PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1205650)

Clipboard (0)
None

Related Articles

1.  Promoting synergistic research and education in genomics and bioinformatics 
BMC Genomics  2008;9(Suppl 1):I1.
Bioinformatics and Genomics are closely related disciplines that hold great promises for the advancement of research and development in complex biomedical systems, as well as public health, drug design, comparative genomics, personalized medicine and so on. Research and development in these two important areas are impacting the science and technology.
High throughput sequencing and molecular imaging technologies marked the beginning of a new era for modern translational medicine and personalized healthcare. The impact of having the human sequence and personalized digital images in hand has also created tremendous demands of developing powerful supercomputing, statistical learning and artificial intelligence approaches to handle the massive bioinformatics and personalized healthcare data, which will obviously have a profound effect on how biomedical research will be conducted toward the improvement of human health and prolonging of human life in the future. The International Society of Intelligent Biological Medicine (http://www.isibm.org) and its official journals, the International Journal of Functional Informatics and Personalized Medicine (http://www.inderscience.com/ijfipm) and the International Journal of Computational Biology and Drug Design (http://www.inderscience.com/ijcbdd) in collaboration with International Conference on Bioinformatics and Computational Biology (Biocomp), touch tomorrow's bioinformatics and personalized medicine throughout today's efforts in promoting the research, education and awareness of the upcoming integrated inter/multidisciplinary field. The 2007 international conference on Bioinformatics and Computational Biology (BIOCOMP07) was held in Las Vegas, the United States of American on June 25-28, 2007. The conference attracted over 400 papers, covering broad research areas in the genomics, biomedicine and bioinformatics. The Biocomp 2007 provides a common platform for the cross fertilization of ideas, and to help shape knowledge and scientific achievements by bridging these two very important disciplines into an interactive and attractive forum. Keeping this objective in mind, Biocomp 2007 aims to promote interdisciplinary and multidisciplinary education and research. 25 high quality peer-reviewed papers were selected from 400+ submissions for this supplementary issue of BMC Genomics. Those papers contributed to a wide-range of important research fields including gene expression data analysis and applications, high-throughput genome mapping, sequence analysis, gene regulation, protein structure prediction, disease prediction by machine learning techniques, systems biology, database and biological software development. We always encourage participants submitting proposals for genomics sessions, special interest research sessions, workshops and tutorials to Professor Hamid R. Arabnia (hra@cs.uga.edu) in order to ensure that Biocomp continuously plays the leadership role in promoting inter/multidisciplinary research and education in the fields. Biocomp received top conference ranking with a high score of 0.95/1.00. Biocomp is academically co-sponsored by the International Society of Intelligent Biological Medicine and the Research Laboratories and Centers of Harvard University – Massachusetts Institute of Technology, Indiana University - Purdue University, Georgia Tech – Emory University, UIUC, UCLA, Columbia University, University of Texas at Austin and University of Iowa etc. Biocomp - Worldcomp brings leading scientists together across the nation and all over the world and aims to promote synergistic components such as keynote lectures, special interest sessions, workshops and tutorials in response to the advances of cutting-edge research.
doi:10.1186/1471-2164-9-S1-I1
PMCID: PMC3226105  PMID: 18366597
2.  Improving Outcomes for Pulmonary Vascular Disease 
Recognizing the importance of improving lung health through lung disease research, the National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of multidisciplinary experts for the following purpose: (1) to review the current scientific knowledge underlying the basis for treatment of adults and children with pulmonary vascular diseases (PVDs); (2) to identify gaps, barriers, and emerging scientific opportunities in translational PVD research and the means to capitalize on these opportunities; (3) to prioritize new research directions that would be expected to affect the clinical course of PVDs; and (4) to make recommendations to the NHLBI on how to fill identified gaps in adult and pediatric PVD clinical research. Workshop participants reviewed experiences from previous PVD clinical trials and ongoing clinical research networks with other lung disorders, including acute respiratory distress syndrome, chronic obstructive lung disease, and idiopathic pulmonary fibrosis, as well. Bioinformatics experts discussed strategies for applying cutting-edge health information technology to clinical studies. Participants in the workshop considered approaches in the following broad concept areas: (1) improved phenotyping to identify potential subjects for appropriate PVD clinical studies; (2) identification of potential new end points for assessing key outcomes and developing better-designed PVD clinical trials; and (3) the establishment of priorities for specific clinical research needed to advance care of patients with various subsets of PVDs from childhood through adulthood. This report provides a summary of the objectives and recommendations to the NHLBI concentrating on clinical research efforts that are needed to better diagnose and treat PVDs.
doi:10.1164/rccm.201201-0049WS
PMCID: PMC3359939  PMID: 22335936
clinical trials; pediatrics; pulmonary hypertension; pulmonary vascular changes
3.  A Guide for Health Professionals Working with Aboriginal Peoples: Executive Summary 
Objective
to provide Canadian health professionals with a network of information and recommendations regarding Aboriginal health.
Options
health professionals working with Aboriginal individuals and communities in the area of women’s health care.
Outcomes
improved health status of Aboriginal peoples in Canada.
Appropriateness and accessibility of women’s health services for Aboriginal peoples.
Improved communication and clinical skills of health professionals in the area of Aboriginal health.
Improved quality of relationship between health professionals and Aboriginal individuals and communities.
Improved quality of relationship between health care professionals and Aboriginal individuals and communities.
Evidence
recommendations are based on expert opinion and a review of the literature. Published references were identified by a Medline search of all review articles, randomized clinical control trials, meta-analyses, and practice guidelines from 1966 to February 1999, using the MeSH headings “Indians, North American or Eskimos” and “Health.”* Subsequently published articles were brought to the attention of the authors in the process of writing and reviewing the document. Ancillary and unpublished references were recommended by members of the SOGC Aboriginal Health Issues Committee and the panel of expert reviewers.
Values
information collected was reviewed by the principal author. The social, cultural, political, and historic context of Aboriginal peoples in Canada, systemic barriers regarding the publication of information by Aboriginal authors, the diversity of Aboriginal peoples in Canada, and the need for a culturally appropriate and balanced presentation were carefully considered in addition to more traditional scientific evaluation. The majority of information collected consisted of descriptive health and social information and such evaluation tools as the evidence guidelines of the Canadian Task Force on the Periodic Health exam were not appropriate.
Benefits, costs, and harms
utilization of the information and recommendations by Canadian health professionals will enhance understanding, communication, and clinical skills in the area of Aboriginal health. The resulting enhancement of collaborative relationships between Aboriginal peoples and their women’s health providers may contribute to health services that are more appropriate, effective, efficient, and accessible for Aboriginal peoples in Canada. The educational process may require an initial investment of time from the health professional.
Recommendations
Recommendations were grouped according to four themes: sociocultural context, health concerns, cross-cultural understanding, and Aboriginal health resources. Health professionals are encouraged to learn the appropriate names, demographics, and traditional geographic territories and language groups of the various Aboriginal groups in Canada. In addition, sensitivity to the impact of colonization and current socioeconomic challenges to the health status of Aboriginal peoples is warranted. Health services for Aboriginal peoples should take place as close to home as possible. Governmental obligations and policies regarding determination are recognized. With respect to health concerns, holistic definitions of health, based on Aboriginal perspectives, are put forward. Aboriginal peoples continue to experience a disproportionate burden of health problems. Health professionals are encouraged to become familiar with several key areas of morbidity and mortality. Relationships between Aboriginal peoples and their care providers need to be based on a foundation of mutual respect. Gaps and barriers in the current health care system for Aboriginal peoples are identified. Health professionals are encouraged to work with Aboriginal individuals and communities to address these gaps and barriers. Aboriginal peoples require culturally appropriate health care, including treatment in their own languages when possible. This may require interpreters or Aboriginal health advocates. Health professionals are encouraged to recognize the importance of family and community roles, and to respect traditional medicines and healers. Health professionals can develop their sensitivities towards Aboriginal peoples by participating in workshops, making use of educational resources, and by spending time with Aboriginal peoples in their communities. Aboriginal communities and health professionals are encouraged to support community-based, community-directed health services and health research for Aboriginal peoples. In addition, the education of more Aboriginal health professionals is essential. The need for a preventative approach to health programming in Aboriginal communities is stressed.
Validation
recommendations were reviewed and revised by the SOGC Aboriginal Health Issues Committee, a panel of expert reviewers, and the SOGC Council. In addition, this document was also reviewed and supported by the Assembly of First Nations, Canadian Institute of Child Health, Canadian Paediatric Society, College of Family Physicians of Canada, Congress of Aboriginal Peoples, Federation of Medical Women of Canada, Inuit Tapirisat of Canada, Metis National Council, National Indian and Inuit Community Health Representatives Organization, and Pauktuutit Inuit Women’s Association.
Sponsor
Society of Obstetricians and Gynaecologists of Canada.
PMCID: PMC3653835  PMID: 23682204 CAMSID: cams2752
4.  The Genomic Applications in Practice and Prevention Network 
Genetics in Medicine  2009;11(7):488-494.
The authors describe the rationale and initial development of a new collaborative initiative, the Genomic Applications in Practice and Prevention Network. The network convened by the Centers for Disease Control and Prevention and the National Institutes of Health includes multiple stakeholders from academia, government, health care, public health, industry and consumers. The premise of Genomic Applications in Practice and Prevention Network is that there is an unaddressed chasm between gene discoveries and demonstration of their clinical validity and utility. This chasm is due to the lack of readily accessible information about the utility of most genomic applications and the lack of necessary knowledge by consumers and providers to implement what is known. The mission of Genomic Applications in Practice and Prevention Network is to accelerate and streamline the effective integration of validated genomic knowledge into the practice of medicine and public health, by empowering and sponsoring research, evaluating research findings, and disseminating high quality information on candidate genomic applications in practice and prevention. Genomic Applications in Practice and Prevention Network will develop a process that links ongoing collection of information on candidate genomic applications to four crucial domains: (1) knowledge synthesis and dissemination for new and existing technologies, and the identification of knowledge gaps, (2) a robust evidence-based recommendation development process, (3) translation research to evaluate validity, utility and impact in the real world and how to disseminate and implement recommended genomic applications, and (4) programs to enhance practice, education, and surveillance.
PMCID: PMC2743616  PMID: 19471162
decision support; genomics; information; medicine; network; public health
5.  Eurocan plus report: feasibility study for coordination of national cancer research activities 
Summary
The EUROCAN+PLUS Project, called for by the European Parliament, was launched in October 2005 as a feasibility study for coordination of national cancer research activities in Europe. Over the course of the next two years, the Project process organized over 60 large meetings and countless smaller meetings that gathered in total over a thousand people, the largest Europe–wide consultation ever conducted in the field of cancer research.
Despite a strong tradition in biomedical science in Europe, fragmentation and lack of sustainability remain formidable challenges for implementing innovative cancer research and cancer care improvement. There is an enormous duplication of research effort in the Member States, which wastes time, wastes money and severely limits the total intellectual concentration on the wide cancer problem. There is a striking lack of communication between some of the biggest actors on the European scene, and there are palpable tensions between funders and those researchers seeking funds.
