Search tips
Search criteria

Results 1-25 (343284)

Clipboard (0)

Related Articles

1.  ADAMTSL4, a Secreted Glycoprotein Widely Distributed in the Eye, Binds Fibrillin-1 Microfibrils and Accelerates Microfibril Biogenesis 
ADAMTSL4 mutations result in recessively inherited isolated ectopia lentis, a dysgenesis of the fibrillin-1–rich zonule of Zinn. This research shows that ADAMTSL4 binds fibrillin-1 microfibrils and accelerates their biogenesis, thus providing a potential underlying mechanism for this disorder.
ADAMTSL4 mutations cause autosomal recessive isolated ectopia lentis (IEL) and ectopia lentis et pupillae. Dominant FBN1 mutations cause IEL or syndromic ectopia lentis (Marfan syndrome and Weill-Marchesani syndrome). The authors sought to characterize recombinant ADAMTSL4 and the ocular distribution of ADAMTSL4 and to investigate whether ADAMTSL4 influences the biogenesis of fibrillin-1 microfibrils, which compose the zonule.
ADAMTSL4 was expressed by the transfection of HEK293F cells. Protein extracts and paraffin sections from human eyes were analyzed by Western blot analysis and by immunoperoxidase staining, respectively. Immunofluorescence was used to evaluate fibrillin-1 deposition in the ECM of fetal bovine nuchal ligament cells after culture in ADAMTSL4-conditioned medium or control medium. Confocal microscopy was performed to investigate ADAMTSL4 and fibrillin-1 colocalization in these cultures.
Western blot analysis identified ADAMTSL4 as a glycoprotein in HEK293F cells and as a major band of 150 kDa in ocular tissues including ciliary body, sclera, cornea, and retina. Immunoperoxidase staining showed a broad ocular distribution of ADAMTSL4, associated with both cells and fibrillar ECM. When cultured in ADAMTSL4-containing medium, fetal bovine nuchal ligament cells showed accelerated fibrillin-1 deposition in ECM. ADAMTSL4 colocalized with fibrillin-1 microfibrils in the ECM of these cells.
ADAMTSL4 is a secreted glycoprotein that is widely distributed in the human eye. Enhanced fibrillin-1 deposition in the presence of ADAMTSL4 and colocalization of ADAMTSL4 with fibrillin-1 in the ECM of cultured fibroblasts suggest a potential role for ADAMTSL4 in the formation or maintenance of the zonule.
PMCID: PMC3292378  PMID: 21989719
2.  Partial Deletion of the Sulfate Transporter SLC13A1 Is Associated with an Osteochondrodysplasia in the Miniature Poodle Breed 
PLoS ONE  2012;7(12):e51917.
A crippling dwarfism was first described in the Miniature Poodle in Great Britain in 1956. Here, we resolve the genetic basis of this recessively inherited disorder. A case-control analysis (8∶8) of genotype data from 173 k SNPs revealed a single associated locus on CFA14 (Praw <10–8). All affected dogs were homozygous for an ancestral haplotype consistent with a founder effect and an identical-by-descent mutation. Systematic failure of nine, nearly contiguous SNPs, was observed solely in affected dogs, suggesting a deletion was the causal mutation. A 130-kb deletion was confirmed both by fluorescence in situ hybridization (FISH) analysis and by cloning the physical breakpoints. The mutation was perfectly associated in all cases and obligate heterozygotes. The deletion ablated all but the first exon of SLC13A1, a sodium/sulfate symporter responsible for regulating serum levels of inorganic sulfate. Our results corroborate earlier findings from an Slc13a1 mouse knockout, which resulted in hyposulfatemia and syndromic defects. Interestingly, the metabolic disorder in Miniature Poodles appears to share more clinical signs with a spectrum of human disorders caused by SLC26A2 than with the mouse Slc13a1 model. SLC26A2 is the primary sodium-independent sulfate transporter in cartilage and bone and is important for the sulfation of proteoglycans such as aggregan. We propose that disruption of SLC13A1 in the dog similarly causes undersulfation of proteoglycans in the extracellular matrix (ECM), which impacts the conversion of cartilage to bone. A co-dominant DNA test of the deletion was developed to enable breeders to avoid producing affected dogs and to selectively eliminate the mutation from the gene pool.
PMCID: PMC3530542  PMID: 23300579
3.  ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-β bioavailability regulation 
Nature genetics  2008;40(9):1119-1123.
Geleophysic dysplasia is an autosomal recessive disorder characterized by short stature, brachydactyly, thick skin and cardiac valvular anomalies often responsible for an early death. Studying six geleophysic dysplasia families, we first mapped the underlying gene to chromosome 9q34.2 and identified five distinct nonsense and missense mutations in ADAMTSL2 (a disintegrin and metalloproteinase with thrombospondin repeats–like 2), which encodes a secreted glycoprotein of unknown function. Functional studies in HEK293 cells showed that ADAMTSL2 mutations lead to reduced secretion of the mutated proteins, possibly owing to the misfolding of ADAMTSL2. A yeast two-hybrid screen showed that ADAMTSL2 interacts with latent TGF-β–binding protein 1. In addition, we observed a significant increase in total and active TGF-β in the culture medium as well as nuclear localization of phosphorylated SMAD2 in fibroblasts from individuals with geleophysic dysplasia. These data suggest that ADAMTSL2 mutations may lead to a dysregulation of TGF-β signaling and may be the underlying mechanism of geleophysic dysplasia.
