients with any of these 9 mutations had chronic pancreatitis, and often sinus infections, and male infertility, but not other symptoms of cystic fibrosis. Our computer models and data will help researchers develop better drugs and help physicians treating patients with chronic pancreatitis.
PMCID: PMC4102440  PMID: 25033378
4.  Neonatal screening strategy for cystic fibrosis using immunoreactive trypsinogen and direct gene analysis. 
BMJ : British Medical Journal  1991;302(6787):1237-1240.
OBJECTIVE--To assess the effectiveness of a two tier neonatal screening strategy for cystic fibrosis, which combines estimation of immunoreactive trypsinogen followed by direct gene analysis in dried blood spot samples collected at age 5 days. DESIGN--Prospective study of two tier screening strategy. The first tier of testing immunoreactive trypsinogen concentration was measured in dried blood spot samples from neonates aged 4-5 days. In the second tier direct gene analysis to detect cystic fibrosis mutations deltaF508 and deltaI506 was performed in those blood spot samples which produced the highest 1% of immunoreactive trypsinogen values. Direct gene analysis was also performed on blood spot samples from infants with suspected or confirmed meconium ileus, regardless of the immunoreactive trypsinogen value. SETTING--The South Australian Neonatal Screening Programme, operating from the department of chemical pathology at Adelaide Children's Hospital. Subjects--All 12,056 neonates born in South Australia between December 1989 and June 1990. No selection criteria were applied. INTERVENTIONS--All infants found to have two recognised cystic fibrosis mutations on direct gene analysis were referred directly for clinical management, and those with one recognised cystic fibrosis mutation were recalled for a sweat test; their families were given genetic counselling. MAIN OUTCOME MEASURES--Direct or exclusion of cystic fibrosis by sweat testing of neonates identified as being at high risk of cystic fibrosis on screening and of those at minimum risk but whose subsequent clinical history raised suspicion about the disease. RESULTS--Of the 12,056 infants screened, 11,907 (98.8%) were reported as "cystic fibrosis not indicated" on the basis of low immunoreactive trypsinogen values. Of the 148 (1.23%) infants with raised immunoreactive trypsinogen values and one (0.008%) with meconium ileus, 132 (1.09%) were reported as cystic fibrosis not indicated, four (0.033%) were identified as having cystic fibrosis, and 13 (0.108%) were recalled for sweat testing after direct gene analysis for the presence of the deltaF508 and deltaI506 cystic fibrosis mutations. No cases of affected infants are known to have been missed to date. CONCLUSION--The strategy of measurement of immunoreactive trypsinogen followed by direct gene analysis is a highly specific neonatal screen for cystic fibrosis, requiring only 2.8 families to be contacted for every case of cystic fibrosis diagnosed.
PMCID: PMC1669924  PMID: 2043846
5.  Neonatal screening for cystic fibrosis using immunoreactive trypsinogen and direct gene analysis: four years' experience. 
BMJ : British Medical Journal  1994;308(6942):1469-1472.
OBJECTIVE--To assess the performance and impact of a two tier neonatal screening programme for cystic fibrosis based on an initial estimation of immunoreactive trypsinogen followed by direct gene analysis. DESIGN--Four year prospective study of two tier screening strategy. First tier: immunoreactive trypsinogen measured in dried blood spot samples from neonates aged 3-5 days. Second tier: direct gene analysis of cystic fibrosis mutations (delta F508, delta I506, G551D, G542X, and R553X) in samples with immunoreactive trypsinogen concentrations in highest 1% and in all neonates with meconium ileus or family history of cystic fibrosis. SETTING--South Australian Neonatal Screening Programme, Adelaide. SUBJECTS--All 88,752 neonates born in South Australia between December 1989 and December 1993. INTERVENTIONS--Neonates with two identifiable mutations were referred directly for clinical assessment and confirmatory sweat test; infants with only one identifiable mutation were recalled for sweat test at age 3-4 weeks. Parents of neonates identified as carriers of cystic fibrosis mutation were counselled and offered genetic testing. MAIN OUTCOME MEASURES--Identification of all children with cystic fibrosis in the screened population. RESULTS--Of 1004 (1.13%) neonates with immunoreactive trypsinogen > or = 99th centile, 912 (90.8%) had no identifiable mutation. 23 neonates were homozygotes or compound heterozygotes; 69 carried one identifiable mutation, of whom six had positive sweat tests. Median age at clinical assessment for the 29 neonates with cystic fibrosis was 3 weeks; six had meconium ileus and two had affected siblings. 63 neonates were identified as carriers of a cystic fibrosis mutation. Extra laboratory costs for measuring immunoreactive trypsinogen and direct gene analysis were $A1.50 per neonate screened. CONCLUSION--This strategy results in early and accurate diagnosis of cystic fibrosis and performs better than screening strategies based on immunoreactive trypsinogen measurement alone.
PMCID: PMC2540319  PMID: 8019280
6.  Cystic fibrosis presenting as recurrent pancreatitis in a young child with a normal sweat test and pancreas divisum: a case report 
Pancreatitis is a rare manifestation of cystic fibrosis (CF) and may rarely be the presenting symptom in adolescent or adult patients with CF. We report a case of a 4 year-old female who initially presented with recurrent pancreatitis, a normal sweat test, and a diagnosis of pancreas divisum. She was subsequently diagnosed with cystic fibrosis at the age of 6 years, despite normal growth and no pulmonary symptoms, after nasal potential difference measurements suggested possible CF and two known CF-causing mutations (ΔF508 and L997F) were detected.
Case Presentation
An otherwise healthy 4 year-old female developed chronic pancreatitis and was diagnosed with pancreas divisum. Sphincterotomy was performed without resolution of her pancreatitis. Sweat test was negative for cystic fibrosis, but measurement of nasal potential differences suggested possible cystic fibrosis. These results prompted extended Cystic Fibrosis Transmembrane Regulator Conductance (CFTR) mutational analysis that revealed a compound heterozygous mutation: ΔF508 and L997F.
CFTR mutations should be considered in cases of chronic or recurrent pancreatitis despite a negative sweat test and the presence of pancreas divisum. Children with CFTR mutations may present with recurrent pancreatitis, lacking any other signs or symptoms of cystic fibrosis. It is possible that the combination of pancreas divisum and abnormal CFTR function may contribute to the severity and frequency of recurrent pancreatitis.
PMCID: PMC2435544  PMID: 18501000
7.  Cystic fibrosis transmembrane regulator (CFTR) ΔF508 mutation and 5T allele in patients with chronic pancreatitis and exocrine pancreatic cancer 
Gut  2001;48(1):70-74.
BACKGROUND—An increased risk of chronic pancreatitis has been described among carriers of the cystic fibrosis transmembrane regulator (CFTR) mutation. In addition, patients with cystic fibrosis may have a higher risk of exocrine pancreatic cancer.
AIMS—To determine the prevalence of the ΔF508 mutation and 5T allele, the most common CFTR disease related variants, and to assess their association with lifestyle factors in an unselected series of patients with chronic pancreatitis or pancreatic cancer.
SUBJECTS—Patients recruited to the multicentre PANKRAS II study with a diagnosis of chronic pancreatitis and pancreatic cancer from whom normal DNA was available.
METHODS—The ΔF508 mutation and 5T allele were analysed using polymerase chain reaction amplified normal DNA. Information on clinical and lifestyle factors was obtained through personal interviews.
