Search tips
Search criteria

Results 1-25 (621537)

Clipboard (0)

Related Articles

1.  MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism 
NF-E2-related factor 2 (Nrf2) is an important transcription factor involved in antioxidant response. Nrf2 binds antioxidant response elements (ARE) within promoters of genes encoding detoxification enzymes (e.g., NAD (P) H-quinone oxidoreductase 1 (NQO1)) leading to their transcriptional activation. Nrf2 function is regulated post-translationally by its negative regulator Kelch-like ECH-associated protein 1 (Keap1) that binds Nrf2 and induces cytoplasmic Nrf2 degradation. Our present studies provide new evidence that Nrf2 expression can be regulated by a Keap1-independent mechanism. Here, we utilized breast epithelial cells to explore the impact of microRNA (miRNA) on Nrf2 expression. We found that Nrf2 mRNA levels are reversibly correlated with miR-28 expression and that ectopic expression of miR-28 alone reduces Nrf2 mRNA and protein levels. We further investigated the molecular mechanisms by which miR-28 inhibits Nrf2 mRNA expression. Initially, the ability of miR-28 to regulate the 3′ untranslated region (3′UTR) of Nrf2 mRNA was evaluated via luciferase reporter assay. We observed that miR-28 reduces wild-type Nrf2 3′UTR luciferase reporter activity and this repression is eliminated upon mutation of the miR-28 targeting seed sequence within the Nrf2 3′UTR. Moreover, over-expression of miR-28 decreased endogenous Nrf2 mRNA and protein expression. We also explored the impact of miR-28 on Keap1-Nrf2 interactions and found that miR-28 overexpression does not alter Keap1 protein levels and has no effect on the interaction of Keap1 and Nrf2. Our findings, that miR-28 targets the 3′UTR of Nrf2 mRNA and decreases Nrf2 expression, suggest that this miRNA is involved in the regulation of Nrf2 expression in breast epithelial cells.
PMCID: PMC3752913  PMID: 21638050
Mammary epithelial cells; miR-28; Nrf2; Chemoprevention
2.  BRG1 Interacts with Nrf2 To Selectively Mediate HO-1 Induction in Response to Oxidative Stress▿  
Molecular and Cellular Biology  2006;26(21):7942-7952.
NF-E2-related factor 2 (Nrf2) regulates antioxidant-responsive element-mediated induction of cytoprotective genes in response to oxidative stress. The purpose of this study was to determine the role of BRG1, a catalytic subunit of SWI2/SNF2-like chromatin-remodeling complexes, in Nrf2-mediated gene expression. Small interfering RNA knockdown of BRG1 in SW480 cells selectively decreased inducible expression of the heme oxygenase 1 (HO-1) gene after diethylmaleate treatment but did not affect other Nrf2 target genes, such as the gene encoding NADPH:quinone oxidoreductase 1 (NQO1). Chromatin immunoprecipitation analysis revealed that Nrf2 recruits BRG1 to both HO-1 and NQO1 regulatory regions. However, BRG1 knockdown selectively decreased the recruitment of RNA polymerase II to the HO-1 promoter but not to the NQO1 promoter. HO-1, but not other Nrf2-regulated genes, harbors a sequence of TG repeats capable of forming Z-DNA with BRG1 assistance. Similarly, replacement of the TG repeats with an alternative Z-DNA-forming sequence led to BRG1-mediated activation of HO-1. These results thus demonstrate that BRG1, through the facilitation of Z-DNA formation and subsequent recruitment of RNA polymerase II, is critical in Nrf2-mediated inducible expression of HO-1.
PMCID: PMC1636732  PMID: 16923960
3.  Activation of the Nrf2 Pathway by Inorganic Arsenic in Human Hepatocytes and the Role of Transcriptional Repressor Bach1 
Previous studies have proved that the environmental toxicant, inorganic arsenic, activates nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in many different cell types. This study tried to explore the hepatic Nrf2 pathway upon arsenic treatment comprehensively, since liver is one of the major target organs of arsenical toxicity. Our results showed that inorganic arsenic significantly induced Nrf2 protein and mRNA expression in Chang human hepatocytes. We also observed a dose-dependent increase of antioxidant response element- (ARE-) luciferase activity. Both the mRNA and protein levels of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) were all upregulated dramatically. On the other hand, entry and accumulation of Nrf2 protein in the nucleus, while exportting the transcriptional repressor BTB and CNC homology 1 (Bach1) from nucleus to cytoplasm, were also confirmed by western blot and immunofluorescence assay. Our results therefore confirmed the arsenic-induced Nrf2 pathway activation in hepatocytes and also suggested that the translocation of Bach1 was associated with the regulation of Nrf2 pathway by arsenic. Hepatic Nrf2 pathway plays indispensable roles for cellular defenses against arsenic hepatotoxicity, and the interplay of Bach1 and Nrf2 may be helpful to understand the self-defensive responses and the diverse biological effects of arsenicals.