PMCID: PMC2675613  PMID: 18677313
4.  Fibrillin-1 Mutations Causing Weill-Marchesani Syndrome and Acromicric and Geleophysic Dysplasias Disrupt Heparan Sulfate Interactions 
PLoS ONE  2012;7(11):e48634.
The extracellular glycoprotein fibrillin-1 forms microfibrils that act as the template for elastic fibers. Most mutations in fibrillin-1 cause Marfan syndrome with severe cardiovascular and ocular symptoms, and tall stature. This is in contrast to mutations within a heparin-binding TB domain (TB5), which is downstream of the arg-gly-asp cell adhesion domain, which can cause Weill-Marchesani syndrome (WMS) or Acromicric (AD) and Geleophysic Dysplasias (GD). WMS is characterized by short limbs, joint stiffness and ocular defects, whilst fibrillin-1 AD and GD have severe short stature, joint defects and thickened skin. We previously showed that TB5 binds heparin. Here, we show that the corresponding region of fibrillin-2 binds heparin very poorly, highlighting a novel functional difference between the two isoforms. This finding enabled us to map heparin/heparan sulfate binding to two sites on fibrillin-1 TB5 using a mutagenesis approach. Once these sites were mapped, we were able to investigate whether disease-causing mutations in this domain disrupt binding to HS. We show that a WMS deletion mutant, and five AD and GD point mutants all have disrupted heparin binding to TB5. These data provide insights into the biology of fibrillins and the pathologies of WMS, AD and GD.
PMCID: PMC3487758  PMID: 23133647
5.  Candidate genes for idiopathic epilepsy in four dog breeds 
BMC Genetics  2011;12:38.
Idiopathic epilepsy (IE) is a naturally occurring and significant seizure disorder affecting all dog breeds. Because dog breeds are genetically isolated populations, it is possible that IE is attributable to common founders and is genetically homogenous within breeds. In humans, a number of mutations, the majority of which are genes encoding ion channels, neurotransmitters, or their regulatory subunits, have been discovered to cause rare, specific types of IE. It was hypothesized that there are simple genetic bases for IE in some purebred dog breeds, specifically in Vizslas, English Springer Spaniels (ESS), Greater Swiss Mountain Dogs (GSMD), and Beagles, and that the gene(s) responsible may, in some cases, be the same as those already discovered in humans.
Candidate genes known to be involved in human epilepsy, along with selected additional genes in the same gene families that are involved in murine epilepsy or are expressed in neural tissue, were examined in populations of affected and unaffected dogs. Microsatellite markers in close proximity to each candidate gene were genotyped and subjected to two-point linkage in Vizslas, and association analysis in ESS, GSMD and Beagles.
Most of these candidate genes were not significantly associated with IE in these four dog breeds, while a few genes remained inconclusive. Other genes not included in this study may still be causing monogenic IE in these breeds or, like many cases of human IE, the disease in dogs may be likewise polygenic.
PMCID: PMC3111397  PMID: 21518446
6.  Mutations in Fibrillin-1 Cause Congenital Scleroderma: Stiff Skin Syndrome 
Science translational medicine  2010;2(23):23ra20.
The predisposition for scleroderma, defined as fibrosis and hardening of the skin, is poorly understood. We report that stiff skin syndrome (SSS), an autosomal dominant congenital form of scleroderma, is caused by mutations in the sole Arg-Gly-Asp (RGD) sequence-encoding domain of fibrillin-1 that mediates integrin binding. Ordered polymers of fibrillin-1 (termed microfibrils) initiate elastic fiber assembly and bind to and regulate the activation of the pro-fibrotic cytokine transforming growth factor β (TGFβ). Altered cell-matrix interactions in SSS accompany excessive microfibrillar deposition, impaired elastogenesis, and increased TGFβ concentration and signaling in the dermis. The observation of similar findings in systemic sclerosis (SSc), a more common acquired form of scleroderma, suggests broad pathogenic relevance.
PMCID: PMC2953713  PMID: 20375004
7.  Canine Chondrodysplasia Caused by a Truncating Mutation in Collagen-Binding Integrin Alpha Subunit 10 
PLoS ONE  2013;8(9):e75621.
The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy Elkhounds (praw = 7.42×10−6, pgenome-wide = 0.013). The associated locus contained a promising candidate gene, cartilage specific integrin alpha 10 (ITGA10), and mutation screening of its 30 exons revealed a nonsense mutation in exon 16 (c.2083C>T; p.Arg695*) that segregated fully with the disease in both breeds (p = 2.5×10−23). A 24% mutation carrier frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor α10-subunit combines into a collagen-binding α10β1 integrin receptor, which is expressed in cartilage chondrocytes and mediates chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the α10-protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the α10β1 integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding purposes to eradicate the disease from the two dog breeds.
PMCID: PMC3783422  PMID: 24086591
8.  An Intronic SINE Insertion in FAM161A that Causes Exon-Skipping Is Associated with Progressive Retinal Atrophy in Tibetan Spaniels and Tibetan Terriers 
PLoS ONE  2014;9(4):e93990.