RESULTS—Among patients with pancreatitis, no ΔF508 alleles were found and the prevalence of the 5T allele was 10.5%, similar to that described in the general population. Among patients with pancreatic cancer, the prevalence of the ΔF508 mutation and the 5T allele was 2.4% and 5.5%, respectively. 5T allele carriers with cancer consumed significantly less alcohol than non-carriers (p=0.038).
CONCLUSIONS—Our findings do not support the view that the ΔF508 mutation and 5T allele confer a higher risk of chronic pancreatitis or pancreatic cancer. Nevertheless, our data suggest that interactions between CFTR polymorphism and environmental factors may play a role in the pathogenesis of these diseases. Our study emphasises the need for a multinational study to conclusively establish the role of CFTR variants as genetic susceptibility factors for chronic pancreatitis and pancreatic cancer.

Keywords: cystic fibrosis transmembrane regulator gene; ΔF508 mutation; 5T allele; genetic susceptibility; chronic pancreatitis; pancreatic cancer
PMCID: PMC1728180  PMID: 11115825
8.  Genetic and clinical features of patients with cystic fibrosis diagnosed after the age of 16 years. 
Thorax  1995;50(12):1301-1304.
BACKGROUND--Cystic fibrosis is usually diagnosed in childhood, but a number of patients are not diagnosed until adulthood. The aim of this study was to investigate whether patients diagnosed at an older age had a different genetic constitution, manifestations of disease, and prognosis from those diagnosed at an early age. METHODS--Clinical data and results of lung function tests and DNA analysis of 143 adult patients with cystic fibrosis were entered into a computerised database. Patients diagnosed before their 16th birthday (early diagnosis, ED) were compared with those diagnosed at 16 years of age or older (late diagnosis, LD). RESULTS--Mean age of diagnosis of the ED group was 4.6 years compared with 27.7 years for the LD group. Mean (SD) percentage predicted pulmonary function was better for the LD group than for the ED group: forced expiratory volume in one second (FEV1) 72.5 (31.1)% and 52.0 (24.8)%, and forced vital capacity (FVC) 89.8 (25.7)% and 71.9 (23.0)%, respectively. Colonisation with Pseudomonas aeruginosa was present in 70% of the ED group and 24% of the LD group. In the ED group 81% had pancreatic insufficiency compared with only 12% of the LD group. None of the LD group was homozygous for delta F508 compared with 58% of the ED group. In the LD group 72% were compound AF508 heterozygotes and 28% had two non-delta F508 mutations. CONCLUSIONS--Among this group of 143 adult patients with cystic fibrosis late diagnosis is caused mainly by delayed expression and mild progression of clinical symptoms. Late diagnosis is associated with milder pulmonary disease, less pancreatic insufficiency, and different cystic fibrosis mutations. Since mortality in cystic fibrosis depends on the progression of pulmonary disease, patients with a late diagnosis have a better prognosis than those diagnosed early.
PMCID: PMC1021355  PMID: 8553305
9.  Thirteen cystic fibrosis patients, 12 compound heterozygous and one homozygous for the missense mutation G85E: a pancreatic sufficiency/insufficiency mutation with variable clinical presentation. 
Journal of Medical Genetics  1996;33(10):820-822.
To study the severity of mutation G85E, located in the first membrane spanning domain of the CFTR gene, we studied the clinical features of 13 Spanish patients with cystic fibrosis (CF) carrying this mutation. G85E accounts for about 1% of Spanish CF alleles. One patient was homozygous G85E/G85E and the rest were compound heterozygotes for G85E and other mutations (delta F508 nine patients, delta I507 two patients, and 712-1G > T one patient). The characteristics of the pooled G85E/any mutation group were compared with those of 30 delta F508 homozygotes. Mean age at diagnosis and percentage of ideal height for age were higher in the G85E/any mutation group (4.2 (SD 4.7) v 2.4 (SD 2.3), p < 0.05, and 102.8 (SD 4.7) v 97.8 (SD 4.1), p < 0.01), both probably related to the greater prevalence of pancreatic sufficiency (70% v 0%, p < 0.01). The G85E homozygote was pancreatic sufficient. Sweat sodium levels were slightly higher, and salt loss related problems more frequent, in the G85E/any group. Two of the G85E patients died of respiratory failure aged 6 and 14 years. Striking discordance in the phenotype was observed in two pairs of sibs, one of them dizygotic twins, suggesting that factors, genetic and environmental, other than CFTR genotype are important in determining CF phenotype.
PMCID: PMC1050759  PMID: 8933333
10.  Palladin Mutation Causes Familial Pancreatic Cancer and Suggests a New Cancer Mechanism 
PLoS Medicine  2006;3(12):e516.
Pancreatic cancer is a deadly disease. Discovery of the mutated genes that cause the inherited form(s) of the disease may shed light on the mechanism(s) of oncogenesis. Previously we isolated a susceptibility locus for familial pancreatic cancer to chromosome location 4q32–34. In this study, our goal was to discover the identity of the familial pancreatic cancer gene on 4q32 and determine the function of that gene.
Methods and Findings
A customized microarray of the candidate chromosomal region affecting pancreatic cancer susceptibility revealed the greatest expression change in palladin (PALLD), a gene that encodes a component of the cytoskeleton that controls cell shape and motility. A mutation causing a proline (hydrophobic) to serine (hydrophilic) amino acid change (P239S) in a highly conserved region tracked with all affected family members and was absent in the non-affected members. The mutational change is not a known single nucleotide polymorphism. Palladin RNA, measured by quantitative RT-PCR, was overexpressed in the tissues from precancerous dysplasia and pancreatic adenocarcinoma in both familial and sporadic disease. Transfection of wild-type and P239S mutant palladin gene constructs into HeLa cells revealed a clear phenotypic effect: cells expressing P239S palladin exhibited cytoskeletal changes, abnormal actin bundle assembly, and an increased ability to migrate.
These observations suggest that the presence of an abnormal palladin gene in familial pancreatic cancer and the overexpression of palladin protein in sporadic pancreatic cancer cause cytoskeletal changes in pancreatic cancer and may be responsible for or contribute to the tumor's strong invasive and migratory abilities.
The presence of abnormalpalladin in familial pancreatic cancer and its overexpression in sporadic pancreatic cancer leads to cytoskeletal changes and may be responsible for the tumor's invasive and migratory abilities.
Editors' Summary
Pancreatic cancer is a leading cause of cancer-related death in the US. Because it causes few symptoms in its early stages, pancreatic cancer is rarely detected until it has spread (metastasized) around the body. Pancreatic tumors can occasionally be removed surgically but the usual treatment is radio- or chemotherapy, and neither of these is curative; most patients die within a year of diagnosis. As in other cancers, the cells in pancreatic tumors have acquired genetic changes (mutations) that allow them to divide uncontrollably (normal cells divide only to repair damaged tissue). Other mutations alter the shape of the cells and allow them to migrate into (invade) other areas of the body. These mutations usually arise randomly—the cells in the human body are bombarded by chemicals and other agents that can damage their DNA—and cause “sporadic” pancreatic cancer. But some people inherit mutated genes that increase their susceptibility to pancreatic cancer. These people are recognizable because pancreatic cancer is more common in their families than in the general population.
Why Was This Study Done?