PMCID: PMC3664501  PMID: 23738048
4.  Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway 
PLoS ONE  2013;8(3):e59843.
Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(P)H: quinone oxidoreductase1 (NQO1) induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) to antioxidant response element (ARE) were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO) rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage.
PMCID: PMC3610879  PMID: 23555802
5.  NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector 
NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) is a widely-distributed FAD-dependent flavoprotein that promotes obligatory 2-electron reductions of quinones, quinoneimines, nitroaromatics, and azo dyes, at rates that are comparable with NADH or NADPH. These reductions depress quinone levels and thereby minimize opportunities for generation of reactive oxygen intermediates by redox cycling, and for depletion of intracellular thiol pools. NQO1 is a highly-inducible enzyme that is regulated by the Keap1/Nrf2/ARE pathway. Evidence for the importance of the antioxidant functions of NQO1 in combating oxidative stress is provided by demonstrations that induction of NQO1 levels or their depletion (knockout, or knockdown) are associated with decreased and increased susceptibilities to oxidative stress, respectively. Furthermore, benzene genotoxicity is markedly enhanced when NQO1 activity is compromised. Not surprisingly, human polymorphisms that suppress NQO1 activities are associated with increased predisposition to disease. Recent studies have uncovered protective roles for NQO1 that apparently are unrelated to its enzymatic activities. NQO1 binds to and thereby stabilizes the important tumor suppressor p53 against proteasomal degradation. Indeed, NQO1 appears to regulate the degradative fate of other proteins. These findings suggest that NQO1 may exercise a selective “gatekeeping” role in regulating the proteasomal degradation of specific proteins, thereby broadening the cytoprotective role of NQO1 far beyond its highly effective antioxidant functions.
PMCID: PMC2930038  PMID: 20361926
antioxidant response element (ARE); benzene toxicity; estrogen quinone; Keap1; microtubule stability; Nrf2; oxidative stress; p53; proteasomal degradation
6.  Oleanolic Acid Activates Nrf2 and Protects from Acetaminophen Hepatotoxicity via Nrf2-Dependent and Nrf2-independent Processes 
Biochemical pharmacology  2009;77(7):1273-1282.
Oleanolic acid is a plant-derived triterpenoid, which protects against various hepatotoxicants in rodents. In order to determine whether oleanolic acid activates nuclear factor erythroid-2 related factor 2 (Nrf2), a transcription factor known to induce various antioxidant and cytoprotective genes, wild-type and Nrf2-null mice were treated with oleanolic acid (90 mg/kg, i.p.) once daily for three days. Oleanolic acid increased nuclear accumulation of Nrf2 in wild-type but not Nrf2-null mice, as determined by Western blot and immunofluorescence. Oleanolic acid-treated wild-type mice had increased hepatic mRNA expression of the Nrf2 target genes NAD(P)H:quinone oxidoreductase 1 (Nqo1); glutamate-cysteine ligase, catalytic subunit (Gclc); heme oxygenase-1 (Ho-1); as well as Nrf2 itself. In addition, oleanolic acid increased protein expression and enzyme activity of the prototypical Nrf2 target gene, Nqo1, in wild-type, but not in Nrf2-null mice. Oleanolic acid protected against acetaminophen hepatotoxicity in wild-type mice but to a lesser extent in Nrf2-null mice. Oleanolic acid-mediated Nrf2-independent protection from acetaminophen is, in part, due to induction of Nrf2-independent cytoprotective genes, such as metallothionein. Collectively, the present study demonstrates that oleanolic acid facilitates Nrf2 nuclear accumulation, causing induction of Nrf2-dependent genes, which contributes to protection from acetaminophen hepatotoxicity.
PMCID: PMC2745914  PMID: 19283895
Nrf2; oleanolic acid; hepatoprotection; oxidative stress; acetaminophen
7.  The Nrf2 Activator Oltipraz Also Activates the Constitutive Androstane Receptor 
Oltipraz (OPZ) is a well known inducer of NAD(P)H:quinone oxidoreductase (NQO1) along with other enzymes that comprise the nuclear factor E2-related factor 2 (Nrf2) battery of detoxification genes. However, OPZ treatment also induces expression of CYP2B, a gene regulated by the constitutive androstane receptor (CAR). Therefore, this study was designed to determine whether OPZ induces gene expression in the mouse liver through activation of CAR in addition to Nrf2. OPZ increased the mRNA expression of both Cyp2b10 and Nqo1 in C57BL/6 mouse livers. As expected, in livers from Nrf2−/− mice, OPZ induction of Nqo1 was reduced, indicating Nqo1 induction is dependent on Nrf2 activation, whereas Cyp2b10 induction was unchanged. The robust induction of Cyp2b10 by OPZ in wild-type mice was completely absent in CAR−/− mice, revealing a CAR-dependent induction by OPZ. OPZ also induced transcription of the human CYP2B6 promoter-reporter containing the phenobarbital (PB) responsive element in mouse liver using an in vivo transcription assay. Additionally, OPZ induced in vivo nuclear accumulation of CAR at 3 h but, as with PB, was unable to reverse androstanol repression of mouse CAR constitutive activity in transiently transfected HepG2 cells. In summary, OPZ induces expression of Cyp2b10 and Nqo1 via the activation of CAR and Nrf2, respectively.
