PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (344869)

Clipboard (0)
None

Related Articles

1.  Actin Turnover Is Required for Myosin-Dependent Mitochondrial Movements in Arabidopsis Root Hairs 
PLoS ONE  2009;4(6):e5961.
Background
Previous studies have shown that plant mitochondrial movements are myosin-based along actin filaments, which undergo continuous turnover by the exchange of actin subunits from existing filaments. Although earlier studies revealed that actin filament dynamics are essential for many functions of the actin cytoskeleton, there are little data connecting actin dynamics and mitochondrial movements.
Methodology/Principal Findings
We addressed the role of actin filament dynamics in the control of mitochondrial movements by treating cells with various pharmaceuticals that affect actin filament assembly and disassembly. Confocal microscopy of Arabidopsis thaliana root hairs expressing GFP-FABD2 as an actin filament reporter showed that mitochondrial distribution was in agreement with the arrangement of actin filaments in root hairs at different developmental stages. Analyses of mitochondrial trajectories and instantaneous velocities immediately following pharmacological perturbation of the cytoskeleton using variable-angle evanescent wave microscopy and/or spinning disk confocal microscopy revealed that mitochondrial velocities were regulated by myosin activity and actin filament dynamics. Furthermore, simultaneous visualization of mitochondria and actin filaments suggested that mitochondrial positioning might involve depolymerization of actin filaments on the surface of mitochondria.
Conclusions/Significance
Base on these results we propose a mechanism for the regulation of mitochondrial speed of movements, positioning, and direction of movements that combines the coordinated activity of myosin and the rate of actin turnover, together with microtubule dynamics, which directs the positioning of actin polymerization events.
doi:10.1371/journal.pone.0005961
PMCID: PMC2694364  PMID: 19536333
2.  The Circular F-Actin Bundles Provide a Track for Turnaround and Bidirectional Movement of Mitochondria in Arabidopsis Root Hair 
PLoS ONE  2014;9(3):e91501.
Background
The movement of organelles in root hairs primarily occurs along the actin cytoskeleton. Circulation and “reverse fountain” cytoplasmic streaming constitute the typical forms by which most organelles (such as mitochondria and the Golgi apparatus) in plant root hair cells engage in bidirectional movement. However, there remains a lack of in-depth research regarding the relationship between the distribution of the actin cytoskeleton and turnaround organelle movement in plant root hair cells.
Results
In this paper, Arabidopsis seedlings that had been stably transformed with a GFP-ABD2-GFP (green fluorescent protein-actin-binding domain 2-green fluorescent protein) construct were utilized to study the distribution of bundles of filamentous (F)-actin and the directed motion of mitochondria along these bundles in root hairs. Observations with a confocal laser scanning microscope revealed that there were widespread circular F-actin bundles in the epidermal cells and root hairs of Arabidopsis roots. In root hairs, these circular bundles primarily start at the sub-apical region, which is the location where the turnaround movement of organelles occurs. MitoTracker probes were used to label mitochondria, and the dynamic observation of root hair cells with a confocal laser scanning microscope indicated that turnaround mitochondrial movement occurred along circular F-actin bundles.
Conclusions
Relevant experimental results demonstrated that the circular F-actin bundles provide a track for the turnaround and bidirectional movement of mitochondria.
doi:10.1371/journal.pone.0091501
PMCID: PMC3953408  PMID: 24626218
3.  Ectopic Expression of an Activated RAC in Arabidopsis Disrupts Membrane CyclingD⃞V⃞ 
Molecular Biology of the Cell  2005;16(4):1913-1927.
Rho GTPases regulate the actin cytoskeleton, exocytosis, endocytosis, and other signaling cascades. Rhos are subdivided into four subfamilies designated Rho, Racs, Cdc42, and a plant-specific group designated RACs/Rops. This research demonstrates that ectopic expression of a constitutive active Arabidopsis RAC, AtRAC10, disrupts actin cytoskeleton organization and membrane cycling. We created transgenic plants expressing either wild-type or constitutive active AtRAC10 fused to the green fluorescent protein. The activated AtRAC10 induced deformation of root hairs and leaf epidermal cells and was primarily localized in Triton X-100–insoluble fractions of the plasma membrane. Actin cytoskeleton reorganization was revealed by creating double transgenic plants expressing activated AtRAC10 and the actin marker YFP-Talin. Plants were further analyzed by membrane staining with N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) under different treatments, including the protein trafficking inhibitor brefeldin A or the actin-depolymeryzing agents latrunculin-B (Lat-B) and cytochalasin-D (CD). After drug treatments, activated AtRAC10 did not accumulate in brefeldin A compartments, but rather reduced their number and colocalized with FM4-64–labeled membranes in large intracellular vesicles. Furthermore, endocytosis was compromised in root hairs of activated AtRAC10 transgenic plants. FM4-64 was endocytosed in nontransgenic root hairs treated with the actin-stabilizing drug jasplakinolide. These findings suggest complex regulation of membrane cycling by plant RACs.