The identification of the genes that are mutated in familial pancreatic cancer might provide insights into how both inherited and sporadic cancer develops in the pancreas. Such information could suggest ways to detect pancreatic cancers earlier than is currently possible and could identify new therapeutic targets for this deadly disease. Previous work by the researchers who did this study localized a gene responsible for inherited pancreatic cancer to a small region of Chromosome 4 in a family in which pancreatic cancer is very common (Family X). In this study, the researchers identified which of the genes in this region is likely to be responsible for the susceptibility to pancreatic cancer of Family X.
What Did the Researchers Do and Find?
The researchers made a DNA microarray (a small chip spotted with DNA sequences) of the 243 genes in the chromosomal region linked to pancreatic cancer in Family X. They used this to examine gene expression in dysplastic pancreatic tissue from a Family X member (pancreatic dysplasia is a precancerous lesion that precedes cancer), in normal pancreatic tissue, and in samples from sporadic pancreatic cancers. The most highly overexpressed (compared to normal tissue) gene in both the Family X tissue and the sporadic cancers encoded a protein called palladin. Palladin is a component of the cytoskeleton (a structure that helps to control cell shape and motility) and it organizes other cytoskeletal components. Next, the researchers quantified the expression of palladin RNA in an independent set of normal and cancerous pancreatic samples, and in precancerous pancreatic tissue taken from Family X members and from people who inherit pancreatic cancer but who were not in Family X. This analysis indicated that palladin was overexpressed early in sporadic and inherited pancreatic cancer development. Sequencing of the palladin gene then uncovered a mutation in palladin that was present in Family X members with pancreatic cancer or precancerous lesions but not in unaffected members. This specific mutation, which probably affects palladin's interaction with another cytoskeletal protein called alpha-actinin, was not found in sporadic cancers although many sporadic cancer cell lines had abnormal expression of alpha-actinin protein in addition to palladin protein. Finally, the researchers showed that the introduction of mutated palladin into a human cell line growing in the laboratory increased its migration rate and disrupted its cytoskeleton.
What Do These Findings Mean?
These results strongly suggest that mutated palladin is involved in the development of familial pancreatic cancer. Because genes tend to be inherited in groups, there is still chance that a mutation in a nearby gene could be responsible for the increased susceptibility to pancreatic cancer in Family X. However, the data showing palladin overexpression in sporadic tumors and alterations of cell behavior in the laboratory after introduction of the mutated gene make this unlikely. To prove the involvement of palladin in pancreatic cancer, palladin mutations must now be identified in other familial cases and the overexpression of palladin in sporadic cancers must be explained. The results here nevertheless provide an intriguing glimpse into a potential new mechanism for cancer development in the pancreas and possibly other tissues, one in which abnormalities in palladin function or expression (or in the proteins with which it associates) drive some of the changes in cell migration, shape, and size that characterize cancer cells.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute, information on pancreatic cancer for patients and health professionals
MedlinePlus encyclopedia entry on pancreatic carcinoma
Cancer Research UK, information for patients about pancreatic cancer
Johns Hopkins University, information on pancreatic cancer that includes details on familial cancer
CancerQuest, information provided by Emory University about how cancer develops
PMCID: PMC1751121  PMID: 17194196
11.  13C labelled cholesteryl octanoate breath test for assessing pancreatic exocrine insufficiency 
Gut  1998;42(1):81-87.
Background—A non-invasive test for assessment of fat digestion has been developed based on the intraluminal hydrolysis of cholesteryl-[1-13C]octanoate by pancreatic esterase. 
Aims—To determine the diagnostic performance of this breath test in the assessment of exocrine pancreatic function. 
Methods—The test was performed in 20 healthy controls, 22 patients with chronic pancreatic disease (CPD), four with biliopancreatic diversion (BPD), and 32 with non-pancreatic digestive diseases (NPD); results were compared with those of other tubeless tests (faecal chymotrypsin and fluorescein dilaurate test). 
Results—Hourly recoveries of 13CO2 were significantly lower in CPD when compared with healthy controls or NPD. In patients with CPD with mild to moderate insufficiency, the curve of 13CO2 recovery was similar to that of healthy controls, while in those with severe insufficiency it was flat. In three patients with CPD with severe steatorrhoea, a repeat test after pancreatic enzyme supplementation showed a significant rise in 13CO2 recovery. The four BPD patients had low and delayed 13CO2 recovery. Only eight of the 32 patients with NPD had abnormal breath test results. There was a significant correlation between the results of the breath test and those of faecal chymotrypsin, the fluorescein dilaurate test, and faecal fat measurements. For the diagnosis of pancreatic disease using the three hour cumulative 13CO2 recovery test, the sensitivity was 68.2% and specificity 75.0%; values were similar to those of the other two tubeless pancreatic function tests. In seven healthy controls, nine patients with CPD, and nine with NPD a second breath test was performed using Na-[1-13C]octanoate and a pancreatic function index was calculated as the ratio of 13C recovery obtained in the two tests: at three hours this index was abnormal in eight patients with CPD and in three with NPD. 
Conclusion—The cholesteryl-[1-13C]octanoate breath test can be useful for the diagnosis of fat malabsorption and exocrine pancreatic insufficiency. 

Keywords: cholesteryl octanoate breath test; exocrine pancreatic insufficiency; lipid malabsorption; stable isotopes
PMCID: PMC1726942  PMID: 9505890
12.  Targeted Nanoparticles for Imaging Incipient Pancreatic Ductal Adenocarcinoma  
PLoS Medicine  2008;5(4):e85.
Pancreatic ductal adenocarcinoma (PDAC) carries an extremely poor prognosis, typically presenting with metastasis at the time of diagnosis and exhibiting profound resistance to existing therapies. The development of molecular markers and imaging probes for incipient PDAC would enable earlier detection and guide the development of interventive therapies. Here we sought to identify novel molecular markers and to test their potential as targeted imaging agents.
Methods and Findings
Here, a phage display approach was used in a mouse model of PDAC to screen for peptides that specifically bind to cell surface antigens on PDAC cells. These screens yielded a motif that distinguishes PDAC cells from normal pancreatic duct cells in vitro, which, upon proteomics analysis, identified plectin-1 as a novel biomarker of PDAC. To assess their utility for in vivo imaging, the plectin-1 targeted peptides (PTP) were conjugated to magnetofluorescent nanoparticles. In conjunction with intravital confocal microscopy and MRI, these nanoparticles enabled detection of small PDAC and precursor lesions in engineered mouse models.
Our approach exploited a well-defined model of PDAC, enabling rapid identification and validation of PTP. The developed specific imaging probe, along with the discovery of plectin-1 as a novel biomarker, may have clinical utility in the diagnosis and management of PDAC in humans.
Kimberly Kelly and colleagues describe the discovery of plectin-1 as a novel biomarker for pancreatic ductal adenocarcinoma and the subsequent development of a specific imaging probe using this marker.