PMCID: PMC3693743  PMID: 18474683
8.  Nrf2 the Rescue: Effects of the Antioxidative/Electrophilic Response on the Liver 
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that positively regulates the basal and inducible expression of a large battery of cytoprotective genes. These gene products include proteins that catalyze reduction reactions (NAD(P)H:quinone oxidoreductase 1, Nqo1), conjugation reactions (glutathione-S-transferases, Gsts and UDP-glucuronosyltransferases, Ugts), as well as the efflux of potentially toxic xenobiotics and xenobiotic conjugates (multidrug resistance-associated proteins, Mrps). The significance of Nrf2 in the liver has been established, as livers of Nrf2-null mice are more susceptible to various oxidative/electrophilic stress-induced pathologies than wild-type mice. In contrast, both pharmacological and genetic models of hepatic Nrf2 activation are protective against oxidative/electrophilic stress. Furthermore, because certain Nrf2-target genes in the liver could affect the distribution, metabolism, and excretion of xenobiotics, the effects of Nrf2 on the kinetics of drugs and other xenobiotics should also be considered, with a special emphasis on metabolism and excretion. Therefore, this review highlights the research that has contributed to the understanding of the importance of Nrf2 in toxicodynamics and toxicokinetics, especially that which pertains to the liver.
PMCID: PMC2860427  PMID: 20122946
9.  Targeting Nrf2-Mediated Gene Transcription by Triterpenoids and Their Derivatives 
Biomolecules & Therapeutics  2012;20(6):499-505.
Chemoprevention represents a strategy designed to protect cells or tissues against various carcinogens and carcinogenic metabolites derived from exogenous or endogenous sources. Recent studies indicate that plant-derived triterpenoids, like oleanolic acid, may exert cytoprotective functions via regulation of the activity of different transcription factors. The chemopreventive effects may be mediated through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. Activation of Nrf2 by triterpenoids induces the expression of phase 2 detoxifying and antioxidant enzymes such as NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) - proteins which can protect cells or tissues against various toxic metabolites. On the other hand, inhibition of other transcription factors, like NF-κB leads to the decrease in the pro-inflammatory gene expression. Moreover, the modulation of microRNAs activity may constitute a new mechanism responsible for valuable effects of triterpenoids. Recently, based on the structure of naturally occurring triterpenoids and with involvement of bioinformatics and computational chemistry, many synthetic analogs with improved biological properties have been obtained. Data from in vitro and in vivo experiments strongly suggest synthetic derivatives as promising candidates in the chemopreventive and chemotherapeutic strategies.
PMCID: PMC3762293  PMID: 24009841
Anti-oxidant response; Betulin; Chemoprevention; Oleanolic acid; Triterpenoids
10.  Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes 
Monocytes play a central role in the immunopathological effects of sepsis. This role is mediated by production of the cytokines tumor necrosis factor α (TNF) and interleukin-1β (IL-1β). The transcription factor NF-E2-related factor 2 (Nrf2) regulates innate immune responses in various experimental disease models. Presently, the role of Nrf2-regulated genes in lipopolysaccharide (LPS)-treated human monocytes is not well defined. Here we show that Nrf2 mediates a significant regulation of LPS-induced inflammatory responses. Analysis of Nrf2-regulated gene expression in human monocytes showed that LPS induced the expression of the phase II detoxification gene NAD(P)H:quinone oxidoreductase 1 (NQO1). Furthermore, NQO1 mRNA or protein expression in response to LPS was regulated by Nrf2. Silencing Nrf2 expression in human monocytes inhibited LPS-induced NQO1 expression, however by contrast, it significantly increased TNF and IL-1β production. Silencing expression of NQO1 alone, or in combination with heme oxygenase-1 (HO-1) silencing, markedly increased LPS-induced TNF and IL-1β expression. Additionally, overexpression of NQO1 and/or HO-1 inhibited LPS-induced TNF and IL-1β expression. These results show for the first time that LPS induces NQO1 and HO-1 expression in human monocytes via Nrf2 to modulate their inflammatory responsiveness, thus providing novel potential therapeutic strategies for the treatment of sepsis.