doi:10.1091/mbc.E04-07-0562
PMCID: PMC1073671  PMID: 15703216
4.  Identification of Arabidopsis Cyclase-associated Protein 1 as the First Nucleotide Exchange Factor for Plant Actin 
Molecular Biology of the Cell  2007;18(8):3002-3014.
The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP–actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP– and ATP–monomeric actin (Kd ∼ 1.3 μM). Binding of AtCAP1 to ATP–actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux of subunits through actin filament barbed ends. Collectively, these results and our understanding of other actin-binding proteins implicate CAP1 as a central player in regulating the pool of unpolymerized ATP–actin.
doi:10.1091/mbc.E06-11-1041
PMCID: PMC1949352  PMID: 17538023
5.  A Mutation in MRH2 Kinesin Enhances the Root Hair Tip Growth Defect Caused by Constitutively Activated ROP2 Small GTPase in Arabidopsis 
PLoS ONE  2007;2(10):e1074.
Root hair tip growth provides a unique model system for the study of plant cell polarity. Transgenic plants expressing constitutively active (CA) forms of ROP (Rho-of-plants) GTPases have been shown to cause the disruption of root hair polarity likely as a result of the alteration of actin filaments (AF) and microtubules (MT) organization. Towards understanding the mechanism by which ROP controls the cytoskeletal organization during root hair tip growth, we have screened for CA-rop2 suppressors or enhancers using CA1-1, a transgenic line that expresses CA-rop2 and shows only mild disruption of tip growth. Here, we report the characterization of a CA-rop2 enhancer (cae1-1 CA1-1) that exhibits bulbous root hairs. The cae1-1 mutation on its own caused a waving and branching root hair phenotype. CAE1 encodes the root hair growth-related, ARM domain-containing kinesin-like protein MRH2 (and thus cae1-1 was renamed to mrh2-3). Cortical MT displayed fragmentation and random orientation in mrh2 root hairs. Consistently, the MT-stabilizing drug taxol could partially rescue the wavy root hair phenotype of mrh2-3, and the MT-depolymerizing drug Oryzalin slightly enhanced the root hair tip growth defect in CA1-1. Interestingly, the addition of the actin-depolymerizing drug Latrunculin B further enhanced the Oryzalin effect. This indicates that the cross-talk of MT and AF organization is important for the mrh2-3 CA1-1 phenotype. Although we did not observe an apparent effect of the MRH2 mutation in AF organization, we found that mrh2-3 root hair growth was more sensitive to Latrunculin B. Moreover, an ARM domain-containing MRH2 fragment could bind to the polymerized actin in vitro. Therefore, our genetic analyses, together with cell biological and pharmacological evidence, suggest that the plant-specific kinesin-related protein MRH2 is an important component that controls MT organization and is likely involved in the ROP2 GTPase-controlled coordination of AF and MT during polarized growth of root hairs.
doi:10.1371/journal.pone.0001074
PMCID: PMC2031828  PMID: 17957256
6.  The Plant Actin Cytoskeleton Responds to Signals from Microbe-Associated Molecular Patterns 
PLoS Pathogens  2013;9(4):e1003290.