Progressive retinal atrophy (PRA) in dogs is characterised by the degeneration of the photoreceptor cells of the retina, resulting in vision loss and eventually complete blindness. The condition affects more than 100 dog breeds and is known to be genetically heterogeneous between breeds. Around 19 mutations have now been identified that are associated with PRA in around 49 breeds, but for the majority of breeds the mutation(s) responsible have yet to be identified. Using genome-wide association with 22 Tibetan Spaniel PRA cases and 10 controls, we identified a novel PRA locus, PRA3, on CFA10 (praw = 2.01×10−5, pgenome = 0.014), where a 3.8 Mb region was homozygous within 12 cases. Using targeted next generation sequencing, a short interspersed nuclear element insertion was identified near a splice acceptor site in an intron of a provocative gene, FAM161A. Analysis of mRNA from an affected dog revealed that the SINE causes exon skipping, resulting in a frame shift, leading to a downstream premature termination codon and possibly a truncated protein product. This mutation segregates with the disease in 22 out of 35 cases tested (63%). Of the PRA controls, none are homozygous for the mutation, 15% carry the mutation and 85% are homozygous wildtype. This mutation was also identified in Tibetan Terriers, although our results indicate that PRA is genetically heterogeneous in both Tibetan Spaniels and Tibetan Terriers.
PMCID: PMC3976383  PMID: 24705771
9.  An extra cysteine in one of the non-calcium-binding epidermal growth factor-like motifs of the FBN1 polypeptide is connected to a novel variant of Marfan syndrome. 
Journal of Clinical Investigation  1994;94(2):709-713.
We present here a family with a clinical phenotype resembling Marfan syndrome (MFS), and displaying joint contracture and episodes of knee joint effusions, but lacking the cardiovascular features of the syndrome. The phenotype of this family represents a unique mixture of connective tissue symptoms, some of which are found in classical MFS and some of which are typical of dominant ectopia lentis. Linkage analyses suggested a linkage (LOD score 2.4; theta = 0) between the phenotype of the family and a polymorphic marker in the vicinity of the fibrillin locus on chromosome 15 (FBN1). Furthermore, a novel transition mutation was identified in the FBN1 gene in all the affected members of the family. In contrast to the majority of fibrillin mutations reported so far, this mutation substitutes a cysteine for arginine, producing an extra cysteine in one of the non-calcium-binding EGF-like motifs of the fibrillin polypeptide, most probably disturbing the formation of one of the three disulfide bridges known to be essential for the normal conformation of this motif.
PMCID: PMC296150  PMID: 8040326
10.  Evaluation of the CYP1B1 gene as a candidate gene in beagles with primary open-angle glaucoma (POAG) 
Molecular Vision  2009;15:2470-2474.
In humans, primary open-angle glaucoma (POAG) is a complex genetic disorder and is the leading cause of visual impairment. Although all relevant genes were not identified, a small subset of the condition is found to be caused by mutations in the MYOC and CYP1B1 genes. Inherited glaucoma also occurs in several breeds of dogs including beagles. Primary glaucoma in beagles is inherited as an autosomal recessive trait. The purpose of this study is to investigate the role of the CYP1B1 gene in beagles with POAG.
For the purpose of genetic analysis, total RNAs from the spleen of the canines were isolated and CYP1B1 cDNA was prepared. Genomic DNA from five affected, two carriers, and 13 randomly selected normal beagles with no sign of glaucoma was amplified by the polymerase chain reaction (PCR) using four pairs of primers. The amplified products were directly sequenced using BigDye terminator cycle sequencing.
Genomic DNA analyses have identified a substitution polymorphism (109A→C) in the 5’-untranslated region (UTR) as well as a missense mutation (P93R) in exon 2 of the gene. Three affected, two carriers, and nine normal dogs are heterozygous while two affected and three normal dogs are homozygous for the missense mutation. One normal dog did not show this alteration. Normal dogs also contain the substitution polymorphism in the 5’-UTR. Similar experiments with exon 3 did not identify any additional mutation in the gene.
The above results suggest that CYP1B1 alterations in the coding and UTR are not the primary cause of glaucoma in beagles by possible monogenic association. They may be classified as polymorphisms or they may modify glaucoma phenotype.
PMCID: PMC2786889  PMID: 19956412
11.  A Frameshift Mutation in Golden Retriever Dogs with Progressive Retinal Atrophy Endorses SLC4A3 as a Candidate Gene for Human Retinal Degenerations 
PLoS ONE  2011;6(6):e21452.
Progressive retinal atrophy (PRA) in dogs, the canine equivalent of retinitis pigmentosa (RP) in humans, is characterised by vision loss due to degeneration of the photoreceptor cells in the retina, eventually leading to complete blindness. It affects more than 100 dog breeds, and is caused by numerous mutations. RP affects 1 in 4000 people in the Western world and 70% of causal mutations remain unknown. Canine diseases are natural models for the study of human diseases and are becoming increasingly useful for the development of therapies in humans. One variant, prcd-PRA, only accounts for a small proportion of PRA cases in the Golden Retriever (GR) breed. Using genome-wide association with 27 cases and 19 controls we identified a novel PRA locus on CFA37 (praw = 1.94×10−10, pgenome = 1.0×10−5), where a 644 kb region was homozygous within cases. A frameshift mutation was identified in a solute carrier anion exchanger gene (SLC4A3) located within this region. This variant was present in 56% of PRA cases and 87% of obligate carriers, and displayed a recessive mode of inheritance with full penetrance within those lineages in which it segregated. Allele frequencies are approximately 4% in the UK, 6% in Sweden and 2% in France, but the variant has not been found in GRs from the US. A large proportion of cases (approximately 44%) remain unexplained, indicating that PRA in this breed is genetically heterogeneous and caused by at least three mutations. SLC4A3 is important for retinal function and has not previously been associated with spontaneously occurring retinal degenerations in any other species, including humans.