PMCID: PMC2923058  PMID: 18981090
Monocytes; lipopolysaccharide; inflammation; cytokines; transcription factors
11.  Nuclear factor-E2-related factor 2 expression in liver is critical for induction of NAD(P)H:quinone oxidoreductase 1 during cholestasis 
Cell Stress & Chaperones  2006;11(4):356-363.
Bile duct ligation (BDL) causes hepatocellular oxidative stress and injury. The transcription factor nuclear factor-E2-related factor (Nrf2) induces expression of numerous genes including NAD(P)H:quinone oxidoreductase 1 (Nqo1) during periods of oxidative stress. Therefore, we hypothesized that BDL increases liver expression of mouse antioxidant genes in an Nrf2-dependent manner. BDL or sham surgeries were performed on male C57BL/6, Nrf2-null, and wild-type mice. Livers were collected at 1, 3, and 7 days after surgery for analysis of messenger ribonucleic acid (mRNA) levels of Nrf2-responsive genes as well as Nqo1 protein and activity. BDL increased mRNA expression of multiple Nrf2 genes in mouse liver, compared to sham-operated controls. Follow-up studies investigating protein expression, enzyme activity, and Nrf2 dependency were limited to Nqo1. Nqo1 protein expression and activity in mouse livers was increased 2- to 3-, and 4- to 5-fold at 3 and 7 days after BDL, respectively. Studies also showed that BDL increases Nqo1 mRNA, protein expression, and enzyme activity in livers from wild-type mice, but not in Nrf2-null mice. In conclusion, expression of Nrf2-dependent genes is increased during cholestasis. These studies also demonstrate that Nqo1 expression and activity in mouse liver are induced via an Nrf2-dependent mechanism.
PMCID: PMC1759988  PMID: 17278884
12.  The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation 
Purpose of Review
The vertebrate cap’n’collar family transcription factor Nrf2 and its invertebrate homologs SKN-1 (in worms) and CncC (in flies) function as master mediators of antioxidant and detoxification responses and regulators of the cellular redox state. Nrf2 controls gene expression programs that defend various tissues against diverse electrophilic stressors and oxidative insults, thus protecting the organism from pathologies that are caused or exacerbated by such stresses. Moreover, studies in model organisms implicate the Nrf2 pathway in the prevention of aging-related diseases, and suggest that SKN-1- and CncC-regulated gene expression can promote longevity. These facets of Nrf2 signaling have been thoroughly reviewed. This article discusses another aspect of the Nrf2 pathway’s function that has not yet received the same degree of attention but emerges as a topic of increasing interest and potential clinical impact: its role in metabolic regulation and its interaction with central signaling systems that respond to nutritional inputs.
Recent findings
Recent evidence identifies Nrf2 signaling as a mediator of the salutary effects of caloric restriction. Nrf2 signaling also cross-talks with metabolic signaling systems such as the insulin/Akt pathway as well as with the metabolism of lipids. Moreover, Nrf2 has a protective role in models of diabetic nephropathy.
The emerging role of Nrf2 as an effector of metabolic and longevity signals offers new therapeutic perspectives. The potential impact of pharmacological manipulation of Nrf2 signaling as a strategy for the prevention and treatment of metabolic disease can be envisioned.
PMCID: PMC3092636  PMID: 21102319
Nrf2; calorie restriction; aging; insulin signaling; obesity; diabetic nephropathy
13.  Keap1 Cysteine 288 as a Potential Target for Diallyl Trisulfide-Induced Nrf2 Activation 
PLoS ONE  2014;9(1):e85984.
Diallyl sulfide, diallyl disulfide, and daillyl trisulfide (DATS) are major volatile components of garlic oil. In this study, we assessed their relative potency in inducing antioxidant enzyme expression. Among the three organosulfur compounds, DATS was found to be most potent in inducing heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 (NQO1) in human gastric epithelial (AGS) cells. Furthermore, DATS administration by gavage increased the expression of HO-1 and NQO1 in C57BL/6 mouse stomach. Treatment with DATS increased the accumulation of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus of cultured AGS cells and in mouse stomach in vivo. The DATS-induced expression of HO-1 and NQO1 was abrogated in the cells transiently transfected with Nrf2-siRNA or in the embryonic fibroblasts from Nrf2-null mice, indicating that Nrf2 is a key mediator of the cytoprotective effects of DATS. Pretreatment of AGS cells with N-acetylcysteine or dithiothreitol attenuated DATS-induced nuclear localization of Nrf2 and the expression of HO-1 and NQO1. Cysteine-151, -273 and -288 of Kelch-like ECH-associated protein-1 (Keap1), a cytosolic repressor of Nrf2, have been considered to act as a redox sensor and play a role in Nrf2 activation. To determine whether DATS could inactivate Keap1 through thiol modification, we established cell lines constitutively expressing wild type-Keap1 or three different mutant constructs in which cysteine-151, -273, or -288 of Keap1 was replaced with serine by retroviral gene transfer. DATS failed to activate Nrf2, and to induce expression of HO-1 and NQO1 only in Keap1-C288S mutant cells. LC-ESI-MS/MS analysis of recombinant Keap1 treated with DATS revealed that the peptide fragment containing Cys288 gained a molecular mass of 72.1 Da equivalent to the molecular weight of mono-allyl mono-sulfide. Taken together, these findings suggest that DATS may directly interact with the Cys288 residue of Keap1, which partly accounts for its ability to induce Nrf2 activation and upregulate defensive gene expression.