It is essential to include the patients’ voice in the establishment of priority areas in cancer research at the present time. The necessity to have dialogue between funders and scientists to establish the best mechanisms to meet the needs of the entire community is evident. A top priority should be the development of translational research (in its widest form), leading to the development of effective and innovative cancer treatments and preventive strategies. Translational research ranges from bench–to–bedside innovative cancer therapies and extends to include bringing about changes in population behaviours when a risk factor is established.
The EUROCAN+PLUS Project recommends the creation of a small, permanent and independent European Cancer Initiative (ECI). This should be a model structure and was widely supported at both General Assemblies of the project. The ECI should assume responsibility for stimulating innovative cancer research and facilitating processes, becoming the common voice of the cancer research community and serving as an interface between the cancer research community and European citizens, patients’ organizations, European institutions, Member States, industry and small and medium enterprises (SMEs), putting into practice solutions aimed at alleviating barriers to collaboration and coordination of cancer research activities in the European Union, and dealing with legal and regulatory issues. The development of an effective ECI will require time, but this entity should be established immediately. As an initial step, coordination efforts should be directed towards the creation of a platform on translational research that could encompass (1) coordination between basic, clinical and epidemiological research; (2) formal agreements of co–operation between comprehensive cancer centres and basic research laboratories throughout Europe and (3) networking between funding bodies at the European level.
The European Parliament and its instruments have had a major influence in cancer control in Europe, notably in tobacco control and in the implementation of effective population–based screening. To make further progress there is a need for novelty and innovation in cancer research and prevention in Europe, and having a platform such as the ECI, where those involved in all aspects of cancer research can meet, discuss and interact, is a decisive development for Europe.
Executive Summary
Cancer is one of the biggest public health crises facing Europe in the 21st century—one for which Europe is currently not prepared nor preparing itself. Cancer is a major cause of death in Europe with two million casualties and three million new cases diagnosed annually, and the situation is set to worsen as the population ages.
These facts led the European Parliament, through the Research Directorate-General of the European Commission, to call for initiatives for better coordination of cancer research efforts in the European Union. The EUROCAN+PLUS Project was launched in October 2005 as a feasibility study for coordination of national cancer research activities. Over the course of the next two years, the Project process organized over 60 large meetings and countless smaller meetings that gathered in total over a thousand people. In this respect, the Project became the largest Europe-wide consultation ever conducted in the field of cancer research, implicating researchers, cancer centres and hospitals, administrators, healthcare professionals, funding agencies, industry, patients’ organizations and patients.
The Project first identified barriers impeding research and collaboration in research in Europe. Despite a strong tradition in biomedical science in Europe, fragmentation and lack of sustainability remain the formidable challenges for implementing innovative cancer research and cancer care improvement. There is an enormous duplication of research effort in the Member States, which wastes time, wastes money and severely limits the total intellectual concentration on the wide cancer problem. There is a striking lack of communication between some of the biggest actors on the European scene, and there are palpable tensions between funders and those researchers seeking funds.
In addition, there is a shortage of leadership, a multiplicity of institutions each focusing on its own agenda, sub–optimal contact with industry, inadequate training, non–existent career paths, low personnel mobility in research especially among clinicians and inefficient funding—all conspiring against efficient collaboration in cancer care and research. European cancer research today does not have a functional translational research continuum, that is the process that exploits biomedical research innovations and converts them into prevention methods, diagnostic tools and therapies. Moreover, epidemiological research is not integrated with other types of cancer research, and the implementation of the European Directives on Clinical Trials 1 and on Personal Data Protection 2 has further slowed the innovation process in Europe. Furthermore, large inequalities in health and research exist between the EU–15 and the New Member States.
The picture is not entirely bleak, however, as the European cancer research scene presents several strengths, such as excellent basic research and clinical research and innovative etiological research that should be better exploited.
When considering recommendations, several priority dimensions had to be retained. It is essential that proposals include actions and recommendations that can benefit all Member States of the European Union and not just States with the elite centres. It is also essential to have a broader patient orientation to help provide the knowledge to establish cancer control possibilities when we exhaust what can be achieved by the implementation of current knowledge. It is vital that the actions proposed can contribute to the Lisbon Strategy to make Europe more innovative and competitive in (cancer) research.
The Project participants identified six areas for which consensus solutions should be implemented in order to obtain better coordination of cancer research activities. The required solutions are as follows. The proactive management of innovation, detection, facilitation of collaborations and maintenance of healthy competition within the European cancer research community.The establishment of an exchange portal of information for health professionals, patients and policy makers.The provision of guidance for translational and clinical research including the establishment of a translational research platform involving comprehensive cancer centres and cancer research centres.The coordination of calls and financial management of cancer research projects.The construction of a ‘one–stop shop’ as a contact interface between the industry, small and medium enterprises, scientists and other stakeholders.The support of greater involvement of healthcare professionals in translational research and multidisciplinary training.
In the course of the EUROCAN+PLUS consultative process, several key collaborative projects emerged between the various groups and institutes engaged in the consultation. There was a collaboration network established with Europe’s leading Comprehensive Cancer Centres; funding was awarded for a closer collaboration of Owners of Cancer Registries in Europe (EUROCOURSE); there was funding received from FP7 for an extensive network of leading Biological Resource Centres in Europe (BBMRI); a Working Group identified the special needs of Central, Eastern and South–eastern Europe and proposed a remedy (‘Warsaw Declaration’), and the concept of developing a one–stop shop for dealing with academia and industry including the Innovative Medicines Initiative (IMI) was discussed in detail.
Several other dimensions currently lacking were identified. There is an absolute necessity to include the patients’ voice in the establishment of priority areas in cancer research at the present time. It was a salutary lesson when it was recognized that all that is known about the quality of life of the cancer patient comes from the experience of a tiny proportion of cancer patients included in a few clinical trials. The necessity to have dialogue between funders and scientists to establish the best mechanisms to meet the needs of the entire community was evident. A top priority should be the development of translational research (in its widest form) and the development of effective and innovative cancer treatments and preventative strategies in the European Union. Translational research ranges from bench-to-bedside innovative cancer therapies and extends to include bringing about changes in population behaviours when a risk factor is established.
Having taken note of the barriers and the solutions and having examined relevant examples of existing European organizations in the field, it was agreed during the General Assembly of 19 November 2007 that the EUROCAN+PLUS Project had to recommend the creation of a small, permanent and neutral ECI. This should be a model structure and was widely supported at both General Assemblies of the project. The proposal is based on the successful model of the European Molecular Biology Organisation (EMBO), and its principal aims include providing a forum where researchers from all backgrounds and from all countries can meet with members of other specialities including patients, nurses, clinicians, funders and scientific administrators to develop priority programmes to make Europe more competitive in research and more focused on the cancer patient.
The ECI should assume responsibility for: stimulating innovative cancer research and facilitating processes;becoming the common voice of the cancer research community and serving as an interface between the cancer research community and European citizens, patients’ and organizations;European institutions, Member States, industry and small and medium enterprises;putting into practice the aforementioned solutions aimed at alleviating barriers and coordinating cancer research activities in the EU;dealing with legal and regulatory issues.
Solutions implemented through the ECI will lead to better coordination and collaboration throughout Europe, more efficient use of resources, an increase in Europe’s attractiveness to the biomedical industry and better quality of cancer research and education of health professionals.
The Project considered that European legal instruments currently available were inadequate for addressing many aspects of the barriers identified and for the implementation of effective, lasting solutions. Therefore, the legal environment that could shelter an idea like the ECI remains to be defined but should be done so as a priority. In this context, the initiative of the European Commission for a new legal entity for research infrastructure might be a step in this direction. The development of an effective ECI will require time, but this should be established immediately. As an initial step, coordination efforts should be directed towards the creation of a platform on translational research that could encompass: (1) coordination between basic, clinical and epidemiological research; (2) formal agreements of co-operation between comprehensive cancer centres and basic research laboratories throughout Europe; (3) networking between funding bodies at the European level. Another topic deserving immediate attention is the creation of a European database on cancer research projects and cancer research facilities.
Despite enormous progress in cancer control in Europe during the past two decades, there was an increase of 300,000 in the number of new cases of cancer diagnosed between 2004 and 2006. The European Parliament and its instruments have had a major influence in cancer control, notably in tobacco control and in the implementation of effective population–based screening. To make further progress there is a need for novelty and innovation in cancer research and prevention in Europe, and having a platform such as the ECI, where those involved in all aspects of cancer research can meet, discuss and interact, is a decisive development for Europe.
doi:10.3332/ecancer.2011.84
PMCID: PMC3234055  PMID: 22274749
6.  A Blueprint for Genomic Nursing Science 
Purpose
This article reports on recommendations arising from an invitational workshop series held at the National Institutes of Health for the purposes of identifying critical genomics problems important to the health of the public that can be addressed through nursing science. The overall purpose of the Genomic Nursing State of the Science Initiative is to establish a nursing research blueprint based on gaps in the evidence and expert evaluation of the current state of the science and through public comment.
Organizing Constructs
A Genomic Nursing State of the Science Advisory Panel was convened in 2012 to develop the nursing research blueprint. The Advisory Panel, which met via two webinars and two in-person meetings, considered existing evidence from evidence reviews, testimony from key stakeholder groups, presentations from experts in research synthesis, and public comment.
Findings
The genomic nursing science blueprint arising from the Genomic Nursing State of Science Advisory Panel focuses on biologic plausibility studies as well as interventions likely to improve a variety of outcomes (e.g., clinical, economic, environmental). It also includes all care settings and diverse populations. The focus is on (a) the client, defined as person, family, community, or population; (b) the context, targeting informatics support systems, capacity building, education, and environmental influences; and (c) cross-cutting themes. It was agreed that building capacity to measure the impact of nursing actions on costs, quality, and outcomes of patient care is a strategic and scientific priority if findings are to be synthesized and aggregated to inform practice and policy.
Conclusions
The genomic nursing science blueprint provides the framework for furthering genomic nursing science to improve health outcomes. This blueprint is an independent recommendation of the Advisory Panel with input from the public and is not a policy statement of the National Institutes of Health or the federal government.
Clinical Relevance
This genomic nursing science blueprint targets research to build the evidence base to inform integration of genomics into nursing practice and regulation (such as nursing licensure requirements, institutional accreditation, and academic nursing school accreditation).
doi:10.1111/jnu.12007
PMCID: PMC3594405  PMID: 23368636
7.  Recommendations from the EGAPP Working Group: testing for cytochrome P450 polymorphisms in adults with nonpsychotic depression treated with selective serotonin reuptake inhibitors 
Genetics in Medicine  2007;9(12):819-825.
This statement summarizes the Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group recommendations regarding CYP450 genetic testing in adult patients beginning treatment with selective serotonin reuptake inhibitors (SSRIs), and the supporting scientific evidence. EGAPP is a project developed by the National Office of Public Health Genomics at the Centers for Disease Control and Prevention to support a rigorous, evidence-based process for evaluating genetic tests and other genomic applications that are in transition from research to clinical and public health practice in the United States. A key goal of the EGAPP Working Group is to develop conclusions and recommendations regarding clinical genomic applications and to establish clear linkage to the supporting scientific evidence. The Working Group members are nonfederal experts in genetics, laboratory medicine, and clinical epidemiology convened to establish methods and processes; set priorities for review topics; participate in technical expert panels for commissioned evidence reviews; publish recommendations; and provide guidance and feedback on other project activities.