Plants are constantly exposed to a large and diverse array of microbes; however, most plants are immune to the majority of potential invaders and susceptible to only a small subset of pathogens. The cytoskeleton comprises a dynamic intracellular framework that responds rapidly to biotic stresses and supports numerous fundamental cellular processes including vesicle trafficking, endocytosis and the spatial distribution of organelles and protein complexes. For years, the actin cytoskeleton has been assumed to play a role in plant innate immunity against fungi and oomycetes, based largely on static images and pharmacological studies. To date, however, there is little evidence that the host-cell actin cytoskeleton participates in responses to phytopathogenic bacteria. Here, we quantified the spatiotemporal changes in host-cell cytoskeletal architecture during the immune response to pathogenic and non-pathogenic strains of Pseudomonas syringae pv. tomato DC3000. Two distinct changes to host cytoskeletal arrays were observed that correspond to distinct phases of plant-bacterial interactions i.e. the perception of microbe-associated molecular patterns (MAMPs) during pattern-triggered immunity (PTI) and perturbations by effector proteins during effector-triggered susceptibility (ETS). We demonstrate that an immediate increase in actin filament abundance is a conserved and novel component of PTI. Notably, treatment of leaves with a MAMP peptide mimic was sufficient to elicit a rapid change in actin organization in epidermal cells, and this actin response required the host-cell MAMP receptor kinase complex, including FLS2, BAK1 and BIK1. Finally, we found that actin polymerization is necessary for the increase in actin filament density and that blocking this increase with the actin-disrupting drug latrunculin B leads to enhanced susceptibility of host plants to pathogenic and non-pathogenic bacteria.
Author Summary
The cytoskeleton is a dynamic platform for sensing and responding to a diverse array of biotic and abiotic stresses. The nature and timing of the changes in actin organization range from excessive bundling, to massive depolymerization, to new filament assembly, depending on the particular signal and the responding cell type. Here, we use the Arabidopsis–Pseudomonas pathosystem to dissect pathogen-derived cues that elicit changes in the plant host-cell cytoskeleton. Overall, we provide the first evidence that the actin cytoskeleton rearranges in response to a phytopathogenic bacterium and we quantified the temporal response of epidermal cells to Pseudomonas syringae pv. tomato DC3000 strains and susceptible Arabidopsis mutants, using a robust set of tools for measuring changes in actin organization. An immediate but transient increase in actin filament abundance was associated with pattern-triggered immunity. This response could be mimicked with microbe-associated molecular pattern peptide treatments. Second, we observed a late increase in actin filament bundling that appears to be part of effector-triggered susceptibility. We dissected the initial steps involved in the host-cell signaling pathway and demonstrated that FLS2, BAK1, and BIK1 were required for the actin response. Collectively, these findings demonstrate that rapid changes in host-cell cytoskeleton organization occur in response to receptor-mediated signaling during plant innate immunity.
doi:10.1371/journal.ppat.1003290
PMCID: PMC3616984  PMID: 23593000
7.  Actin Turnover-Mediated Gravity Response in Maize Root Apices 
Plant Signaling & Behavior  2006;1(2):52-58.
The dynamic actin cytoskeleton has been proposed to be linked to gravity sensing in plants but the mechanistic understanding of these processes remains unknown. We have performed detailed pharmacological analyses of the role of the dynamic actin cytoskeleton in gravibending of maize (Zea mays) root apices. Depolymerization of actin filaments with two drugs having different mode of their actions, cytochalasin D and latrunculin B, stimulated root gravibending. By contrast, drug-induced stimulation of actin polymerization and inhibition of actin turnover, using two different agents phalloidin and jasplakinolide, compromised the root gravibending. Importantly, all these actin drugs inhibited root growth to similar extents suggesting that high actin turnover is essential for the gravity-related growth responses rather than for the general growth process. Both latrunculin B and cytochalasin D treatments inhibited root growth but restored gravibending of the decapped root apices, indicating that there is a strong potential for effective actin-mediated gravity sensing outside the cap. This elusive gravity sensing outside the root cap is dependent not only on the high rate of actin turnover but also on weakening of myosin activities, as general inhibition of myosin ATPases induced stimulation of gravibending of the decapped root apices. Collectively, these data provide evidence for the actin turnover-mediated gravity sensing outside the root cap.