PMCID: PMC3904845  PMID: 24489685
14.  The stress signalling pathway nuclear factor E2-related factor 2 is activated in the liver of sows during lactation 
It has recently been shown that the lactation-induced inflammatory state in the liver of dairy cows is accompanied by activation of the nuclear factor E2-related factor 2 (Nrf2) pathway, which regulates the expression of antioxidant and cytoprotective genes and thereby protects tissues from inflammatory mediators and reactive oxygen species (ROS). The present study aimed to study whether the Nrf2 pathway is activated also in the liver of lactating sows.
Transcript levels of known Nrf2 target genes, UGT1A1 (encoding glucuronosyltransferase 1 family, polypeptide A1), HO-1 (encoding heme oxygenase 1), NQO1 (encoding NAD(P)H dehydrogenase, quinone 1), GPX1 (encoding glutathione peroxidase), PRDX6 (encoding peroxiredoxin 6), TXNRD1 (encoding thioredoxin reductase 1), and SOD (encoding superoxide dismutase), in the liver are significantly elevated (between 1.7 and 3.1 fold) in lactating sows compared to non-lactating sows. The inflammatory state in the liver was evidenced by the finding that transcript levels of genes encoding acute phase proteins, namely haptoglobin (HP), fibrinogen γ (FGG), complement factor B (CFB), C-reactive protein (CRP) and lipopolysaccharide-binding protein (LBP), were significantly higher (2 to 8.7 fold) in lactating compared to non-lactating sows.
The results of the present study indicate that the Nrf2 pathway in the liver of sows is activated during lactation. The activation of Nrf2 pathway during lactation in sows might be interpreted as a physiologic means to counteract the inflammatory process and to protect the liver against damage induced by inflammatory signals and ROS.
PMCID: PMC3502514  PMID: 23039904
Sow; Liver; Lactation; Inflammation; Nrf2 pathway; Acute phase proteins
15.  Ectodermal-Neural Cortex 1 Down-Regulates Nrf2 at the Translational Level 
PLoS ONE  2009;4(5):e5492.
The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1), which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1), which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway.
PMCID: PMC2675063  PMID: 19424503
Toxicology letters  2008;185(3):180-186.
Naturally occurring coumarins possess anti-carcinogenic activities in part by inducing carcinogen-detoxifying enzymes glutathione S-transferase (GST) and/or NAD(P)H quinone oxidoreductase (NQO1). Our goal was to determine whether citrus coumarins induce hepatic GST and/or NQO1 via activation of Nrf2 and the antioxidant response element. First, HepG2 cells stably transfected with the ARE and a green fluorescent protein (GFP) reporter were treated with increasing concentrations of coumarins and compared to positive controls. tert-butylhydroquinone (TBHQ) and oltipraz increased GFP fluorescence, as did coumarin, limettin, auraptene, imperatorin, and 7,8-benzoflavone, suggesting that they activate the ARE, whereas isopimpinellin did not increase GFP fluorescence. Next, the effects of orally-administered coumarins and oltipraz on hepatic GST and NQO1 activities were compared in Nrf2 knockout mice or Nrf2 heterozygous mice exhibiting the wild-type phenotype. Oltipraz, auraptene, imperatorin, isopimpinellin, and auraptene all significantly increased liver cytosolic GST activities in Nrf2 heterozygous mice. This effect was abrogated in Nrf2(−/−) mice dosed with oltipraz, attenuated in mice Nrf2(−/−) mice treated with auraptene and imperatorin, and still significant in Nrf2(−/−) mice treated with isopimpinellin. Of these compounds, only isopimpinellin significantly increased liver cytosolic NQO1 activities, and this effect was not attenuated in Nrf2(−/−) mice. These results strongly suggest that imperatorin and auraptene induce murine liver cytosolic GST activities via the Nrf2/ARE mechanism. Although structurally similar, isopimpinellin did not appear to activate HepG2-ARE-GFP and the Nrf2 knockout mouse study suggests that isopimpinellin may induce GST and NQO1 via additional mechanisms.