Summary of Recommendation
The EGAPP Working Group found insufficient evidence to support a recommendation for or against use of CYP450 testing in adults beginning SSRI treatment for non-psychotic depression. In the absence of supporting evidence, and with consideration of other contextual issues, EGAPP discourages use of CYP450 testing for patients beginning SSRI treatment until further clinical trials are completed.
Rationale
The EGAPP Working Group found no evidence linking testing for CYP450 to clinical outcomes in adults treated with SSRIs. While some studies of a single SSRI dose in healthy patients report an association between genotypic CYP450 drug metabolizer status and circulating SSRI levels, this association was not supported by studies of patients receiving ongoing SSRI treatment. Further, CYP450 genotypes are not consistently associated with the patient outcomes of interest, including clinical response to SSRI treatment or adverse events as a result of treatment. No evidence was available showing that the results of CYP450 testing influenced SSRI choice or dose and improved patient outcomes, or was useful in medical, personal, or public health decision-making. In the absence of evidence supporting clinical utility, it is not known if potential benefits from CYP450 testing will outweigh potential harms. Potential harms may include increased cost without impact on clinical decision making or improvement in patient outcomes, less effective treatment with SSRI drugs, or inappropriate use of genotype information in the management of other drugs metabolized by CYP450 enzymes.
PMCID: PMC2743615  PMID: 18091431
P450; CYP450; pharmacogenomic; SSRI; depression
8.  Tobacco Company Efforts to Influence the Food and Drug Administration-Commissioned Institute of Medicine Report Clearing the Smoke: An Analysis of Documents Released through Litigation 
PLoS Medicine  2013;10(5):e1001450.
Stanton Glantz and colleagues investigate efforts by tobacco companies to influence Clearing the Smoke, a 2001 Institute of Medicine report on harm reduction tobacco products.
Please see later in the article for the Editors' Summary
Background
Spurred by the creation of potential modified risk tobacco products, the US Food and Drug Administration (FDA) commissioned the Institute of Medicine (IOM) to assess the science base for tobacco “harm reduction,” leading to the 2001 IOM report Clearing the Smoke. The objective of this study was to determine how the tobacco industry organized to try to influence the IOM committee that prepared the report.
Methods and Findings
We analyzed previously secret tobacco industry documents in the University of California, San Francisco Legacy Tobacco Documents Library, and IOM public access files. (A limitation of this method includes the fact that the tobacco companies have withheld some possibly relevant documents.) Tobacco companies considered the IOM report to have high-stakes regulatory implications. They developed and implemented strategies with consulting and legal firms to access the IOM proceedings. When the IOM study staff invited the companies to provide information on exposure and disease markers, clinical trial design for safety and efficacy, and implications for initiation and cessation, tobacco company lawyers, consultants, and in-house regulatory staff shaped presentations from company scientists. Although the available evidence does not permit drawing cause-and-effect conclusions, and the IOM may have come to the same conclusions without the influence of the tobacco industry, the companies were pleased with the final report, particularly the recommendations for a tiered claims system (with separate tiers for exposure and risk, which they believed would ease the process of qualifying for a claim) and license to sell products comparable to existing conventional cigarettes (“substantial equivalence”) without prior regulatory approval. Some principles from the IOM report, including elements of the substantial equivalence recommendation, appear in the 2009 Family Smoking Prevention and Tobacco Control Act.
Conclusions
Tobacco companies strategically interacted with the IOM to win several favored scientific and regulatory recommendations.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Up to half of tobacco users will die of cancer, lung disease, heart disease, stroke, or another tobacco-related disease. Cigarettes and other tobacco products cause disease because they expose their users to nicotine and numerous other toxic chemicals. Tobacco companies have been working to develop a “safe” cigarette for more than half a century. Initially, their attention focused on cigarettes that produced lower tar and nicotine yields in machine-smoking tests. These products were perceived as “safer” products by the public and scientists for many years, but it is now known that the use of low-yield cigarettes can actually expose smokers to higher levels of toxins than standard cigarettes. More recently, the tobacco companies have developed other products (for example, products that heat aerosols of nicotine, rather than burning the tobacco) that claim to reduce harm and the risk of tobacco-related disease, but they can only market these modified risk tobacco products in the US after obtaining Food and Drug Administration (FDA) approval. In 1999, the FDA commissioned the US Institute of Medicine (IOM, an influential source of independent expert advice on medical issues) to assess the science base for tobacco “harm reduction.” In 2001, the IOM published its report Clearing the Smoke: Assessing the Science Base for Tobacco Harm and Reduction, which, although controversial, set the tone for the development and regulation of tobacco products in the US, particularly those claiming to be less dangerous, in subsequent years.
Why Was This Study Done?
Tobacco companies have a long history of working to shape scientific discussions and agendas. For example, they have produced research results designed to “create controversy” about the dangers of smoking and secondhand smoke. In this study, the researchers investigate how tobacco companies organized to try to influence the IOM committee that prepared the Clearing the Smoke report on modified risk tobacco products by analyzing tobacco industry and IOM documents.
What Did the Researchers Do and Find?
The researchers searched the Legacy Tobacco Documents Library (a collection of internal tobacco industry documents released as a result of US litigation cases) for documents outlining how tobacco companies tried to influence the IOM Committee to Assess the Science Base for Tobacco Harm Reduction and created a timeline of events from the 1,000 or so documents they retrieved. They confirmed and supplemented this timeline using information in 80 files that detailed written interactions between the tobacco companies and the IOM committee, which they obtained through a public records access request. Analysis of these documents indicates that the tobacco companies considered the IOM report to have important regulatory implications, that they developed and implemented strategies with consulting and legal firms to access the IOM proceedings, and that tobacco company lawyers, consultants, and regulatory staff shaped presentations to the IOM committee by company scientists on various aspects of tobacco harm reduction products. The analysis also shows that tobacco companies were pleased with the final report, particularly its recommendation that tobacco products can be marketed with exposure or risk reduction claims provided the products substantially reduce exposure and provided the behavioral and health consequences of these products are determined in post-marketing surveillance and epidemiological studies (“tiered testing”) and its recommendation that, provided no claim of reduced exposure or risk is made, new products comparable to existing conventional cigarettes (“substantial equivalence”) can be marketed without prior regulatory approval.
What Do These Findings Mean?
These findings suggest that tobacco companies used their legal and regulatory staff to access the IOM committee that advised the FDA on modified risk tobacco products and that they used this access to deliver specific, carefully formulated messages designed to serve their business interests. Although these findings provide no evidence that the efforts of tobacco companies influenced the IOM committee in any way, they show that the companies were satisfied with the final IOM report and its recommendations, some of which have policy implications that continue to reverberate today. The researchers therefore call for the FDA and other regulatory bodies to remember that they are dealing with companies with a long history of intentionally misleading the public when assessing the information presented by tobacco companies as part of the regulatory process and to actively protect their public-health policies from the commercial interests of the tobacco industry.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001450.
This study is further discussed in a PLOS Medicine Perspective by Thomas Novotny
The World Health Organization provides information about the dangers of tobacco (in several languages); for information about the tobacco industry's influence on policy, see the 2009 World Health Organization report Tobacco interference with tobacco control
A PLOS Medicine Research Article by Heide Weishaar and colleagues describes tobacco company efforts to undermine the Framework Convention on Tobacco Control, an international instrument for tobacco control
Wikipedia has a page on tobacco harm reduction (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The IOM report Clearing the Smoke: Assessing the Science Base for Tobacco Harm Reduction is available to read online
The Legacy Tobacco Documents Library is a public, searchable database of tobacco company internal documents detailing their advertising, manufacturing, marketing, sales, and scientific activities
The University of California, San Francisco Center for Tobacco Control Research and Education is the focal point for University of California, San Francisco (UCSF) scientists in disciplines ranging from the molecular biology of nicotine addiction through political science who combine their efforts to eradicate the use of tobacco and tobacco-induced cancer and other diseases worldwide
SmokeFree, a website provided by the UK National Health Service, offers advice on quitting smoking and includes personal stories from people who have stopped smoking
Smokefree.gov, from the US National Cancer Institute, offers online tools and resources to help people quit smoking
doi:10.1371/journal.pmed.1001450
PMCID: PMC3665841  PMID: 23723740
9.  Genetics, Genomics and Cancer Risk Assessment: State of the art and future directions in the era of personalized medicine 
CA: a cancer journal for clinicians  2011;10.3322/caac.20128.
Scientific and technologic advances are revolutionizing our approach to genetic cancer risk assessment, cancer screening and prevention, and targeted therapy, fulfilling the promise of personalized medicine. In this monograph we review the evolution of scientific discovery in cancer genetics and genomics, and describe current approaches, benefits and barriers to the translation of this information to the practice of preventive medicine. Summaries of known hereditary cancer syndromes and highly penetrant genes are provided and contrasted with recently-discovered genomic variants associated with modest increases in cancer risk. We describe the scope of knowledge, tools, and expertise required for the translation of complex genetic and genomic test information into clinical practice. The challenges of genomic counseling include the need for genetics and genomics professional education and multidisciplinary team training, the need for evidence-based information regarding the clinical utility of testing for genomic variants, the potential dangers posed by premature marketing of first-generation genomic profiles, and the need for new clinical models to improve access to and responsible communication of complex disease-risk information. We conclude that given the experiences and lessons learned in the genetics era, the multidisciplinary model of genetic cancer risk assessment and management will serve as a solid foundation to support the integration of personalized genomic information into the practice of cancer medicine.
doi:10.3322/caac.20128
PMCID: PMC3346864  PMID: 21858794
Genomics; genetic cancer risk assessment; genetic counseling; prevention; genetics; hereditary cancer
10.  Preclinical research in Rett syndrome: setting the foundation for translational success 
Disease Models & Mechanisms  2012;5(6):733-745.
In September of 2011, the National Institute of Neurological Disorders and Stroke (NINDS), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the International Rett Syndrome Foundation (IRSF) and the Rett Syndrome Research Trust (RSRT) convened a workshop involving a broad cross-section of basic scientists, clinicians and representatives from the National Institutes of Health (NIH), the US Food and Drug Administration (FDA), the pharmaceutical industry and private foundations to assess the state of the art in animal studies of Rett syndrome (RTT). The aim of the workshop was to identify crucial knowledge gaps and to suggest scientific priorities and best practices for the use of animal models in preclinical evaluation of potential new RTT therapeutics. This review summarizes outcomes from the workshop and extensive follow-up discussions among participants, and includes: (1) a comprehensive summary of the physiological and behavioral phenotypes of RTT mouse models to date, and areas in which further phenotypic analyses are required to enhance the utility of these models for translational studies; (2) discussion of the impact of genetic differences among mouse models, and methodological differences among laboratories, on the expression and analysis, respectively, of phenotypic traits; and (3) definitions of the standards that the community of RTT researchers can implement for rigorous preclinical study design and transparent reporting to ensure that decisions to initiate costly clinical trials are grounded in reliable preclinical data.
doi:10.1242/dmm.011007
PMCID: PMC3484856  PMID: 23115203
11.  Genomics, molecular imaging, bioinformatics, and bio-nano-info integration are synergistic components of translational medicine and personalized healthcare research 
BMC Genomics  2008;9(Suppl 2):I1.