Editors' Summary
Pancreatic cancer is a leading cause of cancer-related death in the US. Like all cancers, it occurs when cells begin to grow uncontrollably and to move around the body (metastasize) because of changes (mutations) in their genes. If pancreatic cancer is found early, surgical removal of the tumor can sometimes provide a cure. Unfortunately, this cancer rarely causes any symptoms in its early stages and the symptoms it does eventually cause—jaundice, abdominal and back pain, and weight loss—are also seen in other illnesses. In addition, even though magnetic resonance imaging (MRI) or other noninvasive imaging techniques can be used to look at the pancreas, by the time tumors are large enough to show up on MRI scans, they have often already spread. Consequently, in most patients, pancreatic cancer is advanced by the time a diagnosis is made, hence surgery is no longer useful. These patients are given radiotherapy and chemotherapy but these treatments are rarely curative and most patients die within a year of diagnosis.
Why Was This Study Done?
If more pancreatic cancers could be found before they had metastasized, it should extend the life expectancy of patients with this type of cancer. An early detection method would be particularly useful for monitoring people at high risk of developing pancreatic cancer. These include people with certain inherited cancer syndromes, pancreatitis (inflammation of the pancreas), and diabetes. Because cancer cells have many mutations, they express different proteins on their cell surface from normal cells. If these proteins could be identified, it might be possible to develop an “imaging probe”—a molecule that binds to a protein found only on cancer cells and that can be detected with MRI, for example—for early detection of pancreatic cancer. In this study, the researchers use a technique called “phage display” to identify several peptides (short sequences of amino acids, the constituent parts of proteins) that specifically bind to pancreatic cancer cells early in their development. They then investigate the possibility of developing an imaging probe from one of these peptides.
What Did the Researchers Do and Find?
The researchers isolated early pancreatic cancer cells from a mouse model of human pancreatic ductal adenocarcinoma (PDAC; the commonest type of pancreatic cancer). Then, by mixing together these cells and normal mouse pancreatic cells with a library of phage clones (phages are viruses that infect bacteria; a clone is a group of genetically identical organisms), each engineered in the laboratory to express a random seven amino-acid peptide, they identified one clone, clone 27, that bound to the mouse tumor cells but not to normal cells. Clone 27 also showed up in the cancer cells in samples of mouse pancreatic intraepithelial neoplasias (PanINs; precursors to pancreatic cancer), mouse PDACs, and human PDACs.
The peptide in clone 27, the researchers report, binds to plectin-1, a protein present both inside and on the membrane of human and mouse PDAC cells but only on the inside of normal pancreatic cells. Finally, the researchers attached this plectin-1–targeted peptide (PTP) to a nanoparticles that was both magnetic and fluorescent (PTP-NP) and used special microscopy (which detects the fluorescent part of this very small particle) and MRI (which detects its magnetic portion) to show that this potential imaging probe was found in areas of PDAC (but not in normal pancreatic tissue) in the mouse model of human PDAC.
What Do These Findings Mean?
These findings identify PTP as a peptide that can distinguish normal pancreatic cells from pancreatic cancer cells. The discovery that plectin-1 (a cytoskeletal component) is abnormally expressed on the cell surface of PDACs provides new information about the development of pancreatic cancer that could eventually lead to new ways to treat this disease. These findings also show that PTP can be used to generate a nanoparticle-based imaging agent that can detect PDAC within a normal pancreas. These results need to be confirmed in people—results obtained in mouse models do not always reflect what happens in people. Nevertheless, they suggest that PTP-NPs might allow the noninvasive detection of early tumors in people at high risk of developing pancreatic cancer, an advance that could extend their lives by identifying tumors earlier, when they can be removed surgically.
Additional Information.
Please access these Web sites via the online version of this summary at
• The Panreatic Cancer Action Network and the Lustgarten Foundation for Pancreatic Cancer Research provide information, support, and advocacy for patients, families, and healthcare professionals
• The MedlinePlus Encyclopedia has a page on pancreatic cancer (in English and Spanish). Links to further information are provided by MedlinePlus
• The US National Cancer Institute has information about pancreatic cancer for patients and health professionals (in English and Spanish)
• The UK charity Cancerbackup also provides information for patients about pancreatic cancer
PMCID: PMC2292750  PMID: 18416599
13.  Screening for F508del as a first step in the molecular diagnosis of cystic fibrosis*,**  
To determine the relevance of screening for the F508del mutation of the cystic fibrosis transmembrane conductance regulator gene as a first step in the genetic diagnosis of cystic fibrosis (CF) by associating the genotype with various clinical variables.
We evaluated 180 CF patients regarding the F508del mutation. The clinical data were obtained from the medical records of the patients and from interviews with their parents or legal guardians.
Of the 180 patients studied, 65 (36.1%) did not carry the F508del mutation (group 0 [G0]), 67 (37.2%) were F508del heterozygous (G1), and 48 (26.7%) were F508del homozygous (G2). All three groups showed associations with the clinical variables. Homozygosis was associated with younger patients, younger age at CF diagnosis, and younger age at the first isolation of Pseudomonas aeruginosa (PA), as well as with higher prevalence of pancreatic insufficiency (PI) and non-mucoid PA (NMPA) colonization. In comparison with G1+G2 patients, G0 patients were older; first experienced clinical symptoms, digestive disease, and pulmonary disease at an older age; were older at CF diagnosis and at first PA isolation; and had a lower prevalence of PI and meconium ileus, as well as of colonization by NMPA, mucoid PA, and Burkholderia cepacia. In G1 patients, values were intermediate for age at CF diagnosis; age at first PA isolation, first pulmonary symptoms, and first clinical manifestations; MPA colonization; and OR for PI.
The identification of F508del in 63.9% of the patients studied showed that this can be a useful tool as a first step in the genetic diagnosis of CF. The F508del genotype was associated with clinical severity of the disease, especially with the variables related to CF onset.
PMCID: PMC4075852  PMID: 23857699
Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Genotype; Mutation
14.  Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene 
PLoS Medicine  2007;4(4):e118.
Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice.
Methods and Findings
We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic compared with 13% (7/54) of non-mutation family members (p < 0.001). Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003). There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic β-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth.
HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and diabetes later in life.
HNF4A mutations were found to be associated with a considerable increase in birthweight and macrosomia, and were a cause of neonatal hypoglycaemia.
Editors' Summary
MODY, or maturity-onset diabetes of the young, is a particular subtype of diabetes; only a few percent of people with diabetes are thought to have this subtype. The condition comes about as a result of a mutation in one of six genes. Generally, people with MODY have high glucose (sugar) levels in the blood, and the typical symptoms of diabetes, such as increased thirst and urination, typically develop when the person is below the age of 25 y. Two of the genes that are known to cause MODY are mutant forms of HNF4A and HNF1A. The proteins that are encoded by these two genes control insulin levels produced by the pancreas; when these genes are mutated, not enough insulin is produced. Without enough insulin to control blood sugar, levels rise, leading to the symptoms of diabetes. However, MODY can be managed by many of the same interventions as other types of diabetes, such as diet, exercise, drug treatments, and insulin injections.
Why Was This Study Done?
Although the evidence shows that individuals who carry mutations in HNF4A and HNF1A do not produce enough insulin and therefore have higher glucose levels in their blood, there were some tantalizing suggestions from mouse experiments that this might not be the whole story. Specifically, the researchers suspected that during embryonic development, mutations in HNF4A or HNF1A might actually cause higher insulin levels. Too much insulin during development of a fetus is known to cause it to gain weight, resulting in a baby that is larger than the average size for its age. Larger babies are risky for both the baby and the mother. The researchers doing this study wanted to understand more precisely what the links were between the forms of MODY caused by HNF4A and HNF1A mutations, and birth-weight and blood-sugar levels.