PMCID: PMC3124514  PMID: 21738669
12.  Identification of defects in the fibrillin gene and protein in individuals with the Marfan syndrome and related disorders. 
Texas Heart Institute Journal  1994;21(1):22-29.
The Marfan syndrome is an autosomal dominant disorder with pleiotropic manifestations that involve the cardiovascular, ocular, and skeletal systems. Through a number of investigational approaches, the gene encoding for fibrillin, the FBN1 gene on chromosome 15, has been identified as the defective gene causing the Marfan syndrome. Fibrillin is the large glycoprotein with a repetitive domain structure and is a major protein component of microfibrils, a fibrillar system closely associated with elastin in connective tissue. Mutational analysis of defects in the FBN1 gene in patients with the Marfan syndrome has revealed that most mutations are private or unique in an affected individual or family. Analysis of fibrillin protein or gene defects in individuals with related phenotypes has revealed that a perinatal lethal syndrome, termed neonatal Marfan syndrome, is due to FBN1 gene mutations. In addition, fibroblast cell strains from a subset of patients with idiopathic scoliosis have fibrillin protein defects. Last, fibroblasts from calves affected with bovine Marfan syndrome display defects in the fibrillin protein. These studies have wide-ranging implications in the diagnosis, treatment, and prevention of Marfan syndrome and related disorders.
PMCID: PMC325128  PMID: 8180508
13.  A Novel Unstable Duplication Upstream of HAS2 Predisposes to a Breed-Defining Skin Phenotype and a Periodic Fever Syndrome in Chinese Shar-Pei Dogs 
PLoS Genetics  2011;7(3):e1001332.
Hereditary periodic fever syndromes are characterized by recurrent episodes of fever and inflammation with no known pathogenic or autoimmune cause. In humans, several genes have been implicated in this group of diseases, but the majority of cases remain unexplained. A similar periodic fever syndrome is relatively frequent in the Chinese Shar-Pei breed of dogs. In the western world, Shar-Pei have been strongly selected for a distinctive thick and heavily folded skin. In this study, a mutation affecting both these traits was identified. Using genome-wide SNP analysis of Shar-Pei and other breeds, the strongest signal of a breed-specific selective sweep was located on chromosome 13. The same region also harbored the strongest genome-wide association (GWA) signal for susceptibility to the periodic fever syndrome (praw = 2.3×10−6, pgenome = 0.01). Dense targeted resequencing revealed two partially overlapping duplications, 14.3 Kb and 16.1 Kb in size, unique to Shar-Pei and upstream of the Hyaluronic Acid Synthase 2 (HAS2) gene. HAS2 encodes the rate-limiting enzyme synthesizing hyaluronan (HA), a major component of the skin. HA is up-regulated and accumulates in the thickened skin of Shar-Pei. A high copy number of the 16.1 Kb duplication was associated with an increased expression of HAS2 as well as the periodic fever syndrome (p<0.0001). When fragmented, HA can act as a trigger of the innate immune system and stimulate sterile fever and inflammation. The strong selection for the skin phenotype therefore appears to enrich for a pleiotropic mutation predisposing these dogs to a periodic fever syndrome. The identification of HA as a major risk factor for this canine disease raises the potential of this glycosaminoglycan as a risk factor for human periodic fevers and as an important driver of chronic inflammation.
Author Summary
Shar-Pei dogs have two unique features: a breed defining “wrinkled” skin phenotype and a genetic disorder called Familial Shar-Pei Fever (FSF). The wrinkled phenotype is strongly selected for and is the result of excessive hyaluronan (HA) deposited in the skin. HA is a molecule that may behave in a pro-inflammatory manner and create a “danger signal” by being analogous to molecules on the surface of pathogens. FSF is characterized by unprovoked episodes of fever and/or inflammation and resembles several human autoinflammatory syndromes. Here we show that the two features are connected and have the same genetic origin, a regulatory mutation located close to a HA synthesizing gene (HAS2). The mutation is a 16.1 Kb duplication, the copy number of which correlates with HAS2 expression and disease. We suggest that the large amount of HA responsible for the skin condition predisposes to sterile fever and inflammation. HAS2 was previously not known to associate with autoinflammatory disease, and this finding is of wide interest since approximately 60% of human patients with periodic fever syndrome remain genetically unexplained. This investigation also demonstrates how strong artificial selection may affect not only desired and selected phenotypes, but also the health of domestic animals.
PMCID: PMC3060080  PMID: 21437276
14.  Biogenesis and function of fibrillin assemblies 
Cell and tissue research  2009;339(1):71-82.