Supported by National Science Foundation (NSF), International Society of Intelligent Biological Medicine (ISIBM), International Journal of Computational Biology and Drug Design and International Journal of Functional Informatics and Personalized Medicine, IEEE 7th Bioinformatics and Bioengineering attracted more than 600 papers and 500 researchers and medical doctors. It was the only synergistic inter/multidisciplinary IEEE conference with 24 Keynote Lectures, 7 Tutorials, 5 Cutting-Edge Research Workshops and 32 Scientific Sessions including 11 Special Research Interest Sessions that were designed dynamically at Harvard in response to the current research trends and advances. The committee was very grateful for the IEEE Plenary Keynote Lectures given by: Dr. A. Keith Dunker (Indiana), Dr. Jun Liu (Harvard), Dr. Brian Athey (Michigan), Dr. Mark Borodovsky (Georgia Tech and President of ISIBM), Dr. Hamid Arabnia (Georgia and Vice-President of ISIBM), Dr. Ruzena Bajcsy (Berkeley and Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Chih-Ming Ho (UCLA and Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Andy Baxevanis (United States National Institutes of Health), Dr. Arif Ghafoor (Purdue), Dr. John Quackenbush (Harvard), Dr. Eric Jakobsson (UIUC), Dr. Vladimir Uversky (Indiana), Dr. Laura Elnitski (United States National Institutes of Health) and other world-class scientific leaders. The Harvard meeting was a large academic event 100% full-sponsored by IEEE financially and academically. After a rigorous peer-review process, the committee selected 27 high-quality research papers from 600 submissions. The committee is grateful for contributions from keynote speakers Dr. Russ Altman (IEEE BIBM conference keynote lecturer on combining simulation and machine learning to recognize function in 4D), Dr. Mary Qu Yang (IEEE BIBM workshop keynote lecturer on new initiatives of detecting microscopic disease using machine learning and molecular biology, http://ieeexplore.ieee.org/servlet/opac?punumber=4425386) and Dr. Jack Y. Yang (IEEE BIBM workshop keynote lecturer on data mining and knowledge discovery in translational medicine) from the first IEEE Computer Society BioInformatics and BioMedicine (IEEE BIBM) international conference and workshops, November 2-4, 2007, Silicon Valley, California, USA.
doi:10.1186/1471-2164-9-S2-I1
PMCID: PMC3226104  PMID: 18831773
12.  e-Health, m-Health and healthier social media reform: the big scale view 
Introduction
In the upcoming decade, digital platforms will be the backbone of a strategic revolution in the way medical services are provided, affecting both healthcare providers and patients. Digital-based patient-centered healthcare services allow patients to actively participate in managing their own care, in times of health as well as illness, using personally tailored interactive tools. Such empowerment is expected to increase patients’ willingness to adopt actions and lifestyles that promote health as well as improve follow-up and compliance with treatment in cases of chronic illness. Clalit Health Services (CHS) is the largest HMO in Israel and second largest world-wide. Through its 14 hospitals, 1300 primary and specialized clinics, and 650 pharmacies, CHS provides comprehensive medical care to the majority of Israel’s population (above 4 million members). CHS e-Health wing focuses on deepening patient involvement in managing health, through personalized digital interactive tools. Currently, CHS e-Health wing provides e-health services for 1.56 million unique patients monthly with 2.4 million interactions every month (August 2011). Successful implementation of e-Health solutions is not a sum of technology, innovation and health; rather it’s the expertise of tailoring knowledge and leadership capabilities in multidisciplinary areas: clinical, ethical, psychological, legal, comprehension of patient and medical team engagement etc. The Google Health case excellently demonstrates this point. On the other hand, our success with CHS is a demonstration that e-Health can be enrolled effectively and fast with huge benefits for both patients and medical teams, and with a robust business model.
CHS e-Health core components
They include:
1. The personal health record layer (what the patient can see) presents patients with their own medical history as well as the medical history of their preadult children, including diagnoses, allergies, vaccinations, laboratory results with interpretations in layman’s terms, medications with clear, straightforward explanations regarding dosing instructions, important side effects, contraindications, such as lactation etc., and other important medical information. All personal e-Health services require identification and authorization.
2. The personal knowledge layer (what the patient should know) presents patients with personally tailored recommendations for preventative medicine and health promotion. For example, diabetic patients are push notified regarding their yearly eye exam. The various health recommendations include: occult blood testing, mammography, lipid profile etc. Each recommendation contains textual, visual and interactive content components in order to promote engagement and motivate the patient to actually change his health behaviour.
3. The personal health services layer (what the patient can do) enables patients to schedule clinic visits, order chronic prescriptions, e-consult their physician via secured e-mail, set SMS medication reminders, e-consult a pharmacist regarding personal medications. Consultants’ answers are sent securely to the patients’ personal mobile device.
On December 2009 CHS launched secured, web based, synchronous medical consultation via video conference. Currently 11,780 e-visits are performed monthly (May 2011). The medical encounter includes e-prescription and referral capabilities which are biometrically signed by the physician. On December 2010 CHS launched a unique mobile health platform, which is one of the most comprehensive personal m-Health applications world-wide. An essential advantage of mobile devices is their potential to bridge the digital divide. Currently, CHS m-Health platform is used by more than 45,000 unique users, with 75,000 laboratory results views/month, 1100 m-consultations/month and 9000 physician visit scheduling/month.
4. The Bio-Sensing layer (what physiological data the patient can populate) includes diagnostic means that allow remote physical examination, bio-sensors that broadcast various physiological measurements, and smart homecare devices, such as e-Pill boxes that gives seniors, patients and their caregivers the ability to stay at home and live life to its fullest. Monitored data is automatically transmitted to the patient’s Personal Health Record and to relevant medical personnel.
The monitoring layer is embedded in the chronic disease management platform, and in the interactive health promotion and wellness platform. It includes tailoring of consumer-oriented medical devices and service provided by various professional personnel—physicians, nurses, pharmacists, dieticians and more.
5. The Social layer (what the patient can share). Social media networks triggered an essential change at the humanity ‘genome’ level, yet to be further defined in the upcoming years. Social media has huge potential in promoting health as it combines fun, simple yet extraordinary user experience, and bio-social-feedback. There are two major challenges in leveraging health care through social networks:
a. Our personal health information is the cornerstone for personalizing healthier lifestyle, disease management and preventative medicine. We naturally see our personal health data as a super-private territory. So, how do we bring the power of our private health information, currently locked within our Personal Health Record, into social media networks without offending basic privacy issues?
b. Disease management and preventive medicine are currently neither considered ‘cool’ nor ‘fun’ or ‘potentially highly viral’ activities; yet, health is a major issue of everybody’s life. It seems like we are missing a crucial element with a huge potential in health behavioural change—the Fun Theory. Social media platforms comprehends user experience tools that potentially could break current misconception, and engage people in the daily task of taking better care of themselves.
CHS e-Health innovation team characterized several break-through applications in this unexplored territory within social media networks, fusing personal health and social media platforms without offending privacy. One of the most crucial issues regarding adoption of e-health and m-health platforms is change management. Being a ‘hot’ innovative ‘gadget’ is far from sufficient for changing health behaviours at the individual and population levels.
CHS health behaviour change management methodology includes 4 core elements:
1. Engaging two completely different populations: patients, and medical teams. e-Health applications must present true added value for both medical teams and patients, engaging them through understanding and assimilating “what’s really in it for me”. Medical teams are further subdivided into physicians, nurses, pharmacists and administrative personnel—each with their own driving incentive. Resistance to change is an obstacle in many fields but it is particularly true in the conservative health industry. To successfully manage a large scale persuasive process, we treat intra-organizational human resources as “Change Agents”. Harnessing the persuasive power of ~40,000 employees requires engaging them as the primary target group. Successful recruitment has the potential of converting each patient-medical team interaction into an exposure opportunity to the new era of participatory medicine via e-health and m-health channels.
2. Implementation waves: every group of digital health products that are released at the same time are seen as one project. Each implementation wave leverages the focus of the organization and target populations to a defined time span. There are three major and three minor implementation waves a year.
3. Change-Support Arrow: a structured infrastructure for every implementation wave. The sub-stages in this strategy include:
Cross organizational mapping and identification of early adopters and stakeholders relevant to the implementation wave
Mapping positive or negative perceptions and designing specific marketing approaches for the distinct target groups
Intra and extra organizational marketing
Conducting intensive training and presentation sessions for groups of implementers
Running conflict-prevention activities, such as advanced tackling of potential union resistance
Training change-agents with resistance-management behavioural techniques, focused intervention for specific incidents and for key opinion leaders
Extensive presence in the clinics during the launch period, etc.
The entire process is monitored and managed continuously by a review team.
4. Closing Phase: each wave is analyzed and a “lessons-learned” session concludes the changes required in the modus operandi of the e-health project team.
PMCID: PMC3571141
e-Health; mobile health; personal health record; online visit; patient empowerment; knowledge prescription
13.  Future Health Applications of Genomics 
Despite the quickening momentum of genomic discovery, the communication, behavioral, and social sciences research needed for translating this discovery into public health applications has lagged behind. The National Human Genome Research Institute held a 2-day workshop in October 2008 convening an interdisciplinary group of scientists to recommend forward-looking priorities for translational research. This research agenda would be designed to redress the top three risk factors (tobacco use, poor diet, and physical inactivity) that contribute to the four major chronic diseases (heart disease, type 2 diabetes, lung disease, and many cancers) and account for half of all deaths worldwide. Three priority research areas were identified: (1) improving the public’s genetic literacy in order to enhance consumer skills; (2) gauging whether genomic information improves risk communication and adoption of healthier behaviors more than current approaches; and (3) exploring whether genomic discovery in concert with emerging technologies can elucidate new behavioral intervention targets. Important crosscutting themes also were identified, including the need to: (1) anticipate directions of genomic discovery; (2) take an agnostic scientific perspective in framing research questions asking whether genomic discovery adds value to other health promotion efforts; and (3) consider multiple levels of influence and systems that contribute to important public health problems. The priorities and themes offer a framework for a variety of stakeholders, including those who develop priorities for research funding, interdisciplinary teams engaged in genomics research, and policymakers grappling with how to use the products born of genomics research to address public health challenges.
doi:10.1016/j.amepre.2010.01.027
PMCID: PMC4188632  PMID: 20409503
14.  Personalized Prediction of Lifetime Benefits with Statin Therapy for Asymptomatic Individuals: A Modeling Study 
PLoS Medicine  2012;9(12):e1001361.
In a modeling study conducted by Myriam Hunink and colleagues, a population-based cohort from Rotterdam is used to predict the possible lifetime benefits of statin therapy, on a personalized basis.
Background
Physicians need to inform asymptomatic individuals about personalized outcomes of statin therapy for primary prevention of cardiovascular disease (CVD). However, current prediction models focus on short-term outcomes and ignore the competing risk of death due to other causes. We aimed to predict the potential lifetime benefits with statin therapy, taking into account competing risks.