What Did the Researchers Do and Find?
In this study, the researchers examined 15 families in which some family members had MODY caused by a mutation in HNF4A. They compared the birthweight for family members carrying the mutation (54 people) against the birthweight for those who did not (54 people). A similar comparison was done for 38 families in which some members had a different form of MODY, this time caused by a mutation in HNF1A. The results showed that the birthweight of family members who carried a mutation in HNF4A was, on average, 790 g higher than the birthweight of family members who didn't carry the mutation. Low blood-sugar levels at birth were also more common in people carrying the HNF4A mutation as compared to people who did not. However, the HNF1A mutation did not seem to be associated with greater birthweight or low blood-sugar levels at birth. Finally, in order to understand these findings further, the researchers created embryonic mice carrying mutations in the mouse equivalent of HNF4A. These embryos produced more insulin than normal mouse embryos and, after birth, were more likely to have low blood-sugar levels.
What Do These Findings Mean?
These findings show that there is a link between mutations in HNF4A, but not in HNF1A, and increased birthweight. The increase found in this study is quite substantial (a median weight of 4,660 g in the affected babies; a birthweight of more than 4,000 g is generally considered large). The results suggest that in human embryos with a mutated form of HNF4A, too much insulin is produced during development, causing faster growth and a higher chance of the baby being born with low blood-sugar levels. This is an unexpected finding, because later in life the HNF4A mutation causes lower insulin levels. Therefore, the biochemical pathways causing this type of MODY seem to be quite complicated, and further research will need to be done to fully understand them. Crucially, the research also suggests that pregnant women carrying HNF4A mutations should be closely followed to check their baby's growth and minimize the chance of complications. Doctors and families should also consider doing a genetic test for HNF4A if a baby has low blood-sugar levels and if there is a family history of diabetes; this would increase the chance of diagnosing MODY early.
Additional Information.
Please access these Web sites via the online version of this summary at 0040118.
In a related Perspective in PLoS Medicine, Benjamin Glaser discusses causes of type 2 diabetes mellitus in the context of this study's findings
The US National Institute of Diabetes and Digestive and Kidney Diseases has pages of information on different types of diabetes
Wikipedia has an entry on Maturity Onset Diabetes of the Young (MODY) (note that Wikipedia is an internet encyclopedia that anyone can edit)
Diabetes Research Department, Peninsula Medical School, Exeter, UK provides information for patients and doctors on genetic types of diabetes; the website is maintained by the research group carrying out this study
Information from the Centers for Disease Control and Prevention on diabetes and pregnancy
PMCID: PMC1845156  PMID: 17407387
15.  BRCA1 and BRCA2 mutations in central and southern Italian patients 
Breast Cancer Research : BCR  2000;2(4):307-310.
Protein truncation test (PTT) and single-strand conformation polymorphism (SSCP) assay were used to scan the BRCA1 and BRCA2 genes in 136 unrelated Italian breast/ovarian cancer patients. In the sample tested, BRCA1 and BRCA2 equally contributed to site-specific breast cancer patients who reported one to two breast cancer-affected first-/ second-degree relative(s) or who were diagnosed before age 40 years in the absence of a family history of breast/ovarian cancer. BRCA1 and BRCA2 mutations were mostly found in patients with disease diagnosis before and after age 50 years, respectively. Moreover, in cases with familial clustering of site-specific breast cancer, BRCA1 mostly accounted for tumours diagnosed before age 40 years and BRCA2 for tumours diagnosed after age 50 years. The BRCA1 and BRCA2 mutation spectrum was consistent with a lack of significant founder effects in the sample of patients studied.
Germline BRCA1 and BRCA2 mutations account for most hereditary breast/ovarian cancers and are associated with male breast cancer. Furthermore, constitutional mutations in these genes may occur in breast/ovarian cancer patients that do not meet stringent criteria of autosomal-dominant predisposition. The relevance of BRCA1 and BRCA2 mutations in such patients is still debated.
We sought to determine the impact of BRCA1 and BRCA2 mutations in a population of patients from central and southern Italy. We analyzed the BRCA1 and BRCA2 coding regions in 136 unrelated probands: 117 females with breast/ovarian cancer and 19 males with breast cancer. This population of patients was mostly representative of cases who are at risk for hereditary susceptibility, but who do not meet stringent criteria of autosomal-dominant predisposition.
Probands, subclassified as follows, were consecutively recruited depending on informed consent from patients attending breast cancer clinics in Rome and Naples. Selection criteria for females were as follows: breast cancer with breast cancer family history [one to two first-/second-degree relative(s), n = 55]; breast cancer diagnosed before age 40 years (no breast/ovarian cancer family history, n = 28); bilateral breast cancer (regardless of age and family history, n =10); breast cancer associated with gastrointestinal, pancreatic or uterine cancers [synchronous/metachronous or in first-degree relative(s), n = 9]; breast or ovarian cancer with family history of breast-ovarian/ovarian cancer (at least 1 first-/ second-degree relative, n = 10); and ovarian cancer with no breast/ovarian cancer family history (n = 5). Males with breast cancer were recruited regardless of age and family history. BRCA1 exon 11 and BRCA2 exons 10 and 11 were screened by PTT. Coding BRCA1 exons 2, 3, 5-10 and 12-24 and BRCA2 exons 2-9 and 12-27 were screened by SSCP. Primers are listed in Table 1. In 27 cases, analyzed by PTT along the entire BRCA1 coding sequence, BRCA1 SSCP analysis was limited to exons 2, 5, 20 and 24. Mutations were verified by sequence analysis on two independent blood samples.
Deleterious germline BRCA1/BRCA2 mutations were detected in 11 out of 136 cases (8%). Only three BRCA2 mutations were novel. One BRCA2 mutation recurred in two unrelated probands. Table 2 shows the mutations and data concerning carriers and their families. Table 3 shows correlations between BRCA1/BRCA2 mutations and sex, age at disease diagnosis and familial clustering of breast/ovarian cancer in the total patient population. Table 4 shows the proportions of BRCA1 and BRCA2 mutations in females with site-specific breast and breast-ovarian/ovarian cancer. Table 5 shows the frequency of BRCA1/BRCA2 mutations in males. BRCA1 and BRCA2 mutations, respectively, accounted for four out of 68 (6%) and one out of 68 (1%) cases diagnosed before age 50 years, and for one out of 68 (1%) and five out of 68 (7%) cases diagnosed after age 50 years. BRCA1 mutations were found in five out of 117 females (4%) and in none of 19 males (0%), and BRCA2 mutations were found in four out of 117 females (3%) and in two out of 19 males (10%). The proportions of BRCA1 and BRCA2 mutations coincided in site-specific female breast cancers (four out of 102; ie 4% each). BRCA1 and BRCA2 equally contributed to female breast cancers, with no familial clustering in those diagnosed before age 40 years (one out of 28; 4% each), and to female breast cancers, all ages, with familial clustering in one to two relatives (three out of 55; ie 5% each). In the latter subset of cases, BRCA1 mostly accounted for tumours diagnosed before age 40 years (two out of eight; 25%), and BRCA2 for tumours diagnosed after age 50 years (three out of 34; 9%). Regardless of family history, the respective contributions of BRCA1 and BRCA2 to site-specific female breast cancers diagnosed before age 40 years were 8% (three out of 36) and 3% (one out of 36). One BRCA1 mutation was detected among the 15 female probands from breast-ovarian/ovarian cancer families (7%). Among male breast cancers, BRCA2 mutations were identified in one out of five (20%) cases with family history and in one out of 14 (7%) apparently sporadic cases. No BRCA1 or BRCA2 mutations were found in female probands with nonfamilial bilateral breast cancer (10 cases) or in those with breast cancer associated with gastrointestinal, pancreatic or uterine cancers, synchronous/metachronous or in first-degree relative(s) (nine cases). These cases were all diagnosed after age 40 years.