Fibrillin-1 and fibrillin-2 are large cysteine-rich glycoproteins that serve two key physiological functions: as supporting structures that impart tissue integrity and as regulators of signaling events that instruct cell performance. The structural role of fibrillins is exerted through the temporal and hierarchical assembly of microfibrils and elastic fibers, whereas the instructive role reflects the ability of fibrillins to sequester transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) complexes in the extracellular matrix. Characterization of fibrillin mutations in human patients and in genetically engineered mice has demonstrated that perturbation of either function manifests in disease. More generally, these studies have indicated that fibrillins are integral components of a broader biological network of extracellular, cell surface, and signaling molecules that orchestrate morphogenetic and homeostatic programs in multiple organ systems. They have also suggested that the relative composition of fibrillin-rich microfibrils imparts contextual specificity to TGFβ and BMP signaling by concentrating the ligands locally so as to regulate cell differentiation within a spatial context during organ formation (positive regulation) and by restricting their bioavailability so as to modulate cell performance in a timely fashion during tissue remodeling/ repair (negative regulation). Correlative evidence suggests functional coupling of the cell-directed assembly of micro-fibrils and targeting of TGFβ and BMP complexes to fibrillins. Hence, the emerging view is that fibrillin-rich microfibrils are molecular integrators of structural and instructive signals, with TGFβ and BMPs as the nodal points that convert extracellular inputs into discrete and context-dependent cellular responses.
PMCID: PMC2819175  PMID: 19513754
Elastic fibers; Extracellular matrix; Fibrillin; Marfan syndrome; TGFß
15.  New Insights into the Assembly of Extracellular Microfibrils from the Analysis of the Fibrillin 1 Mutation in the Tight skin Mouse 
The Journal of Cell Biology  2000;150(3):667-680.
The Tight skin (Tsk) mutation is a duplication of the mouse fibrillin 1 (Fbn1) gene that results in a larger (418 kD) than normal (350 kD) protein; Tsk/+ mice display increased connective tissue, bone overgrowth, and lung emphysema. Lung emphysema, bone overgrowth, and vascular complications are the distinctive traits of mice with reduced Fbn1 gene expression and of Marfan syndrome (MFS) patients with heterozygous fibrillin 1 mutations. Although Tsk/+ mice produce equal amounts of the 418- and 350-kD proteins, they exhibit a relatively mild phenotype without the vascular complications that are associated with MFS patients and fibrillin 1–deficient mice. We have used genetic crosses, cell culture assays and Tsk-specific antibodies to reconcile this discrepancy and gain new insights into microfibril assembly. Mice compound heterozygous for the Tsk mutation and hypomorphic Fbn1 alleles displayed both Tsk and MFS traits. Analyses of immunoreactive fibrillin 1 microfibrils using Tsk- and species-specific antibodies revealed that the mutant cell cultures elaborate a less abundant and morphologically different meshwork than control cells. Cocultures of Tsk/Tsk fibroblasts and human WISH cells that do not assemble fibrillin 1 microfibrils, demonstrated that Tsk fibrillin 1 copolymerizes with wild-type fibrillin 1. Additionally, copolymerization of Tsk fibrillin 1 with wild-type fibrillin 1 rescues the abnormal morphology of the Tsk/Tsk aggregates. Therefore, the studies suggest that bone and lung abnormalities of Tsk/+ mice are due to copolymerization of mutant and wild-type molecules into functionally deficient microfibrils. However, vascular complications are not present in these animals because the level of functional microfibrils does not drop below the critical threshold. Indirect in vitro evidence suggests that a potential mechanism for the dominant negative effects of incorporating Tsk fibrillin 1 into microfibrils is increased proteolytic susceptibility conferred by the duplicated Tsk region.
PMCID: PMC2175205  PMID: 10931876
elastic fibers; microfibrils; Tsk; Marfan syndrome; extracellular matrix
16.  Fibrillin: from microfibril assembly to biomechanical function. 
Fibrillins form the structural framework of a unique and essential class of extracellular microfibrils that endow dynamic connective tissues with long-range elasticity. Their biological importance is emphasized by the linkage of fibrillin mutations to Marfan syndrome and related connective tissue disorders, which are associated with severe cardiovascular, ocular and skeletal defects. These microfibrils have a complex ultrastructure and it has proved a major challenge both to define their structural organization and to relate it to their biological function. However, new approaches have at last begun to reveal important insights into their molecular assembly, structural organization and biomechanical properties. This paper describes the current understanding of the molecular assembly of fibrillin molecules, the alignment of fibrillin molecules within microfibrils and the unique elastomeric properties of microfibrils.
PMCID: PMC1692929  PMID: 11911778
17.  Marfan’s syndrome 
Lancet  2005;366(9501):1965-1976.
Marfan’s syndrome is a systemic disorder of connective tissue caused by mutations in the extracellular matrix protein fibrillin 1. Cardinal manifestations include proximal aortic aneurysm, dislocation of the ocular lens, and long-bone overgrowth. Important advances have been made in the diagnosis and medical and surgical care of affected individuals, yet substantial morbidity and premature mortality remain associated with this disorder. Progress has been made with genetically defined mouse models to elucidate the pathogenetic sequence that is initiated by fibrillin-1 deficiency. The new understanding is that many aspects of the disease are caused by altered regulation of transforming growth factor β (TGFβ), a family of cytokines that affect cellular performance, highlighting the potential therapeutic application of TGF β antagonists. Insights derived from studying this mendelian disorder are anticipated to have relevance for more common and non-syndromic presentations of selected aspects of the Marfan phenotype.