Methods and Findings
A microsimulation model based on 5-y follow-up data from the Rotterdam Study, a population-based cohort of individuals aged 55 y and older living in the Ommoord district of Rotterdam, the Netherlands, was used to estimate lifetime outcomes with and without statin therapy. The model was validated in-sample using 10-y follow-up data. We used baseline variables and model output to construct (1) a web-based calculator for gains in total and CVD-free life expectancy and (2) color charts for comparing these gains to the Systematic Coronary Risk Evaluation (SCORE) charts. In 2,428 participants (mean age 67.7 y, 35.5% men), statin therapy increased total life expectancy by 0.3 y (SD 0.2) and CVD-free life expectancy by 0.7 y (SD 0.4). Age, sex, smoking, blood pressure, hypertension, lipids, diabetes, glucose, body mass index, waist-to-hip ratio, and creatinine were included in the calculator. Gains in total and CVD-free life expectancy increased with blood pressure, unfavorable lipid levels, and body mass index after multivariable adjustment. Gains decreased considerably with advancing age, while SCORE 10-y CVD mortality risk increased with age. Twenty-five percent of participants with a low SCORE risk achieved equal or larger gains in CVD-free life expectancy than the median gain in participants with a high SCORE risk.
Conclusions
We developed tools to predict personalized increases in total and CVD-free life expectancy with statin therapy. The predicted gains we found are small. If the underlying model is validated in an independent cohort, the tools may be useful in discussing with patients their individual outcomes with statin therapy.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Cardiovascular disease (CVD) affects the heart and/or the blood vessels and is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Established risk factors for CVD include smoking, high blood pressure, obesity, and high blood levels of a fat called low-density lipoprotein (“bad cholesterol”). Because many of these risk factors can be modified by lifestyle changes and by drugs, CVD can be prevented. Thus, physicians can assess a healthy individual's risk of developing CVD using a CVD prediction model (equations that take into account the CVD risk factors to which the individual is exposed) and can then recommend lifestyle changes and medications to reduce that individual's CVD risk.
Why Was This Study Done?
Current guidelines recommend that asymptomatic (healthy) individuals whose likely CVD risk is high should be encouraged to take statins—cholesterol-lowering drugs—as a preventative measure. Statins help to prevent CVD in healthy people with a high predicted risk of CVD, but, like all medicines, they have some unwanted side effects, so it is important that physicians can communicate both the benefits and drawbacks of statins to their patients in a way that allows them to make an informed decision about taking these drugs. Telling a patient that statins will reduce his or her short-term risk of CVD is not always helpful—patients really need to know the potential lifetime benefits of statin therapy. That is, they need to know how much longer they might live if they take statins. Here, the researchers use a mathematical model to predict the personalized lifetime benefits (increased total and CVD-free life expectancy) of statin therapy for individuals without a history of CVD.
What Did the Researchers Do and Find?
The researchers used the Rotterdam Ischemic Heart Disease & Stroke Computer Simulation (RISC) model, which simulates the life courses of individuals through six health states, from well through to CVD or non-CVD death, to estimate lifetime outcomes with and without statin therapy in a population of healthy elderly individuals. They then used these outcomes and information on baseline risk factors to develop a web-based calculator suitable for personalized prediction of the lifetime benefits of statins in routine clinical practice. The model estimated that statin therapy increases average life expectancy in the study population by 0.3 years and average CVD-free life expectancy by 0.7 years. The gains in total and CVD-free life expectancy associated with statin therapy increased with blood pressure, unfavorable cholesterol levels, and body mass index (an indicator of body fat) but decreased with age. Notably, the web-based calculator predicted that some individuals with a low ten-year CVD risk might achieve a similar or larger gain in CVD-free life expectancy with statin therapy than some individuals with a high ten-year risk. So, for example, both a 55-year-old non-smoking woman with a ten-year CVD mortality risk of 2% (a two in a hundred chance of dying of CVD within ten years) and a 65-year-old male smoker with a ten-year CVD mortality risk of 15% might both gain one year of CVD-free life expectancy with statin therapy.
What Do These Findings Mean?
These findings suggest that statin therapy can lead on average to small gains in total life expectancy and slightly larger gains in CVD-free life expectancy among healthy individuals, and show that life expectancy benefits can be predicted using an individual's risk factor profile. The accuracy and generalizability of these findings is limited by the assumptions included in the model (in particular, the model did not allow for the known side effects of statin therapy) and by the data fed into it—importantly, the risk prediction model needs to be validated using an independent dataset. If future research confirms the findings of this study, the researchers' web-based calculator could provide complementary information to the currently recommended ten-year CVD mortality risk assessment. Whether communication of personalized outcomes will ultimately result in better clinical outcomes remains to be seen, however, because patients may be less likely to choose statin therapy when provided with more information about its likely benefits.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001361.
The web-based calculator for personalized prediction of lifetime benefits with statin therapy is available (after agreement to software license)
The American Heart Association provides information about many types of cardiovascular disease for patients, carers, and professionals, including information about drug therapy for cholesterol and a heart attack risk calculator
The UK National Health Service Choices website provides information about cardiovascular disease and about statins
Information is available from the British Heart Foundation on heart disease and keeping the heart healthy; information is also available on statins, including personal stories about deciding to take statins
The US National Heart Lung and Blood Institute provides information on a wide range of cardiovascular diseases
The European Society of Cardiology's cardiovascular disease risk assessment model (SCORE) is available
MedlinePlus provides links to many other sources of information on heart diseases, vascular diseases, stroke, and statins (in English and Spanish)
doi:10.1371/journal.pmed.1001361
PMCID: PMC3531501  PMID: 23300388
15.  Indoor mold and Children's health 
Environmental Health Perspectives  1999;107(Suppl 3):463.
Reactive airways disease in children is increasing in many countries around the world. The clinical diagnosis of asthma or reactive airways disease includes a variable airflow and an increased sensitivity in the airways. This condition can develop after an augmented reaction to a specific agent (allergen) and may cause a life-threatening situation within a very short period of exposure. It can also develop after a long-term exposure to irritating agents that cause an inflammation in the airways in the absence of an allergen. (paragraph) Several environmental agents have been shown to be associated with the increased incidence of childhood asthma. They include allergens, cat dander, outdoor as well as indoor air pollution, cooking fumes, and infections. There is, however, increasing evidence that mold growth indoors in damp buildings is an important risk factor. About 30 investigations from various countries around the world have demonstrated a close relationship between living in damp homes or homes with mold growth, and the extent of adverse respiratory symptoms in children. Some studies show a relation between dampness/mold and objective measures of lung function. Apart from airways symptoms, some studies demonstrate the presence of general symptoms that include fatigue and headache and symptoms from the central nervous system. At excessive exposures, an increased risk for hemorraghic pneumonia and death among infants has been reported. (paragraph) The described effects may have important consequences for children in the early years of life. A child's immune system is developing from birth to adolescence and requires a natural, physiologic stimulation with antigens as well as inflammatory agents. Any disturbances of this normal maturing process will increase the risk for abnormal reactions to inhaled antigens and inflammagenic agents in the environment. (paragraph) The knowledge about health risks due to mold exposure is not widespread and health authorities in some countries may not be aware of the serious reactions mold exposure can provoke in some children. Individual physicians may have difficulty handling the patients because of the lack of recognition of the relationship between the often complex symptoms and the indoor environment (paragraph) The workshop was organized to develop a basis for risk assessment and formulation of recommendations, particularly for diagnostic purposes and prevention, and to formulate priorities for future research. The participants were all active researchers with current experience in child health, molds, and respiratory disease. They were engaged in free and intensive discussions on a scientific basis throughout the duration of the 3-day workshop (paragraph) This monograph contains peer-reviewed papers based on individual presentations at the workshop as well as the workshop conclusions. They are offered to the public health community, administrators, research agencies, physicians, particularly pediatricians, nurses and health workers as information and encouragement to engage themselves in this health problem of importance for the next generation in our population. (paragraph) Acknowledgments: The workshop received financial support from the U.S. Environmental Protection Agency, the National Center for Environmental Assessment at the U.S. EPA, the Vardal Foundation (Sweden), Astra Corp (Sweden), the Committee on Organic Dusts, International Commission on Occupational Health. The printing of this document was made possible by a grant from the Center for Indoor Air Research (U.S.). Yvonne Peterson, research secretary, provided excellent and invaluable assistance in the organization and publication efforts.
PMCID: PMC1566224  PMID: 10346994
16.  Whole Blood Gene Expression Profiles to Assess Pathogenesis and Disease Severity in Infants with Respiratory Syncytial Virus Infection 
PLoS Medicine  2013;10(11):e1001549.
In this study, Mejias and colleagues found that specific blood RNA profiles of infants with RSV LRTI allowed for specific diagnosis, better understanding of disease pathogenesis, and better assessment of disease severity.
Please see later in the article for the Editors' Summary
Background
Respiratory syncytial virus (RSV) is the leading cause of viral lower respiratory tract infection (LRTI) and hospitalization in infants. Mostly because of the incomplete understanding of the disease pathogenesis, there is no licensed vaccine, and treatment remains symptomatic. We analyzed whole blood transcriptional profiles to characterize the global host immune response to acute RSV LRTI in infants, to characterize its specificity compared with influenza and human rhinovirus (HRV) LRTI, and to identify biomarkers that can objectively assess RSV disease severity.
Methods and Findings
This was a prospective observational study over six respiratory seasons including a cohort of infants hospitalized with RSV (n = 135), HRV (n = 30), and influenza (n = 16) LRTI, and healthy age- and sex-matched controls (n = 39). A specific RSV transcriptional profile was identified in whole blood (training cohort, n = 45 infants; Dallas, Texas, US) and validated in three different cohorts (test cohort, n = 46, Dallas, Texas, US; validation cohort A, n = 16, Turku, Finland; validation cohort B, n = 28, Columbus, Ohio, US) with high sensitivity (94% [95% CI 87%–98%]) and specificity (98% [95% CI 88%–99%]). It classified infants with RSV LRTI versus HRV or influenza LRTI with 95% accuracy. The immune dysregulation induced by RSV (overexpression of neutrophil, inflammation, and interferon genes, and suppression of T and B cell genes) persisted beyond the acute disease, and immune dysregulation was greatly impaired in younger infants (<6 mo). We identified a genomic score that significantly correlated with outcomes of care including a clinical disease severity score and, more importantly, length of hospitalization and duration of supplemental O2.
Conclusions
Blood RNA profiles of infants with RSV LRTI allow specific diagnosis, better understanding of disease pathogenesis, and assessment of disease severity. This study opens new avenues for biomarker discovery and identification of potential therapeutic or preventive targets, and demonstrates that large microarray datasets can be translated into a biologically meaningful context and applied to the clinical setting.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lower respiratory tract infections (LRTIs)—bacterial and viral infections of the lungs and airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for 14% of all child deaths. The leading cause of viral LTRIs in children is respiratory syncytial virus (RSV), which is readily transmitted from person to person by direct contact with nasal fluids or airborne droplets. Almost all children have an RSV infection before their second birthday, but most have only minor symptoms similar to those of a common cold and are cared for at home. Unfortunately, some children develop more serious conditions when they become infected with RSV, such as pneumonia or bronchiolitis (swelling and mucus build-up in the bronchioles, the smallest air passages in the lungs). These children have to be admitted to the hospital for supportive care—there is no specific treatment for RSV infection—such as the provision of supplemental oxygen.