Our results indicate a lack of relevant founder effects for BRCA1- and BRCA2-related disease in the sample of patients studied, which is consistent with other Italian studies and with ethnical and historical data. Overall, the contribution of BRCA1 and BRCA2 to breast/ovarian cancer in Italian patients appears to be less significant than in patients from communities with founder mutations. The present study is in agreement with direct estimates on other outbred populations, indicating that 7-10% of all female breast cancers that occur in patients aged under 40 years are due to BRCA1/BRCA2.
We found that BRCA1 and BRCA2 equally contributed to site-specific breast cancers who had one/two breast cancer-affected first-/second-degree relative(s) or who were diagnosed within age 40 years in the absence of family history. This is consistent with recent data that indicated that the respective frequencies of BRCA1 and BRCA2 mutations are comparable in early onset breast cancer. Considering the total population of patients analyzed here, however, BRCA1 and BRCA2 mutations were mostly found in cases with disease diagnosis before and after age 50 years, respectively. Moreover, in cases with familial clustering of site-specific breast cancer, BRCA1 mostly accounted for tumours diagnosed before age 40 years, and BRCA2 for tumours diagnosed after age 50 years. This is in agreement with a trend, which has been observed in other populations, for the proportion of cases with BRCA2 mutations to increase, and the proportion with mutations in BRCA1 to decrease, as the age at cancer onset increases.
As in other studies, the frequency of BRCA1/BRCA2 mutations taken together was lower than the estimated frequencies at comparable ages for all susceptibility alleles derived from the Contraceptive and Steroid Hormones (CASH) study. The discrepancy between direct data deriving from BRCA1/BRCA2 mutational analysis and CASH estimates could be due to several factors, including contribution of gene(s) other than BRCA1/BRCA2, differences between populations and relative insensitivity of mutational screening. Only BRCA1 mutations were found in breast/ovarian and site-specific ovarian cancer families. BRCA2, but not BRCA1 mutations were found in the male breast cancers. The overall proportion of males with BRCA2 mutations was high when compared with data from other studies on outbred populations, but was low compared with data from populations with founder effects.
The present results should be regarded as an approximation, because the following types of mutation are predicted to escape detection by the screening strategy used: mutations in noncoding regions; missense mutations within BRCA1 exon 11 and BRCA2 exons 10 and 11; large gene deletions; and mutations within the first and last 180 nucleotides of the amplicons analyzed by PTT.
PMCID: PMC13918  PMID: 11056688
BRCA1; BRCA2; breast; carcinoma; germline mutations; Italy
16.  Fat Malabsorption in Cystic Fibrosis: Comparison of Quantitative Fat Assay and a Novel Assay Using Fecal Lauric/Behenic Acid 
The “gold standard” for the diagnosis of fat malabsorption, the 72 hour fat balance study, requires a three day collection to generate a coefficient of fat absorption (CFA). We hypothesized that, a new test using behenic acid (behenate test) as a nonabsorbable lipid marker may provide a facile means to assess fat absorption. The study proposed to answer two questions: 1) whether the “behenate test” correlated with the “gold standard” and 2) whether the CFA improved when taking pancreatic enzymes during meals instead of prior to them.
The study compared the “behenate test” with the gold standard in 15 cystic fibrosis patients during three arms which require 3–4 day hospitalizations: one taking pancreatic enzymes prior to meals, one taking pancreatic enzymes during meals, and one off of pancreatic enzymes.
The mean CFA was 78.3% when pancreatic enzymes were taken during meals and 80.4% when pancreatic enzymes were taken prior to meals. Correlation between the CFA and the “behenate test” for collections during all 3 arms was r2 = 0.219 (p= 0.001).
1) Timing of ingestion of pancreatic enzymes does not significantly alter the CFA. 2) Although the CFA correlates with the “behenate test”, the correlation is not robust enough to justify its replacement of the “gold standard.” It is unclear whether the poor correlation between tests relates to intermeal variability in fat excretion,or other factors; however the “behenate test” may be suitable as a screening test for detection of fat malabsorption.
PMCID: PMC2847657  PMID: 20179641
malabsorption; stool; cystic fibrosis; CFA
17.  Cystic fibrosis identified by neonatal screening: incidence, genotype, and early natural history. 
Archives of Disease in Childhood  1993;68(4):464-467.
The incidence of cystic fibrosis over the last 10 years in East Anglia (a region of the United Kingdom with a population of 2.1 million) has halved. This has happened during the establishment of a neonatal screening programme, which has enabled early diagnosis, genetic counselling, and lately the option of prenatal diagnosis in subsequent pregnancies. One hundred and seven children were born with cystic fibrosis between 1981 and 1990, eight of whom were siblings. The Guthrie blood spots of 82 infants detected by neonatal immunoreactive trypsin screening between 1981 and 1990 were examined for the presence of the most common cystic fibrosis gene mutation (delta F508). It was present in 135 (82%) of the 164 cystic fibrosis genes analysed with 54 (66%) cases being homozygous and 27 (33%) heterozygous. Sixty nine per cent of infants were symptomatic at the time of diagnosis regardless of genotype. No association was found between the early clinical or biochemical features of the disease and homozygosity or heterozygosity for this mutation. Screening for cystic fibrosis using the blood immunoreactive trypsin assay alone remains an effective method of identifying infants with the disease soon after birth, thereby allowing early therapeutic intervention. Genetic counselling and prenatal diagnosis have contributed to a reduction in the number of children born with cystic fibrosis, but may not entirely explain the decreasing incidence of the disease.
PMCID: PMC1029265  PMID: 8503667
18.  Acinar Cell Apoptosis in Serpini2-Deficient Mice Models Pancreatic Insufficiency 
PLoS Genetics  2005;1(3):e38.
Pancreatic insufficiency (PI) when left untreated results in a state of malnutrition due to an inability to absorb nutrients. Frequently, PI is diagnosed as part of a larger clinical presentation in cystic fibrosis or Shwachman–Diamond syndrome. In this study, a mouse model for isolated exocrine PI was identified in a mouse line generated by a transgene insertion. The trait is inherited in an autosomal recessive pattern, and homozygous animals are growth retarded, have abnormal immunity, and have reduced life span. Mice with the disease locus, named pequeño (pq), exhibit progressive apoptosis of pancreatic acinar cells with severe exocrine acinar cell loss by 8 wk of age, while the islets and ductal tissue persist. The mutation in pq/pq mice results from a random transgene insertion. Molecular characterization of the transgene insertion site by fluorescent in situ hybridization and genomic deletion mapping identified an approximately 210-kb deletion on Chromosome 3, deleting two genes. One of these genes, Serpini2, encodes a protein that is a member of the serpin family of protease inhibitors. Reintroduction of only the Serpini2 gene by bacterial artificial chromosome transgenic complementation corrected the acinar cell defect as well as body weight and immune phenotypes, showing that deletion of Serpini2 causes the pequeño phenotype. Dietary supplementation of pancreatic enzymes also corrected body size, body weight, and immunodeficiency, and increased the life span of Serpini2-deficient mice, despite continued acinar cell loss. To our knowledge, this study describes the first characterized genetic animal model for isolated PI. Genetic complementation of the transgene insertion mutant demonstrates that Serpini2 deficiency directly results in the acinar cell apoptosis, malabsorption, and malnutrition observed in pq/pq mice. The rescue of growth retardation, immunodeficiency, and mortality by either Serpini2 bacterial artificial chromosome transgenic expression or by pancreatic enzyme supplementation demonstrates that these phenotypes are secondary to malnutrition in pq/pq mice.