PMCID: PMC2676710  PMID: 19150646
Coumarins; Antioxidant Response Element; Nrf2; GST; Chemoprevention; Natural Products
17.  Estrogen Receptor and PI3K/Akt Signaling Pathway Involvement in S-(-)Equol-Induced Activation of Nrf2/ARE in Endothelial Cells 
PLoS ONE  2013;8(11):e79075.
S-(-)equol, a natural product of the isoflavone daidzein, has been reported to offer cytoprotective effects with respect to the cardiovascular system, but how this occurs is unclear. Interestingly, S-(-)equol is produced by the human gut, suggesting a role in physiological processes. We report that treatment of human umbilical vein endothelial cells and EA.hy926 cells with S-(-)equol induces ARE-luciferase reporter gene activity that is dose and time dependent. S-(-)equol (10–250 nM) increases nuclear factor-erythroid 2-related factor 2 (Nrf2) as well as gene products of Nrf2 target genes heme oxygenase-1 (HO-1) and NAD(P)H (nicotinamide-adenine-dinucleotide-phosphate) quinone oxidoreductase 1 (NQO1). Endothelial cells transfected with an HA-Nrf2 expression plasmid had elevated HA-Nrf2, HO-1, and NQO1 in response to S-(-)equol exposure. S-(-)equol treatment affected Nrf2 mRNA only slightly but significantly increased HO-1 and NQO1 mRNA. The pretreatment of cells with specific ER inhibitors or PI3K/Akt (ICI182,780 and LY294002) increased Nrf2, HO-1, and NQO1 protein, impaired nuclear translocation of HA-Nrf2, and decreased ARE-luciferase activity. Identical experiments were conducted with daidzein, which had effects similar to S-(-)equol. In addition, DPN treatment (an ERβ agonist) induced the ARE-luciferase reporter gene, promoting Nrf2 nuclear translocation. Cell pretreatment with an ERβ antagonist (PHTPP) impaired S-(-)equol-induced Nrf2 activation. Pre-incubation of cells followed by co-treatment with S-(-)equol significantly improved cell survival in response to H2O2 or tBHP and reduced apoptotic and TUNEL-positively-stained cells. Notably, the ability of S-(-)equol to protect against H2O2-induced cell apoptosis was attenuated in cells transfected with an siRNA against Nrf2. Thus, beneficial effects of S-(-)equol with respect to cytoprotective antioxidant gene activation may represent a novel strategy to prevent and treat cardiovascular diseases.
PMCID: PMC3833998  PMID: 24260155
18.  The flavonoid, eriodictyol, induces long-term protection in ARPE-19 cells through its effects on Nrf2 activation and phase II gene expression 
Eriodictyol, a flavonoid found in citrus fruits, is among the most potent compounds reported to protect human RPE cells from oxidative stress-induced cell death. In the present study, we determined whether eriodictyol-induced phase II protein expression further enhances the resistance of human ARPE-19 cells to oxidative stress.
We analyzed the ability of eriodictyol to activate Nrf2 and induce the phase II proteins, heme-oxygenase (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO-1), and the cellular antioxidant glutathione, (GSH). We performed cytoprotection assays in ARPE-19 cells that were overexpressing HO-1 or NQO-1. We compared cell survival after short-term and long-term eriodictyol treatment and tested the mechanism of protection using a dominant negative Nrf2 and an shRNA specific for HO-1.
We demonstrate that eriodictyol induces the nuclear translocation of Nrf2, enhances the expression of HO-1 and NQO-1, and increases the levels of intracellular glutathione. We show that ARPE-19 cells that overexpress HO-1 or NQO-1 are more resistant to oxidative stress-induced cell death than control cells. We demonstrate that eriodictyol induces long-term protection that is significantly greater than its short-term protection, and this effect is correlated temporally with both the activation of Nrf2 and the induction of phase II enzymes. We demonstrate that this effect can be blocked with the use of a dominant negative to Nrf2 and an shRNA specific to HO-1.
These findings indicate the greatest benefit from eriodictyol may be its ability to regulate gene expression and enhance multiple cellular defenses to oxidative injury.
PMCID: PMC2672971  PMID: 19117929
19.  A Perspective on Dietary Phytochemicals and Cancer Chemoprevention: Oxidative Stress, Nrf2, and Epigenomics 
Topics in current chemistry  2013;329:133-162.