Why Was This Study Done?
The lack of a treatment (and of a vaccine) for RSV is largely due to our incomplete understanding of the cellular events and reactions, including the host immune response, that occur during the development of an RSV infection (disease pathogenesis). Moreover, based on physical examination and available diagnostic tools, it is impossible to predict which children infected with RSV will develop a serious condition that requires hospitalization and which ones can be safely nursed at home. Here, the researchers use microarrays to analyze the global host response to acute RSV LTRI in infants, to define gene expression patterns that are specific to RSV infection rather than infection with other common respiratory viruses, and to identify biomarkers that indicate the severity of RSV infection. “Microarray” analysis allows researchers to examine gene expression patterns (“RNA transcriptional profiles”) in, for example, whole blood; a biomarker is a molecule whose level in bodily fluids or tissues indicates how a disease might develop and helps with patient classification.
What Did the Researchers Do and Find?
The researchers compared the RNA transcriptional profile in whole blood taken from children less than two years old hospitalized with RSV, human rhinovirus, or influenza virus infection (rhinovirus and influenza are two additional viral causes of LRTI), and from healthy infants. Using “statistical group comparisons,” they identified more than 2,000 transcripts that were differentially expressed in blood from 45 infants with RSV infection and from 14 healthy matched controls. Genes related to interferon function (interferons are released by host cells in response to the presence of disease-causing organisms) and neutrophil function (neutrophils are immune system cells that, like interferons, are involved in the innate immune response, the body's first line of defense against infection) were among the most overexpressed genes in infants infected with RSV. Genes regulating T and B cells (components of the adaptive immune response, the body's second-line of defense against infection) were among the most underexpressed genes. This specific transcriptional profile, which was validated in three additional groups of infants, accurately distinguished between infants infected with RSV and those infected with human rhinovirus or influenza virus. Finally, a “molecular distance to health” score (a numerical score that quantifies the transcriptional perturbation associated with an illness) was correlated with the clinical disease severity score of the study participants, with how long they needed supplemental oxygen, and with their duration of hospitalization.
What Do These Findings Mean?
These findings suggest that it might be possible to use whole blood RNA transcriptional profiles to distinguish between infants infected with RSV and those with other viruses that commonly cause LRTI. Moreover, if these findings can be replicated in more patients (including non-hospitalized children), gene expression profiling might provide a strategy for triaging patients with RSV infections when they first present to an emergency department and for monitoring clinical changes during the course of the infection, particularly given the development of molecular tools that might soon enable the “real time” acquisition of transcriptional profiles in the clinical setting. Finally, although certain aspects of the study design limit the accuracy and generalizability of the study's findings, these data provide new insights into the pathogenesis of RSV infection and open new avenues for the discovery of biomarkers for RSV infection and for the identification of therapeutic and preventative targets.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001549.
This study is further discussed in a PLOS Medicine Perspective by Peter Openshaw
The US Centers for Disease Control and Prevention provides information about RSV infection
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about RSV infections
The UK National Health Service Choices website provides information about bronchiolitis
The British Lung Foundation also provides information on RSV and on bronchiolitis
MedlinePlus provides links to other resources about RSV infections and about pneumonia (in English and Spanish); the MedlinePlus encyclopedia has a page on bronchiolitis (in English and Spanish)
PATH is an international non-profit organization investigating new RSV vaccines
doi:10.1371/journal.pmed.1001549
PMCID: PMC3825655  PMID: 24265599
17.  A Risk Prediction Model for the Assessment and Triage of Women with Hypertensive Disorders of Pregnancy in Low-Resourced Settings: The miniPIERS (Pre-eclampsia Integrated Estimate of RiSk) Multi-country Prospective Cohort Study 
PLoS Medicine  2014;11(1):e1001589.
Beth Payne and colleagues use a risk prediction model, the Pre-eclampsia Integrated Estimate of RiSk (miniPIERS) to help inform the clinical assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings.
Please see later in the article for the Editors' Summary
Background
Pre-eclampsia/eclampsia are leading causes of maternal mortality and morbidity, particularly in low- and middle- income countries (LMICs). We developed the miniPIERS risk prediction model to provide a simple, evidence-based tool to identify pregnant women in LMICs at increased risk of death or major hypertensive-related complications.
Methods and Findings
From 1 July 2008 to 31 March 2012, in five LMICs, data were collected prospectively on 2,081 women with any hypertensive disorder of pregnancy admitted to a participating centre. Candidate predictors collected within 24 hours of admission were entered into a step-wise backward elimination logistic regression model to predict a composite adverse maternal outcome within 48 hours of admission. Model internal validation was accomplished by bootstrapping and external validation was completed using data from 1,300 women in the Pre-eclampsia Integrated Estimate of RiSk (fullPIERS) dataset. Predictive performance was assessed for calibration, discrimination, and stratification capacity. The final miniPIERS model included: parity (nulliparous versus multiparous); gestational age on admission; headache/visual disturbances; chest pain/dyspnoea; vaginal bleeding with abdominal pain; systolic blood pressure; and dipstick proteinuria. The miniPIERS model was well-calibrated and had an area under the receiver operating characteristic curve (AUC ROC) of 0.768 (95% CI 0.735–0.801) with an average optimism of 0.037. External validation AUC ROC was 0.713 (95% CI 0.658–0.768). A predicted probability ≥25% to define a positive test classified women with 85.5% accuracy. Limitations of this study include the composite outcome and the broad inclusion criteria of any hypertensive disorder of pregnancy. This broad approach was used to optimize model generalizability.
Conclusions
The miniPIERS model shows reasonable ability to identify women at increased risk of adverse maternal outcomes associated with the hypertensive disorders of pregnancy. It could be used in LMICs to identify women who would benefit most from interventions such as magnesium sulphate, antihypertensives, or transportation to a higher level of care.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Each year, ten million women develop pre-eclampsia or a related hypertensive (high blood pressure) disorder of pregnancy and 76,000 women die as a result. Globally, hypertensive disorders of pregnancy cause around 12% of maternal deaths—deaths of women during or shortly after pregnancy. The mildest of these disorders is gestational hypertension, high blood pressure that develops after 20 weeks of pregnancy. Gestational hypertension does not usually harm the mother or her unborn child and resolves after delivery but up to a quarter of women with this condition develop pre-eclampsia, a combination of hypertension and protein in the urine (proteinuria). Women with mild pre-eclampsia may not have any symptoms—the condition is detected during antenatal checks—but more severe pre-eclampsia can cause headaches, blurred vision, and other symptoms, and can lead to eclampsia (fits), multiple organ failure, and death of the mother and/or her baby. The only “cure” for pre-eclampsia is to deliver the baby as soon as possible but women are sometimes given antihypertensive drugs to lower their blood pressure or magnesium sulfate to prevent seizures.
Why Was This Study Done?
Women in low- and middle-income countries (LMICs) are more likely to develop complications of pre-eclampsia than women in high-income countries and most of the deaths associated with hypertensive disorders of pregnancy occur in LMICs. The high burden of illness and death in LMICs is thought to be primarily due to delays in triage (the identification of women who are or may become severely ill and who need specialist care) and delays in transporting these women to facilities where they can receive appropriate care. Because there is a shortage of health care workers who are adequately trained in the triage of suspected cases of hypertensive disorders of pregnancy in many LMICs, one way to improve the situation might be to design a simple tool to identify women at increased risk of complications or death from hypertensive disorders of pregnancy. Here, the researchers develop miniPIERS (Pre-eclampsia Integrated Estimate of RiSk), a clinical risk prediction model for adverse outcomes among women with hypertensive disorders of pregnancy suitable for use in community and primary health care facilities in LMICs.
What Did the Researchers Do and Find?
The researchers used data on candidate predictors of outcome that are easy to collect and/or measure in all health care settings and that are associated with pre-eclampsia from women admitted with any hypertensive disorder of pregnancy to participating centers in five LMICs to build a model to predict death or a serious complication such as organ damage within 48 hours of admission. The miniPIERS model included parity (whether the woman had been pregnant before), gestational age (length of pregnancy), headache/visual disturbances, chest pain/shortness of breath, vaginal bleeding with abdominal pain, systolic blood pressure, and proteinuria detected using a dipstick. The model was well-calibrated (the predicted risk of adverse outcomes agreed with the observed risk of adverse outcomes among the study participants), it had a good discriminatory ability (it could separate women who had a an adverse outcome from those who did not), and it designated women as being at high risk (25% or greater probability of an adverse outcome) with an accuracy of 85.5%. Importantly, external validation using data collected in fullPIERS, a study that developed a more complex clinical prediction model based on data from women attending tertiary hospitals in high-income countries, confirmed the predictive performance of miniPIERS.
What Do These Findings Mean?
These findings indicate that the miniPIERS model performs reasonably well as a tool to identify women at increased risk of adverse maternal outcomes associated with hypertensive disorders of pregnancy. Because miniPIERS only includes simple-to-measure personal characteristics, symptoms, and signs, it could potentially be used in resource-constrained settings to identify the women who would benefit most from interventions such as transportation to a higher level of care. However, further external validation of miniPIERS is needed using data collected from women living in LMICs before the model can be used during routine antenatal care. Moreover, the value of miniPIERS needs to be confirmed in implementation projects that examine whether its potential translates into clinical improvements. For now, though, the model could provide the basis for an education program to increase the knowledge of women, families, and community health care workers in LMICs about the signs and symptoms of hypertensive disorders of pregnancy.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001589.
The World Health Organization provides guidelines for the management of hypertensive disorders of pregnancy in low-resourced settings
The Maternal and Child Health Integrated Program provides information on pre-eclampsia and eclampsia targeted to low-resourced settings along with a tool-kit for LMIC providers
The US National Heart, Lung, and Blood Institute provides information about high blood pressure in pregnancy and a guide to lowering blood pressure in pregnancy
The UK National Health Service Choices website provides information about pre-eclampsia
The US not-for profit organization Preeclampsia Foundation provides information about all aspects of pre-eclampsia; its website includes some personal stories
The UK charity Healthtalkonline also provides personal stories about hypertensive disorders of pregnancy
MedlinePlus provides links to further information about high blood pressure and pregnancy (in English and Spanish); the MedlinePlus Encyclopedia has a video about pre-eclampsia (also in English and Spanish)
More information about miniPIERS and about fullPIERS is available
doi:10.1371/journal.pmed.1001589
PMCID: PMC3897359  PMID: 24465185
18.  Environmental air toxics: role in asthma occurrence? 
Environmental Health Perspectives  2002;110(Suppl 4):501-504.