Pancreatic insufficiency is defined by the inability to digest and absorb nutrients due to the loss of pancreatic enzyme function or loss of the acinar cells that produce the enzymes. In this manuscript the authors have described a mouse model of pancreatic insufficiency characterized by the specific loss of pancreatic acinar cells. This specific acinar cell loss results in mice that are unable to digest and absorb nutrients from the diet, stunting the animal's growth and giving rise to immunological anomalies. The authors have identified a serendipitous transgene insertion/deletion encompassing the mouse Serpini2 gene locus as the source of the phenotypes observed. Reintroduction of the Serpini2 gene, a member of the serpin family of serine cysteine protease inhibitors, by bacterial artificial chromosome complementation corrects the pancreatic and immunological phenotypes of the disorder, confirming Serpini2 as the responsible gene. Reintroduction of pancreatic enzymes through diet supplementation is also capable of correcting the reduction in size and weight, reduction in viability, and immunological deficiencies, indicating that these phenotypes are secondary to malnutrition alone. This work provides a new mouse model for investigation of malnutrition/malabsorption due to pancreatic insufficiency and identifies a novel function for the serpin family member Serpini2.
PMCID: PMC1231717  PMID: 16184191
19.  Hereditary chronic pancreatitis 
Hereditary chronic pancreatitis (HCP) is a very rare form of early onset chronic pancreatitis. With the exception of the young age at diagnosis and a slower progression, the clinical course, morphological features and laboratory findings of HCP do not differ from those of patients with alcoholic chronic pancreatitis. As well, diagnostic criteria and treatment of HCP resemble that of chronic pancreatitis of other causes. The clinical presentation is highly variable and includes chronic abdominal pain, impairment of endocrine and exocrine pancreatic function, nausea and vomiting, maldigestion, diabetes, pseudocysts, bile duct and duodenal obstruction, and rarely pancreatic cancer. Fortunately, most patients have a mild disease. Mutations in the PRSS1 gene, encoding cationic trypsinogen, play a causative role in chronic pancreatitis. It has been shown that the PRSS1 mutations increase autocatalytic conversion of trypsinogen to active trypsin, and thus probably cause premature, intrapancreatic trypsinogen activation disturbing the intrapancreatic balance of proteases and their inhibitors. Other genes, such as the anionic trypsinogen (PRSS2), the serine protease inhibitor, Kazal type 1 (SPINK1) and the cystic fibrosis transmembrane conductance regulator (CFTR) have been found to be associated with chronic pancreatitis (idiopathic and hereditary) as well. Genetic testing should only be performed in carefully selected patients by direct DNA sequencing and antenatal diagnosis should not be encouraged. Treatment focuses on enzyme and nutritional supplementation, pain management, pancreatic diabetes, and local organ complications, such as pseudocysts, bile duct or duodenal obstruction. The disease course and prognosis of patients with HCP is unpredictable. Pancreatic cancer risk is elevated. Therefore, HCP patients should strongly avoid environmental risk factors for pancreatic cancer.
PMCID: PMC1774562  PMID: 17204147
20.  Improving test properties for neonatal cystic fibrosis screening in the Netherlands before the nationwide start by May 1st 2011 
When new technical possibilities arise in health care, often attunement is needed between different actors from the perspectives of research, health care providers, patients, ethics and policy. For cystic fibrosis (CF) such a process of attunement in the Netherlands started in a committee of the Health Council on neonatal screening in 2005. In the balancing of pros and cons according to Wilson and Jungner criteria, the advantages for the CF patient were considered clear, even though CF remains a severe health problem with treatment. Nevertheless, screening was not started then, mainly since the specificity of the tests available at that time was considered too low. Many healthy infants would have been referred for sweat testing and much uncertainty would arise in their parents. Also the limited sensitivity for immigrants and the detection of less severe phenotypes and carriers were considered problematic. The Health Council recommended a pilot screening project which was subsequently performed in some provinces, leading to a 4-step protocol: IRT, PAP, screening for a CFTR mutation panel, and sequencing of the CFTR gene. This would lead to the identification of 23 cases of classical CF, two infants with less severe forms and 12 carriers per year in the Netherlands. Thus many CF patients can be diagnosed early, while limiting the number of referrals, the number of infants with less severe forms diagnosed and the number of carriers identified. Technical solutions were found to limit the ethical problems. A nationwide program using this four step protocol started by 1 May 2011.
PMCID: PMC3388251  PMID: 22302635
21.  Prognosis in cystic fibrosis treated with continuous flucloxacillin from the neonatal period. 
All newborn infants in East Anglia are screened for cystic fibrosis by blood immunoreactive trypsin assay at 7 days. Thirty eight infants with cystic fibrosis were randomised to treatment with either continuous oral flucloxacillin 250 mg/day (group P, n = 18) or with episodic antimicrobials as clinically indicated (group E, n = 20). Their progress was monitored from diagnosis to 24 months by a nurse coordinator who visited all infants regularly, at home and in hospital, to collect anthropometric, dietary, clinical, and microbiological data. Mean (range) age of confirmation of diagnosis was 5.7 weeks (1-14 weeks). There was no significant difference in birth weight, genotype, immunoreactive trypsin concentration, neonatal history, symptoms at diagnosis, pancreatic enzyme supplementation, or parental smoking history between the groups. Infants in group E had more frequent cough and a greater number of Staphylococcus aureus isolates than infants in group P. More infants of group E were admitted to hospital, had higher admission rates during the second year (19 v 5), for longer periods (6.4 v 2.2 days), despite receiving more than double the number of courses of antibiotics than group P infants (in addition to flucloxacillin). Continuous prophylactic flucloxacillin from early diagnosis of cystic fibrosis is associated with improved clinical progress during the first two years of life.
PMCID: PMC1029705  PMID: 8129449
22.  Cystic fibrosis transmembrane conductance regulator mutations at a referral center for cystic fibrosis*  
To determine the frequency of six mutations (F508del, G542X, G551D, R553X, R1162X, and N1303K) in patients with cystic fibrosis (CF) diagnosed, at a referral center, on the basis of abnormal results in two determinations of sweat sodium and chloride concentrations.
This was a cross-sectional study involving 70 patients with CF. The mean age of the patients was 12.38 ± 9.00 years, 51.43% were female, and 94.29% were White. Mutation screening was performed with polymerase chain reaction (for F508del), followed by enzymatic digestion (for other mutations). Clinical analysis was performed on the basis of gender, age, ethnicity, pulmonary/gastrointestinal symptoms, and Shwachman-Kulczycki (SK) score.