Oxidative stress is caused by an imbalance of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and the antioxidative stress defense systems in cells. ROS/RNS or carcinogen metabolites can attack intracellular proteins, lipids, and nucleic acids, which can result in genetic mutations, carcinogenesis, and other diseases. Nrf2 plays a critical role in the regulation of many antioxidative stress/antioxidant and detoxification enzyme genes, such as glutathione S-transferases (GSTs), NAD(P)H:quinone oxidoreductase 1 (NQO1), UDP-glucuronyl transferases (UGTs), and heme oxygenase-1 (HO-1), directly via the antioxidant response element (ARE). Recently, many studies have shown that dietary phytochemicals possess cancer chemopreventive potential through the induction of Nrf2-mediated antioxidant/detoxification enzymes and anti-inflammatory signaling pathways to protect organisms against cellular damage caused by oxidative stress. In addition, carcinogenesis can be caused by epigenetic alterations such as DNA methylation and histone modifications in tumor–suppressor genes and oncogenes. Interestingly, recent studies have shown that several naturally occurring dietary phytochemicals can epigenetically modify the chromatin, including reactivating Nrf2 via demethylation of CpG islands and the inhibition of histone deacetylases (HDACs) and/or histone acetyltransferases (HATs). The advancement and development of dietary phytochemicals in cancer chemoprevention research requires the integration of the known, and as-yet-unknown, compounds with the Nrf2-mediated antioxidant, detoxification, and anti-inflammatory systems and their in vitro and in vivo epigenetic mechanisms; human clinical efficacy studies must also be performed.
PMCID: PMC3924422  PMID: 22836898
Antioxidant response; Inflammation; Keap1; Nrf2
20.  Emerging Role of Nrf2 in Adipocytes and Adipose Biology123 
Advances in Nutrition  2013;4(1):62-66.
Maintenance of a balanced redox state within the cell is of critical importance to a wide variety of biological systems. Nuclear factor erythroid-derived 2-like 2 (Nrf2) is a critical regulator of key aspects of the antioxidant defense pathway and has long been a subject of interest regarding conditions of chronic stress such as inflammation and cancer. Recent data have emerged demonstrating that oxidative stress and Nrf2 also play critical roles in the biology of adipose tissue. This review examines data identifying the roles of Nrf2 and oxidative stress in the biological process of adipose cell differentiation as well as the implications of Nrf2 modulation on obesity. Working to understand the complex interplay among Nrf2, oxidative stress, and adipose biology could lead to a variety of possible treatments for obesity and other related disorders.
PMCID: PMC3648740  PMID: 23319124
21.  KPNA6 (Importin α7)-Mediated Nuclear Import of Keap1 Represses the Nrf2-Dependent Antioxidant Response ▿  
Molecular and Cellular Biology  2011;31(9):1800-1811.
The transcription factor Nrf2 has emerged as a master regulator of cellular redox homeostasis. As an adaptive response to oxidative stress, Nrf2 activates the transcription of a battery of genes encoding antioxidants, detoxification enzymes, and xenobiotic transporters by binding the cis-antioxidant response element in the promoter regions of genes. The magnitude and duration of inducible Nrf2 signaling is delicately controlled at multiple levels by Keap1, which targets Nrf2 for redox-sensitive ubiquitin-mediated degradation in the cytoplasm and exports Nrf2 from the nucleus. However, it is not clear how Keap1 gains access to the nucleus. In this study, we show that Keap1 is constantly shuttling between the nucleus and the cytoplasm under physiological conditions. The nuclear import of Keap1 requires its C-terminal Kelch domain and is independent of Nrf1 and Nrf2. We have determined that importin α7, also known as karyopherin α6 (KPNA6), directly interacts with the Kelch domain of Keap1. Overexpression of KPNA6 facilitates Keap1 nuclear import and attenuates Nrf2 signaling, whereas knockdown of KPNA6 slows down Keap1 nuclear import and enhances the Nrf2-mediated adaptive response induced by oxidative stress. Furthermore, KPNA6 accelerates the clearance of Nrf2 protein from the nucleus during the postinduction phase, therefore promoting restoration of the Nrf2 protein to basal levels. These findings demonstrate that KPNA6-mediated Keap1 nuclear import plays an essential role in modulating the Nrf2-dependent antioxidant response and maintaining cellular redox homeostasis.
PMCID: PMC3133232  PMID: 21383067
22.  CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation 
Immune Network  2011;11(6):376-382.
Carbon monoxide (CO) is a cytoprotective and homeostatic molecule with important signaling capabilities in physiological and pathophysiological situations. CO protects cells/tissues from damage by free radicals or oxidative stress. NAD(P)H:quinone oxidoreductase (NQO1) is a highly inducible enzyme that is regulated by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, which is central to efficient detoxification of reactive metabolites and reactive oxygen species (ROS).
We generated NQO1 promoter construct. HepG2 cells were treated with CO Releasing Molecules-2 (CORM-2) or CO gas and the gene expressions were measured by RT-PCR, immunoblot, and luciferase assays.