The National Urban Air Toxics Research Center (NUATRC) hosted its first scientific workshop in 1994 that focused on possible relationships between air toxics and asthma. From that meeting came recommendations for future research including a need for more complete individual personal exposure assessments so that determinations of personal exposures to pollutants could be made. In the spring of 2001, NUATRC held a second such workshop to review progress made in this area during the intervening 7 years. Peer-reviewed articles from the workshop are published in this issue of (italic)Environmental Health Perspectives Supplements(/italic). As in 1994, academic, government, and industry scientists participated. Dave Guinnup of the Environmental Protection Agency discussed the nature of air toxics, their definition, and the basis for federal regulation. George Leikauf from the University of Cincinnati reviewed the 1994 workshop and subsequent research in this field. Current research funded by NUATRC that is addressing individual personal exposure was presented by Clifford Weisel (Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey), Patrick Kinney (Columbia University) and Candis Claiborn (Washington State University). David Corry from Baylor College of Medicine highlighted new insights into asthma pathogenesis while Stephen Redd from the Centers for Disease Control presented an overview of asthma epidemiology as well as the societal costs of the disease. Mary White (Agency for Toxic Substances and Disease Registry) discussed recent epidemiologic investigations by public health agencies into community concerns about asthma and hazardous air pollutants. David Peden (University of North Carolina) reviewed scientific studies into the links between asthma and air toxics as well as criteria air pollutants. In a session on occupational asthma, Lee Petsonk (National Institute for Occupational Safety and Health) discussed risk factors for work-related asthma, whereas Ralph Delfino (University of California, Irvine) addressed limitations of extrapolating from occupational asthma to asthma in the general population. These presentations were followed by panel discussions focusing on future research programs, both for NUATRC and similar research institutions. Recommendations for future research included improved assessments of personal exposure to air toxics as well as research focused on specific hazardous air pollutants. The latter recommendation was based on medical literature that suggests certain pollutants from the list of 188 air toxics are most likely to adversely affect respiratory health.
PMCID: PMC1241199  PMID: 12194880
19.  Linking environmental agents and autoimmune disease: an agenda for future research. 
Environmental Health Perspectives  1999;107(Suppl 5):811-813.
Autoimmune diseases are influenced by multiple factors including genetics, age, gender, reproductive status, hormones, and potential environmental contaminants. A workshop, "Linking Environmental Agents and Autoimmune Diseases," was convened at the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 1-3 September 1998, to review current knowledge about links between environmental exposures and autoimmune disease, to identify and prioritize research needs, and to develop an integrated, multidisciplinary research agenda. Participants spent the last half-day of the workshop in small group discussions for the purpose of developing consensus on research needs. Research needs identified were a) develop research tools needed to explore links between environmental agents and autoimmune disease; b) establish a disease registry or surveillance system; c) develop and validate strategies for screening chemicals for the potential to induce or exacerbate autoimmune disease; d) develop an emergency response strategy to gain information from accidental exposures; and e) conduct hypothesis-driven research in occupationally exposed groups and/or in experimental animals. There was consensus that meetings like this workshop and projects that facilitate interactions between specialties should be encouraged. A multidisciplinary approach is needed to address this problem.
PMCID: PMC1566243  PMID: 10502548
20.  Risk Models to Predict Chronic Kidney Disease and Its Progression: A Systematic Review 
PLoS Medicine  2012;9(11):e1001344.
A systematic review of risk prediction models conducted by Justin Echouffo-Tcheugui and Andre Kengne examines the evidence base for prediction of chronic kidney disease risk and its progression, and suitability of such models for clinical use.
Background
Chronic kidney disease (CKD) is common, and associated with increased risk of cardiovascular disease and end-stage renal disease, which are potentially preventable through early identification and treatment of individuals at risk. Although risk factors for occurrence and progression of CKD have been identified, their utility for CKD risk stratification through prediction models remains unclear. We critically assessed risk models to predict CKD and its progression, and evaluated their suitability for clinical use.
Methods and Findings
We systematically searched MEDLINE and Embase (1 January 1980 to 20 June 2012). Dual review was conducted to identify studies that reported on the development, validation, or impact assessment of a model constructed to predict the occurrence/presence of CKD or progression to advanced stages. Data were extracted on study characteristics, risk predictors, discrimination, calibration, and reclassification performance of models, as well as validation and impact analyses. We included 26 publications reporting on 30 CKD occurrence prediction risk scores and 17 CKD progression prediction risk scores. The vast majority of CKD risk models had acceptable-to-good discriminatory performance (area under the receiver operating characteristic curve>0.70) in the derivation sample. Calibration was less commonly assessed, but overall was found to be acceptable. Only eight CKD occurrence and five CKD progression risk models have been externally validated, displaying modest-to-acceptable discrimination. Whether novel biomarkers of CKD (circulatory or genetic) can improve prediction largely remains unclear, and impact studies of CKD prediction models have not yet been conducted. Limitations of risk models include the lack of ethnic diversity in derivation samples, and the scarcity of validation studies. The review is limited by the lack of an agreed-on system for rating prediction models, and the difficulty of assessing publication bias.
Conclusions
The development and clinical application of renal risk scores is in its infancy; however, the discriminatory performance of existing tools is acceptable. The effect of using these models in practice is still to be explored.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Chronic kidney disease (CKD)—the gradual loss of kidney function—is increasingly common worldwide. In the US, for example, about 26 million adults have CKD, and millions more are at risk of developing the condition. Throughout life, small structures called nephrons inside the kidneys filter waste products and excess water from the blood to make urine. If the nephrons stop working because of injury or disease, the rate of blood filtration decreases, and dangerous amounts of waste products such as creatinine build up in the blood. Symptoms of CKD, which rarely occur until the disease is very advanced, include tiredness, swollen feet and ankles, puffiness around the eyes, and frequent urination, especially at night. There is no cure for CKD, but progression of the disease can be slowed by controlling high blood pressure and diabetes, both of which cause CKD, and by adopting a healthy lifestyle. The same interventions also reduce the chances of CKD developing in the first place.
Why Was This Study Done?
CKD is associated with an increased risk of end-stage renal disease, which is treated with dialysis or by kidney transplantation (renal replacement therapies), and of cardiovascular disease. These life-threatening complications are potentially preventable through early identification and treatment of CKD, but most people present with advanced disease. Early identification would be particularly useful in developing countries, where renal replacement therapies are not readily available and resources for treating cardiovascular problems are limited. One way to identify people at risk of a disease is to use a “risk model.” Risk models are constructed by testing the ability of different combinations of risk factors that are associated with a specific disease to identify those individuals in a “derivation sample” who have the disease. The model is then validated on an independent group of people. In this systematic review (a study that uses predefined criteria to identify all the research on a given topic), the researchers critically assess the ability of existing CKD risk models to predict the occurrence of CKD and its progression, and evaluate their suitability for clinical use.
What Did the Researchers Do and Find?
The researchers identified 26 publications reporting on 30 risk models for CKD occurrence and 17 risk models for CKD progression that met their predefined criteria. The risk factors most commonly included in these models were age, sex, body mass index, diabetes status, systolic blood pressure, serum creatinine, protein in the urine, and serum albumin or total protein. Nearly all the models had acceptable-to-good discriminatory performance (a measure of how well a model separates people who have a disease from people who do not have the disease) in the derivation sample. Not all the models had been calibrated (assessed for whether the average predicted risk within a group matched the proportion that actually developed the disease), but in those that had been assessed calibration was good. Only eight CKD occurrence and five CKD progression risk models had been externally validated; discrimination in the validation samples was modest-to-acceptable. Finally, very few studies had assessed whether adding extra variables to CKD risk models (for example, genetic markers) improved prediction, and none had assessed the impact of adopting CKD risk models on the clinical care and outcomes of patients.
What Do These Findings Mean?
These findings suggest that the development and clinical application of CKD risk models is still in its infancy. Specifically, these findings indicate that the existing models need to be better calibrated and need to be externally validated in different populations (most of the models were tested only in predominantly white populations) before they are incorporated into guidelines. The impact of their use on clinical outcomes also needs to be assessed before their widespread use is recommended. Such research is worthwhile, however, because of the potential public health and clinical applications of well-designed risk models for CKD. Such models could be used to identify segments of the population that would benefit most from screening for CKD, for example. Moreover, risk communication to patients could motivate them to adopt a healthy lifestyle and to adhere to prescribed medications, and the use of models for predicting CKD progression could help clinicians tailor disease-modifying therapies to individual patient needs.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001344.
This study is further discussed in a PLOS Medicine Perspective by Maarten Taal
The US National Kidney and Urologic Diseases Information Clearinghouse provides information about all aspects of kidney disease; the US National Kidney Disease Education Program provides resources to help improve the understanding, detection, and management of kidney disease (in English and Spanish)
The UK National Health Service Choices website provides information for patients on chronic kidney disease, including some personal stories
The US National Kidney Foundation, a not-for-profit organization, provides information about chronic kidney disease (in English and Spanish)
The not-for-profit UK National Kidney Federation support and information for patients with kidney disease and for their carers, including a selection of patient experiences of kidney disease
World Kidney Day, a joint initiative between the International Society of Nephrology and the International Federation of Kidney Foundations, aims to raise awareness about kidneys and kidney disease
doi:10.1371/journal.pmed.1001344
PMCID: PMC3502517  PMID: 23185136
21.  Air toxics and asthma: impacts and end points. 
Environmental Health Perspectives  1995;103(Suppl 6):209-211.
The National Urban Air Toxics Research Center (NUATRC) hosted a medical/scientific workshop focused on possible asthma/air toxics relationships, with the results of the NUATRC's first research contract with the University of Cincinnati as the point of discussion. The workshop was held at the Texas Medical Center on 4 February 1994 and featured presentations by distinguished academic, government, and industry scientists. This one-day session explored the impact of various environmental factors, including air toxics, on asthma incidence and exacerbation; an emphasis was placed on future research directions to be pursued in the asthma/air toxics area. A key research presentation on the association of air toxics and asthma, based on the study sponsored by NUATRC, was given by Dr. George Leikauf of the University of Cincinnati Medical Center. Additional presentations were made by H. A. Boushey, Jr., Cardiovascular Research Institute/University of California at San Francisco, who spoke on of the Basic Mechanisms of Asthma; K. Sexton, U.S. Environmental Protection Agency, who spoke on hazardous air pollutants: science/policy interface; and D. V. Bates, Department of Health Care and Epidemiology at the University of British Columbia, who spoke on asthma epidemiology. H. Koren, U.S. Environmental Protection Agency, and M. Yeung, of the Respiratory Division/University of British Columbia, Vancouver General Hospital, discussed occupational health impacts on asthma. Doyle Pendleton, Texas Natural Resource Conservation Commission, reviewed air quality measurements in Texas. The information presented at the workshop suggested a possible association of asthma exacerbations with ozone and particulate matter (PM10); however, direct relationships between worsening asthma and air toxic ambient levels were not established. Possible respiratory health effects associated with air toxics will require considerably more investigation, especially in the area of human exposure assessment. Two major recommendations for future research resulted from this workshop and an accompanying NUATRC Scientific Advisory Panel meeting: a need for more complete individual personal exposure assessments so that accurate determinations of actual personal exposures to various pollutants can be made; and a need for field experiments utilizing biomarkers of exposure and effect to more accurately assess the extent and variability of the biological effects, if any, of individual air toxics.
PMCID: PMC1518917  PMID: 8549475
22.  Information management to enable personalized medicine: stakeholder roles in building clinical decision support 
Background
Advances in technology and the scientific understanding of disease processes are presenting new opportunities to improve health through individualized approaches to patient management referred to as personalized medicine. Future health care strategies that deploy genomic technologies and molecular therapies will bring opportunities to prevent, predict, and pre-empt disease processes but will be dependent on knowledge management capabilities for health care providers that are not currently available. A key cornerstone to the potential application of this knowledge will be effective use of electronic health records. In particular, appropriate clinical use of genomic test results and molecularly-targeted therapies present important challenges in patient management that can be effectively addressed using electronic clinical decision support technologies.