PMCID: PMC1513064  PMID: 16325700
18.  Homocysteine modifies structural and functional properties of fibronectin and interferes with the fibronectin-fibrillin-1 interaction† 
Biochemistry  2011;50(23):5322-5332.
Homocystinuria is a genetic disorder resulting in elevated levels of homocysteine in plasma and tissues. Some of the skeletal and ocular symptoms such as long-bone overgrowth, scoliosis and ectopia lentis overlap with symptoms seen in Marfan syndrome. Marfan syndrome is caused by mutations in the extracellular matrix protein fibrillin-1. We previously showed that fibrillin-1 is a target for homocysteine and that the deposition of homocysteinylated fibrillin-1 in the extracellular matrix is compromised. Since the assembly of fibrillin-1 is critically dependent on fibronectin, we analyzed the consequences of fibronectin homocysteinylation and its interaction with fibrillin-1. Cellular fibronectin and proteolytic fragments were homocysteinylated and tested in various interaction assays with recombinant fibrillin-1 and heparin. Fibronectin homocysteinylation consistently compromised the fibronectin-fibrillin-1 interaction, while the interaction with heparin was not affected. Fibronectin homocysteinylation, but not cysteinylation, reduced the fibronectin dimers to monomers as shown by Western blotting. ELISA analyses of homocysteinylated fibronectin with three monoclonal antibodies demonstrated structural changes in the disulfide-containing FNI domains FNI2, FNI4 and FNI9. Using fluorescently labeled fibronectin, we studied the consequence of fibronectin homocysteinylation on assembly in cell culture. Modified fibronectin showed deficiencies in de-novo matrix incorporation and initial assembly. In conclusion, we define here characteristic structural changes of fibronectin upon homocysteinylation that translate into functional deficiencies in the fibronectin-fibrillin-1 interaction and in fibronectin assembly. Since fibronectin is a major organizer of various extracellular protein networks, these structural and functional alterations may contribute to the pathogenesis of homocystinuria and Marfan syndrome.
PMCID: PMC3112360  PMID: 21561146
19.  The Finnish lapphund retinal atrophy locus maps to the centromeric region of CFA9 
Dogs have the second largest number of genetic diseases, after humans. Among the diseases present in dogs, progressive retinal atrophy has been reported in more than a hundred breeds. In some of them, the mutation has been identified and genetic tests have allowed the identification of carriers, thus enabling a drastic reduction in the incidence of the disease. The Finnish lapphund is a dog breed presenting late-onset progressive retinal atrophy for which the disease locus remains unknown.
In this study we mapped the progressive retinal atrophy locus in the Finnish lapphund using a DNA pooling approach, assuming that all affected dogs within the breed share the same identical-by descent-mutation as the cause of the disease (genetic homogeneity). Autosomal recessive inheritance was also assumed, after ruling out, from pedigree analysis, dominant and X-linked inheritance. DNA from 12 Finnish lapphund cases was mixed in one pool, and DNA from 12 first-degree relatives of these cases was mixed to serve as the control pool. The 2 pools were tested with 133 microsatellite markers, 3 of which showed a shift towards homozygosity in the cases. Individual genotyping with these 3 markers confirmed homozygosity for the GALK1 microsatellite only (chromosome 9). Further individual genotyping with additional samples (4 cases and 59 controls) confirmed the association between this marker and the disease locus (p < 0.001). Closely related to this breed are the Swedish lapphund and the Lapponian herder for which a small number of retinal atrophy cases have been reported. Swedish lapphund cases, but not Lapponian herder cases, had the same GALK1 microsatellite genotype as Finnish lapphund cases.
The locus for progressive rod-cone degeneration is known to be close to the GALK1 locus, on the telomeric region of chromosome 9, where the retinal atrophy locus of the Finnish lapphund has been mapped. This suggests that the disease in this breed, as well as in the Swedish lapphund, may correspond to progressive rod-cone degeneration. This would increase the number of known dog breeds having this particular form of progressive retinal atrophy.
PMCID: PMC1933534  PMID: 17623091
20.  An USH2A founder mutation is the major cause of Usher syndrome type 2 in Canadians of French origin and confirms common roots of Quebecois and Acadians 
Congenital hearing loss affects approximately one child in 1000. About 10% of the deaf population have Usher syndrome (USH). In USH, hearing loss is complicated by retinal degeneration with onset in the first (USH1) or second (USH2) decade. In most populations, diagnostic testing is hampered by a multitude of mutations in nine genes. We have recently shown that in French Canadians from Quebec, USH1 largely results from a single USH1C founder mutation, c.216G>A (‘Acadian allele'). The genetic basis of USH2 in Canadians of French descent, however, has remained elusive. Here, we have investigated nine USH2 families from Quebec and New Brunswick (the former Acadia) by haplotype analyses of the USH2A locus and sequencing of the three known USH2 genes. Seven USH2A mutations were identified in eight patients. One of them, c.4338_4339delCT, accounts for 10 out of 18 disease alleles (55.6%). This mutation has previously been reported in an Acadian USH2 family, and it was found in homozygous state in the three Acadians of our sample. As in the case of c.216G>A (USH1C), a common haplotype is associated with c.4338_4339delCT. With a limited number of molecular tests, it will now be possible in these populations to estimate whether children with congenital hearing impairment of different degrees will develop retinal disease – with important clinical and therapeutic implications. USH2 is the second example that reveals a significant genetic overlap between Quebecois and Acadians: in contrast to current understanding, other genetic disorders present in both populations are likely based on common founder mutations as well.