CO induced expression of NQO1 in human hepatocarcinoma cell lines by activation of Nrf2. Exposure of HepG2 cells to CO resulted in significant induction of NQO1 in dose- and time-dependent manners. Analysis of the NQO1 promoter indicated that an antioxidant responsible element (ARE)-containing region was critical for the CO-induced Nrf2-dependent increase of NQO1 gene expression in HepG2 cells.
Our results suggest that CO-induced Nrf2 increases the expression of NQO1 which is well known to detoxify reactive metabolites and ROS.
PMCID: PMC3275707  PMID: 22346778
Carbon monoxide; Heme oxygenase-1; Nrf2; NQO1
23.  Genetic Deletion of Nrf2 Promotes Immortalization and Decreases Life Span of Murine Embryonic Fibroblasts 
Nuclear factor E2–related factor-2 (Nrf2) transcription factor is one of the main regulators of intracellular redox balance and a sensor of oxidative and electrophilic stress. Low Nrf2 activity is usually associated with carcinogenesis, but Nrf2 is also considered as an oncogene because it increases survival of transformed cells. Because intracellular redox balance alterations are involved in both senescence and tumorigenesis, we investigated the impact of Nrf2 genetic deletion on cellular immortalization and life span of murine embryonic fibroblasts. We report that Nrf2 genetic deletion promotes immortalization due to an early loss of p53-dependent gene expression. However, compared with control cells, immortalized Nrf2−/− murine embryonic fibroblasts exhibited decreased growth, lower cyclin E levels, and impaired expression of NQO1 and cytochrome b5 reductase. Moreover, SirT1 was also significantly reduced in immortalized Nrf2−/− murine embryonic fibroblasts, and these cells exhibited shorter life span. Our results underscore the dual role of Nrf2 in protection against carcinogenesis and in the delay of cellular aging.
PMCID: PMC4007826  PMID: 20974733
Cellular immortalization; Life span; MEFs; Nrf2; Replicative senescence
24.  The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆ 
Redox Biology  2013;1(1):532-541.
Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT-treated reconstructs that displayed increased immunohistochemical staining for Nrf2 and γ-GCS together with the elevation of total glutathione levels. Taken together, our data suggest the feasibility of achieving tanshinone-based cutaneous Nrf2-activation and photoprotection.
Graphical abstract
•Tanshinones are phenanthrenequinone-based Nrf2 inducers active in human skin cells.•Tanshinones upregulate Nrf2 target gene expression with the elevation of glutathione.•Dihydrotanshinone protects cultured human skin cells against solar simulated UV.•Dihydrotanshinone protects reconstructed human skin against acute photodamage.
PMCID: PMC3836278  PMID: 24273736
CHX, cycloheximide; CT, cryptotanshinone; DHT, dihydrotanshinone; DMEM, Dulbecco's modified Eagle's medium; γ-GCS, gamma-glutamate-cysteine ligase; H&E, hematoxylin and eosin; HMOX1, heme oxygenase-1; IHC, immunohistochemistry; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NQO1, NAD(P)H quinone oxidoreductase 1; Nrf2, nuclear factor-E2-related factor 2; ROS, reactive oxygen species; SF, sulforaphane; SLL, solar simulated UV light; T-I, tanshinone I; T-II-A, tanshinone IIA; UVA, ultraviolet; UVB, ultraviolet B; Tanshinone I; Dihydrotanshinone; Nrf2; Solar simulated ultraviolet light; Skin photoprotection
25.  Nrf2 protects against As(III)-induced damage in mouse liver and bladder 
Arsenic compounds are classified as toxicants and human carcinogens. Environmental exposure to arsenic imposes a big health issue worldwide. Arsenic elicits its toxic efforts through many mechanisms, including generation of reactive oxygen species (ROS). Nrf2 is the primary transcription factor that controls expression of a main cellular antioxidant response, which is required for neutralizing ROS and thus defending cells from exogenous insults. Previously, we demonstrated a protective role of Nrf2 against arsenic-induced toxicity using a cell culture model. In this report, we present evidence that Nrf2 protects against liver and bladder injury in response to six-weeks of arsenic exposure in a mouse model. Nrf2−/− mice displayed more severe pathological changes in the liver and bladder, compared to Nrf2+/+ mice. Furthermore, Nrf2−/− mice were more sensitive to arsenic-induced DNA hypomethylation, oxidative DNA damage, and apoptotic cell death. These results indicate a protective role of Nrf2 against arsenic toxicity in vivo. Hence, this work demonstrates the feasibility of using dietary compounds that target activation of the Nrf2 signaling pathway to alleviate arsenic-induced damage.
PMCID: PMC2739886  PMID: 19538980

Results 1-25 (621537)