Discussion
Approaches to shaping future health information needs for personalized medicine were undertaken by a work group of the American Health Information Community. A needs assessment for clinical decision support in electronic health record systems to support personalized medical practices was conducted to guide health future development activities. Further, a suggested action plan was developed for government, researchers and research institutions, developers of electronic information tools (including clinical guidelines, and quality measures), and standards development organizations to meet the needs for personalized approaches to medical practice. In this article, we focus these activities on stakeholder organizations as an operational framework to help identify and coordinate needs and opportunities for clinical decision support tools to enable personalized medicine.
Summary
This perspective addresses conceptual approaches that can be undertaken to develop and apply clinical decision support in electronic health record systems to achieve personalized medical care. In addition, to represent meaningful benefits to personalized decision-making, a comparison of current and future applications of clinical decision support to enable individualized medical treatment plans is presented. If clinical decision support tools are to impact outcomes in a clear and positive manner, their development and deployment must therefore consider the needs of the providers, including specific practice needs, information workflow, and practice environment.
doi:10.1186/1472-6947-9-44
PMCID: PMC2763860  PMID: 19814826
23.  Population Sciences, Translational Research and the Opportunities and Challenges for Genomics to Reduce the Burden of Cancer in the 21st Century 
Advances in genomics and related fields are promising tools for risk assessment, early detection, and targeted therapies across the entire cancer care continuum. In this commentary, we submit that this promise cannot be fulfilled without an enhanced translational genomics research agenda firmly rooted in the population sciences. Population sciences include multiple disciplines that are needed throughout the translational research continuum. For example, epidemiologic studies are needed not only to accelerate genomic discoveries and new biological insights into cancer etiology and pathogenesis, but to characterize and critically evaluate these discoveries in well defined populations for their potential for cancer prediction, prevention and response to treatments. Behavioral, social and communication sciences are needed to explore genomic-modulated responses to old and new behavioral interventions, adherence to therapies, decision-making across the continuum, and effective use in health care. Implementation science, health services, outcomes research, comparative effectiveness research and regulatory science are needed for moving validated genomic applications into practice and for measuring their effectiveness, cost effectiveness and unintended consequences. Knowledge synthesis, evidence reviews and economic modeling of the effects of promising genomic applications will facilitate policy decisions, and evidence-based recommendations. Several independent and multidisciplinary panels have recently made specific recommendations for enhanced research and policy infrastructure to inform clinical and population research for moving genomic innovations into the cancer care continuum. An enhanced translational genomics and population sciences agenda is urgently needed to fulfill the promise of genomics in reducing the burden of cancer.
doi:10.1158/1055-9965.EPI-11-0481
PMCID: PMC3189274  PMID: 21795499
cancer; genetics; genomics; medicine; population sciences; public health; translation
24.  The Impact of eHealth on the Quality and Safety of Health Care: A Systematic Overview 
PLoS Medicine  2011;8(1):e1000387.
Aziz Sheikh and colleagues report the findings of their systematic overview that assessed the impact of eHealth solutions on the quality and safety of health care.
Background
There is considerable international interest in exploiting the potential of digital solutions to enhance the quality and safety of health care. Implementations of transformative eHealth technologies are underway globally, often at very considerable cost. In order to assess the impact of eHealth solutions on the quality and safety of health care, and to inform policy decisions on eHealth deployments, we undertook a systematic review of systematic reviews assessing the effectiveness and consequences of various eHealth technologies on the quality and safety of care.
Methods and Findings
We developed novel search strategies, conceptual maps of health care quality, safety, and eHealth interventions, and then systematically identified, scrutinised, and synthesised the systematic review literature. Major biomedical databases were searched to identify systematic reviews published between 1997 and 2010. Related theoretical, methodological, and technical material was also reviewed. We identified 53 systematic reviews that focused on assessing the impact of eHealth interventions on the quality and/or safety of health care and 55 supplementary systematic reviews providing relevant supportive information. This systematic review literature was found to be generally of substandard quality with regards to methodology, reporting, and utility. We thematically categorised eHealth technologies into three main areas: (1) storing, managing, and transmission of data; (2) clinical decision support; and (3) facilitating care from a distance. We found that despite support from policymakers, there was relatively little empirical evidence to substantiate many of the claims made in relation to these technologies. Whether the success of those relatively few solutions identified to improve quality and safety would continue if these were deployed beyond the contexts in which they were originally developed, has yet to be established. Importantly, best practice guidelines in effective development and deployment strategies are lacking.
Conclusions
There is a large gap between the postulated and empirically demonstrated benefits of eHealth technologies. In addition, there is a lack of robust research on the risks of implementing these technologies and their cost-effectiveness has yet to be demonstrated, despite being frequently promoted by policymakers and “techno-enthusiasts” as if this was a given. In the light of the paucity of evidence in relation to improvements in patient outcomes, as well as the lack of evidence on their cost-effectiveness, it is vital that future eHealth technologies are evaluated against a comprehensive set of measures, ideally throughout all stages of the technology's life cycle. Such evaluation should be characterised by careful attention to socio-technical factors to maximise the likelihood of successful implementation and adoption.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
There is considerable international interest in exploiting the potential of digital health care solutions, often referred to as eHealth—the use of information and communication technologies—to enhance the quality and safety of health care. Often accompanied by large costs, any large-scale expenditure on eHealth—such as electronic health records, picture archiving and communication systems, ePrescribing, associated computerized provider order entry systems, and computerized decision support systems—has tended to be justified on the grounds that these are efficient and cost-effective means for improving health care. In 2005, the World Health Assembly passed an eHealth resolution (WHA 58.28) that acknowledged, “eHealth is the cost-effective and secure use of information and communications technologies in support of health and health-related fields, including health-care services, health surveillance, health literature, and health education, knowledge and research,” and urged member states to develop and implement eHealth technologies. Since then, implementing eHealth technologies has become a main priority for many countries. For example, England has invested at least £12.8 billion in a National Programme for Information Technology for the National Health Service, and the Obama administration in the United States has committed to a US$38 billion eHealth investment in health care.
Why Was This Study Done?
Despite the wide endorsement of and support for eHealth, the scientific basis of its benefits—which are repeatedly made and often uncritically accepted—remains to be firmly established. A robust evidence-based perspective on the advantages on eHealth could help to suggest priority areas that have the greatest potential for benefit to patients and also to inform international eHealth deliberations on costs. Therefore, in order to better inform the international community, the authors systematically reviewed the published systematic review literature on eHealth technologies and evaluated the impact of these technologies on the quality and safety of health care delivery.
What Did the Researchers Do and Find?
The researchers divided eHealth technologies into three main categories: (1) storing, managing, and transmission of data; (2) clinical decision support; and (3) facilitating care from a distance. Then, implementing methods based on those developed by the Cochrane Collaboration and the NHS Service Delivery and Organisation Programme, the researchers used detailed search strategies and maps of health care quality, safety, and eHealth interventions to identify relevant systematic reviews (and related theoretical, methodological, and technical material) published between 1997 and 2010. Using these techniques, the researchers retrieved a total of 46,349 references from which they identified 108 reviews. The 53 reviews that the researchers finally selected (and critically reviewed) provided the main evidence base for assessing the impact of eHealth technologies in the three categories selected.
In their systematic review of systematic reviews, the researchers included electronic health records and picture archiving communications systems in their evaluation of category 1, computerized provider (or physician) order entry and e-prescribing in category 2, and all clinical information systems that, when used in the context of eHealth technologies, integrate clinical and demographic patient information to support clinician decision making in category 3.
The researchers found that many of the clinical claims made about the most commonly used eHealth technologies were not substantiated by empirical evidence. The evidence base in support of eHealth technologies was weak and inconsistent and importantly, there was insubstantial evidence to support the cost-effectiveness of these technologies. For example, the researchers only found limited evidence that some of the many presumed benefits could be realized; importantly, they also found some evidence that introducing these new technologies may on occasions also generate new risks such as prescribers becoming over-reliant on clinical decision support for e-prescribing, or overestimate its functionality, resulting in decreased practitioner performance.
What Do These Findings Mean?
The researchers found that despite the wide support for eHealth technologies and the frequently made claims by policy makers when constructing business cases to raise funds for large-scale eHealth projects, there is as yet relatively little empirical evidence to substantiate many of the claims made about eHealth technologies. In addition, even for the eHealth technology tools that have proven to be successful, there is little evidence to show that such tools would continue to be successful beyond the contexts in which they were originally developed. Therefore, in light of the lack of evidence in relation to improvements in patient outcomes, as well as the lack of evidence on their cost-effectiveness, the authors say that future eHealth technologies should be evaluated against a comprehensive set of measures, ideally throughout all stages of the technology's life cycle, and include socio-technical factors to maximize the likelihood of successful implementation and adoption in a given context. Furthermore, it is equally important that eHealth projects that have already been commissioned are subject to rigorous, multidisciplinary, and independent evaluation.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000387.
The authors' broader study is: Car J, Black A, Anandan C, Cresswell K, Pagliari C, McKinstry B, et al. (2008) The Impact of eHealth on the Quality and Safety of Healthcare. Available at: http://www.haps.bham.ac.uk/publichealth/cfhep/001.shtml
More information is available on the World Health Assembly eHealth resolution
The World Health Organization provides information at the Global Observatory on eHealth, as well as a global insight into eHealth developments
The European Commission provides Information on eHealth in Europe and some examples of good eHealth practice
More information is provided on NHS Connecting for Health
doi:10.1371/journal.pmed.1000387
PMCID: PMC3022523  PMID: 21267058
25.  Advancing Treatment for Metastatic Bone Cancer: Consensus Recommendations from the Second Cambridge Conference 
Purpose
Summarize current knowledge, critical gaps in knowledge, and recommendations to advance the field of metastatic bone cancer.
Experimental Design
A multidisciplinary consensus conference was convened to review recent progress in basic and clinical research, assess critical gaps in current knowledge, and prioritize recommendations to advance research in the next 5 years. The program addressed three principal topics: biology of metastasis, preserving normal bone health, and optimizing bone-targeted therapies.
Results
A variety of specific recommendations were identified as important to advance research and clinical care over the next 5 years.
Conclusions
Priorities for research in bone biology include characterizing components of the stem cell niche in bone, developing oncogenic immunocompetent animal models of bone metastasis, and investigating the unique contribution of the bone microenvironment to tumor growth and dormancy. Priorities for research in preserving normal bone health include developing methods to measure and characterize disseminating tumor cells, assessing outcomes from the major prevention trials currently in progress, and improving methodologies to assess risks and benefits of treatment. Priorities for optimizing bone-targeted therapies include advancing studies of serum proteomics and genomics to reliably identify patients who will develop bone metastases, enhancing imaging for early detection of bone metastases and early response evaluation, and developing new tests to evaluate response to bone-directed treatments.
doi:10.1158/1078-0432.CCR-08-1572
PMCID: PMC2763638  PMID: 18927277

Results 1-25 (1205650)