PMCID: PMC2985947  PMID: 18665195
Usher syndrome type 2; USH2A; founder population; Quebec; Acadia
21.  The molecular genetics of Marfan syndrome and related microfibrillopathies 
Journal of Medical Genetics  2000;37(1):9-25.
Mutations in the gene for fibrillin-1 (FBN1) have been shown to cause Marfan syndrome, an autosomal dominant disorder of connective tissue characterised by pleiotropic manifestations involving primarily the ocular, skeletal, and cardiovascular systems. Fibrillin-1 is a major component of the 10-12 nm microfibrils, which are thought to play a role in tropoelastin deposition and elastic fibre formation in addition to possessing an anchoring function in some tissues.
  Fibrillin-1 mutations have also been found in patients who do not fulfil clinical criteria for the diagnosis of Marfan syndrome, but have related disorders of connective tissue, such as isolated ectopia lentis, familial aortic aneurysm, and Marfan-like skeletal abnormalities, so that Marfan syndrome may be regarded as one of a range of type 1 fibrillinopathies.
  There appear to be no particular hot spots since mutations are found throughout the entire fibrillin-1 gene. However, a clustering of mutations associated with the most severe form of Marfan syndrome, neonatal Marfan syndrome, has been noted in a region encompassing exons 24 to 32. The gene for fibrillin-2 (FBN2) is highly homologous to FBN1, and mutations in FBN2 have been shown to cause a phenotypically related disorder termed congenital contractural arachnodactyly. Since mutations in the fibrillin genes are likely to affect the global function of the microfibrils, the term microfibrillopathy may be the most appropriate to designate the spectrum of disease associated with dysfunction of these molecules.
  The understanding of the global and the molecular functions of the fibrillin containing microfibrils is still incomplete and, correspondingly, no comprehensive theory of the pathogenesis of Marfan syndrome has emerged to date. Many, but not all, fibrillin-1 gene mutations are expected to exert a dominant negative effect, whereby mutant fibrillin monomers impair the global function of the microfibrils. In this paper we review the molecular physiology and pathophysiology of Marfan syndrome and related microfibrillopathies.

Keywords: Marfan syndrome; fibrillin; microfibrillopathies
PMCID: PMC1734449  PMID: 10633129
22.  Mutations in CERS3 Cause Autosomal Recessive Congenital Ichthyosis in Humans 
PLoS Genetics  2013;9(6):e1003536.
Autosomal recessive congenital ichthyosis (ARCI) is a rare genetic disorder of the skin characterized by abnormal desquamation over the whole body. In this study we report four patients from three consanguineous Tunisian families with skin, eye, heart, and skeletal anomalies, who harbor a homozygous contiguous gene deletion syndrome on chromosome 15q26.3. Genome-wide SNP-genotyping revealed a homozygous region in all affected individuals, including the same microdeletion that partially affects two coding genes (ADAMTS17, CERS3) and abolishes a sequence for a long non-coding RNA (FLJ42289). Whereas mutations in ADAMTS17 have recently been identified in autosomal recessive Weill-Marchesani-like syndrome in humans and dogs presenting with ophthalmologic, cardiac, and skeletal abnormalities, no disease associations have been described for CERS3 (ceramide synthase 3) and FLJ42289 so far. However, analysis of additional patients with non-syndromic ARCI revealed a splice site mutation in CERS3 indicating that a defect in ceramide synthesis is causative for the present skin phenotype of our patients. Functional analysis of patient skin and in vitro differentiated keratinocytes demonstrated that mutations in CERS3 lead to a disturbed sphingolipid profile with reduced levels of epidermis-specific very long-chain ceramides that interferes with epidermal differentiation. Taken together, these data present a novel pathway involved in ARCI development and, moreover, provide the first evidence that CERS3 plays an essential role in human sphingolipid metabolism for the maintenance of epidermal lipid homeostasis.
Author Summary
Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of human keratinization disorders mainly characterized by generalized abnormal scaling of the skin. To date, positional cloning and homozygosity mapping of families with ARCI have identified disease-associated mutations in seven genes: ABCA12, ALOX12B, ALOXE3, CYP4F22, ICHTHYIN, PNPLA1, and TGM1. The reported molecular mechanisms underlying disease development are related to defects in epidermal lipid pathways that interfere with terminal keratinocyte differentiation and skin barrier function. In this study we used genome-wide SNP mapping, which identified homozygous mutations in the CERS3 (ceramide synthase 3) gene that cause a new type of ARCI. Functional analysis of a skin sample and in vitro differentiated keratinocytes from one patient demonstrated that mutated CERS3 impairs the synthesis of ceramides with very long-chain acyl moieties. The defect in sphingolipid metabolism disturbs the epidermal lipid profile, which leads to an abnormal terminal differentiation process. In summary, mutations in CERS3 are causative for ARCI and illustrate the important role of ceramide synthesis in human skin physiology.