All of the patients showed pulmonary symptoms, and 8 had no gastrointestinal symptoms. On the basis of the SK scores, CF was determined to be mild, moderate, and severe in 22 (42.3%), 17 (32.7%), and 13 (25.0%) of the patients, respectively. There was no association between F508del mutation and disease severity by SK score. Of the 140 alleles analyzed, F508del mutation was identified in 70 (50%). Other mutations (G542X, G551D, R553X, R1162X, and N1303K) were identified in 12 (7.93%) of the alleles studied. In F508del homozygous patients with severe disease, the OR was 0.124 (95% CI: 0.005-0.826).
In 50% of the alleles studied, the molecular diagnosis of CF was confirmed by identifying a single mutation (F508del). If we consider the analysis of the six most common mutations in the Brazilian population (including F508del), the molecular diagnosis was confirmed in 58.57% of the alleles studied.
PMCID: PMC4075877  PMID: 24310628
Cystic fibrosis; Cystic fibrosis transmembrane conductance regulator; Mutation
23.  Hereditary pancreatitis for the endoscopist 
Hereditary pancreatitis shares a majority of clinical and morphologic features with chronic alcoholic pancreatitis, but may present at an earlier age. The term hereditary pancreatitis has primarily been associated with mutations in the serine protease 1 gene (PRSS1) which encodes for cationic trypsinogen. PRSS1 mutations account for approximately 68–81% of hereditary pancreatitis. Mutations in other genes, primarily serine protease inhibitor Kazal type 1 (SPINK1) and the cystic fibrosis transmembrane conductance regulator (CFTR) are also associated with hereditary pancreatitis. While chronic alcoholic pancreatitis may develop in the fourth or fifth decades, patients with hereditary pancreatitis may develop symptoms in the first or second decades of life. Hereditary pancreatitis is diagnosed either by detecting a causative gene mutation or by the presence of chronic pancreatitis in two first-degree or three second-degree relatives, in two or more generations, without precipitating factors and with a negative workup for known causes. Patients with hereditary pancreatitis may have recurrent acute pancreatitis and may develop pancreatic exocrine and endocrine insufficiency. Hereditary pancreatitis may involve premature trypsinogen activation or decreased control of trypsin. Recurrent inflammation can lead to acute pancreatitis and subsequently to chronic pancreatitis with parenchymal calcification. There is a markedly increased risk of pancreatic carcinoma compared with the general population. Patients are often referred for evaluation of pancreatitis, biliary or pancreatic ductal dilatation, jaundice, biliary obstruction, pancreatic duct stone or stricture, pancreatic pseudocysts, and for evaluation for malignancy. Medical treatment includes pancreatic enzyme supplementation, nutritional supplementation, diabetes management, and palliation of pain. Patients should avoid tobacco use and alcohol exposure. Hereditary pancreatitis is reviewed and recommendations for genetic testing are discussed.
PMCID: PMC3589131  PMID: 23503650
chronic pancreatitis; cystic fibrosis; endoscopic surgical procedures; familial pancreatitis; hereditary pancreatitis; idiopathic pancreatitis; pancreatitis
24.  Post mortem identification of deoxyguanosine kinase (DGUOK) gene mutations combined with impaired glucose homeostasis and iron overload features in four infants with severe progressive liver failure 
Journal of Applied Genetics  2010;52(1):61-66.
Deoxyguanosine kinase deficiency (dGK) is a frequent cause of the hepatocerebral form of mitochondrial depletion syndrome (MDS). A group of 28 infants with severe progressive liver failure of unknown cause was recruited for post mortem search for deoxyguanosine kinase (DGUOK) gene mutations. Four affected patients (14% of the studied group), two homozygotes, one compound heterozygote, and one heterozygote, with DGUOK mutation found on only one allele, were identified. Three known pathogenic mutations in the DGUOK gene were detected, c.3G>A (p.Met1Ile), c.494A>T (p.Glu165Val), and c.766_767insGATT (p.Phe256X), and one novel molecular variant of unknown pathogeneity, c.813_814insTTT (p.Asn271_Thr272insPhe). Profound mitochondrial DNA depletion was confirmed in available specimens of the liver (4%, 15%, and 10% of the normal value) and in the muscle (4%, 23%, 45%, and 6%, respectively). The patients were born with low weights for gestational age and they presented adaptation trouble during the first days of life. Subsequently, liver failure developed, leading to death at the ages of 18, 6, 5.5, and 2.25 months, respectively. Mild neurological involvement was observed in all children (hypotonia, psychomotor retardation, and ptosis). Hypoglycemia (hypoketotic) and lactic acidosis were the constant laboratory findings. Elevated transferrin saturation, high ferritin, and alpha-fetoprotein levels resembled, in two cases, a neonatal hemochromatosis. Liver histopathology showed severe hepatic damage ranging from micronodular formation and cirrhosis to the total loss of liver architecture with diffuse fibrosis and neocholangiolar proliferation. Pancreatic islet cell hyperplasia with numerous confluent giant islets was found in both autopsied infants. Analysis of the natural history of the disease in our patients and the literature data led us to the following observations: (i) islet cell hyperplasia (and hyperinsulinism) may contribute to MDS-associated hypoglycemia; (ii) iron overload may additionally damage mtDNA-depleted tissues; (iii) low birth weight, adaptation trouble, and abnormal amino acids in newborn screening are frequent in dGK-deficient neonates.
PMCID: PMC3026684  PMID: 21107780
DGUOK gene mutation; mtDNA depletion; Neonatal liver failure; Hypoglycemia; Iron overload; Natural history of the disease
25.  Determinants of mild clinical symptoms in cystic fibrosis patients. Residual chloride secretion measured in rectal biopsies in relation to the genotype. 
Journal of Clinical Investigation  1994;93(2):461-466.
Previous Ussing chamber measurements of secretagogue-provoked changes in short circuit current in rectal suction biopsies of cystic fibrosis (CF) patients showed that in a minority of patients chloride secretion in response to cholinergic agonists is reduced but not completely absent. To assess a possible relationship between this phenomenon and both the genotype and the phenotype, we performed Ussing chamber experiments on rectal suction biopsies of 51 CF patients. The CF mutation was identified in 89 out of 102 CF alleles. No apparent chloride secretion was found in 30 CF patients (group I). Low residual chloride secretion was found in 11 CF patients (group II), while a relatively high residual secretion appeared in 10 CF patients (group III). Pancreatic function was preserved more frequently in CF patients displaying residual secretion: 0% in group I, 27% in group II, and 60% in group III (P < 0.001). The age at diagnosis (mean +/- SEM) in group III (18.4 +/- 6.6) was significantly different from group I (1.2 +/- 0.4, P < 0.01) and group II (3.5 +/- 1.4, P = 0.05). Residual chloride secretion was found in some of the 28 dF508 homozygous patients (three in group II, and one in group III), disclosing that other factors than the CF gene defect itself affect the transepithelial chloride transport. The age at diagnosis correlates significantly with the magnitude of the secretory response, even within the dF508 homozygous patients (r = 0.4, P < 0.05). We conclude that residual chloride secretion in CF is the pathophysiological basis of preserved pancreatic function and delayed presentation of the disease, which is not exclusively determined by the CF genotype.
PMCID: PMC293855  PMID: 8113384

Results 1-25 (1271105)