PMCID: PMC3675029  PMID: 23754960
23.  Systemic sclerosis sera affect fibrillin-1 deposition by dermal blood microvascular endothelial cells: therapeutic implications of cyclophosphamide 
Systemic sclerosis (SSc) is a connective tissue disorder characterized by endothelial cell injury, autoimmunity and fibrosis. The following three fibrillin-1 alterations have been reported in SSc. (1) Fibrillin-1 microfibrils are disorganized in SSc dermis. (2) Fibrillin-1 microfibrils produced by SSc fibroblasts are unstable. (3) Mutations in the FBN1 gene and anti-fibrillin-1 autoantibodies have been reported in SSc. Fibrillin-1 microfibrils, which are abundantly produced by blood and lymphatic microvascular endothelial cells (B-MVECs and Ly-MVECs, respectively), sequester in the extracellular matrix the latent form of the potent profibrotic cytokine transforming growth factor β (TGF-β). In the present study, we evaluated the effects of SSc sera on the deposition of fibrillin-1 and microfibril-associated glycoprotein 1 (MAGP-1) and the expression of focal adhesion molecules by dermal B-MVECs and Ly-MVECs.
Dermal B-MVECs and Ly-MVECs were challenged with sera from SSc patients who were treatment-naïve or under cyclophosphamide (CYC) treatment and with sera from healthy controls. Fibrillin-1/MAGP-1 synthesis and deposition and the expression of αvβ3 integrin/phosphorylated focal adhesion kinase and vinculin/actin were evaluated by immunofluorescence and quantified by morphometric analysis.
Fibrillin-1 and MAGP-1 colocalized in all experimental conditions, forming a honeycomb pattern in B-MVECs and a dense mesh of short segments in Ly-MVECs. In B-MVECs, fibrillin-1/MAGP-1 production and αvβ3 integrin expression significantly decreased upon challenge with sera from naïve SSc patients compared with healthy controls. Upon challenge of B-MVECs with sera from CYC-treated SSc patients, fibrillin-1/MAGP-1 and αvβ3 integrin levels were comparable to those of cells treated with healthy sera. Ly-MVECs challenged with SSc sera did not differ from those treated with healthy control sera in the expression of any of the molecules assayed.
Because of the critical role of fibrillin-1 in sequestering the latent form of TGF-β in the extracellular matrix, its decreased deposition by B-MVECs challenged with SSc sera might contribute to dermal fibrosis. In SSc, CYC treatment might limit fibrosis through the maintenance of physiologic fibrillin-1 synthesis and deposition by B-MVECs.
PMCID: PMC3978697  PMID: 23962393
Systemic sclerosis; blood and lymphatic microvascular endothelial cells; fibrillin-1; focal adhesion molecules; cyclophosphamide
24.  One-Year Duration of Immunity Induced by Vaccination with a Canine Lyme Disease Bacterin▿  
Laboratory-reared beagles were vaccinated with a placebo or a bacterin comprised of Borrelia burgdorferi S-1-10 and ospA-negative/ospB-negative B. burgdorferi 50772 and challenged after 1 year with B. burgdorferi-infected Ixodes scapularis ticks. For the placebo recipients, spirochetes were recovered from 9 (60%) skin biopsy specimens collected after 1 month, and the organisms persisted in the skin thereafter. Ten (67%) dogs also developed joint infection (3 dogs), lameness or synovitis (7 dogs), or B. burgdorferi-specific antibodies (8 dogs). For the vaccine recipients, spirochetes were recovered from 6 (40%) skin biopsy specimens collected after 1 month. However, subsequent biopsy specimens were negative, and the dogs failed to develop joint infection (P = 0.224), lameness/synovitis (P = 0.006), or Lyme disease-specific antibody responses (P = 0.002). The bacterin provided a high level of protection for 1 year after immunization, and the addition of the OspC-producing B. burgdorferi 50772 provided enhanced protection.
PMCID: PMC2863397  PMID: 20237200
25.  The Tight Skin Mouse: Demonstration of Mutant Fibrillin-1 Production and Assembly into Abnormal Microfibrils  
The Journal of Cell Biology  1998;140(5):1159-1166.
Mice carrying the Tight skin (Tsk) mutation harbor a genomic duplication within the fibrillin-1 (Fbn 1) gene that results in a larger than normal in-frame Fbn 1 transcript. In this study, the consequences of the Tsk mutation for fibrillin-containing microfibrils have been examined. Dermal fibroblasts from Tsk/+ mice synthesized and secreted both normal fibrillin (∼330 kD) and the mutant oversized Tsk fibrillin-1 (∼450 kD) in comparable amounts, and Tsk fibrillin-1 was stably incorporated into cell layers. Immunohistochemical and ultrastructural analyses of normal and Tsk/+ mouse skin highlighted differences in the gross organization and distribution of microfibrillar arrays. Rotary shadowing of high Mr preparations from Tsk/+ skin demonstrated the presence of abundant beaded microfibrils. Some of these had normal morphology and periodicity, but others were distinguished by diffuse interbeads, longer periodicity, and tendency to aggregate. The presence of a structurally abnormal population of microfibrils in Tsk/+ skin was unequivocally demonstrated after calcium chelation and in denaturating conditions. Scanning transmission electron microscopy highlighted the presence of more mass in Tsk/+ skin microfibrils than in normal mice skin microfibrils. These data indicate that Tsk fibrillin-1 polymerizes and becomes incorporated into a discrete population of beaded microfibrils with altered molecular organization.
PMCID: PMC2132699  PMID: 9490728

Results 1-25 (343284)