PMCID: PMC2633879  PMID: 19521476
actin cytoskeleton; gravisensing; graviresponding; root cap
8.  Primary granule exocytosis in human neutrophils is regulated by Rac-dependent actin remodeling 
The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. Here, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (≤ 10 μM) of the actin depolymerizing drugs, latrunculin B (Lat B) or cytochalasin B (CB), enhanced both formyl peptide receptor and Ca2+ ionophore stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP) inhibited primary granule exocytosis measured as myeloperoxidase release, but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly prior to primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodelling was highly polarized when cells were primed with CB, however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis was blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor, NSC23766, also inhibited actin remodelling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not Ca2+ ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.
doi:10.1152/ajpcell.00239.2008
PMCID: PMC2878813  PMID: 18799653 CAMSID: cams777
Rac GTPase; actin; latrunculin; cytochalasin; jasplakinolide; NSC23766
9.  Unveiling Interactions among Mitochondria, Caspase-Like Proteases, and the Actin Cytoskeleton during Plant Programmed Cell Death (PCD) 
PLoS ONE  2013;8(3):e57110.
Aponogeton madagascariensis produces perforations over its leaf surface via programmed cell death (PCD). PCD begins between longitudinal and transverse veins at the center of spaces regarded as areoles, and continues outward, stopping several cells from these veins. The gradient of PCD that exists within a single areole of leaves in an early stage of development was used as a model to investigate cellular dynamics during PCD. Mitochondria have interactions with a family of proteases known as caspases, and the actin cytoskeleton during metazoan PCD; less is known regarding these interactions during plant PCD. This study employed the actin stain Alexa Fluor 488 phalloidin, the actin depolymerizer Latrunculin B (Lat B), a synthetic caspase peptide substrate and corresponding specific inhibitors, as well as the mitochondrial pore inhibitor cyclosporine A (CsA) to analyze the role of these cellular constituents during PCD. Results depicted that YVADase (caspase-1) activity is higher during the very early stages of perforation formation, followed by the bundling and subsequent breakdown of actin. Actin depolymerization using Lat B caused no change in YVADase activity. In vivo inhibition of YVADase activity prevented PCD and actin breakdown, therefore substantiating actin as a likely substrate for caspase-like proteases (CLPs). The mitochondrial pore inhibitor CsA significantly decreased YVADase activity, and prevented both PCD and actin breakdown; therefore suggesting the mitochondria as a possible trigger for CLPs during PCD in the lace plant. To our knowledge, this is the first in vivo study using either caspase-1 inhibitor (Ac-YVAD-CMK) or CsA, following which the actin cytoskeleton was examined. Overall, our findings suggest the mitochondria as a possible upstream activator of YVADase activity and implicate these proteases as potential initiators of actin breakdown during perforation formation via PCD in the lace plant.
doi:10.1371/journal.pone.0057110
PMCID: PMC3590192  PMID: 23483897
10.  Individual Actin Filaments in a Microfluidic Flow Reveal the Mechanism of ATP Hydrolysis and Give Insight Into the Properties of Profilin 
PLoS Biology  2011;9(9):e1001161.
A novel microfluidic approach allows the analysis of the dynamics of individual actin filaments, revealing both their local ADP/ADP-Pi-actin composition and that Pi release is a random mechanism.
The hydrolysis of ATP associated with actin and profilin-actin polymerization is pivotal in cell motility. It is at the origin of treadmilling of actin filaments and controls their dynamics and mechanical properties, as well as their interactions with regulatory proteins. The slow release of inorganic phosphate (Pi) that follows rapid cleavage of ATP gamma phosphate is linked to an increase in the rate of filament disassembly. The mechanism of Pi release in actin filaments has remained elusive for over 20 years. Here, we developed a microfluidic setup to accurately monitor the depolymerization of individual filaments and determine their local ADP-Pi content. We demonstrate that Pi release in the filament is not a vectorial but a random process with a half-time of 102 seconds, irrespective of whether the filament is assembled from actin or profilin-actin. Pi release from the depolymerizing barbed end is faster (half-time of 0.39 seconds) and further accelerated by profilin. Profilin accelerates the depolymerization of both ADP- and ADP-Pi-F-actin. Altogether, our data show that during elongation from profilin-actin, the dissociation of profilin from the growing barbed end is not coupled to Pi release or to ATP cleavage on the terminal subunit. These results emphasize the potential of microfluidics in elucidating actin regulation at the scale of individual filaments.
Author Summary
Actin proteins assemble into microfilaments that control cell shape and movement by polymerizing or depolymerizing. These actin monomers can bind ATP or ADP molecules. The incorporation of an ATP-actin monomer into a growing filament results in rapid cleavage of ATP into ADP and inorganic phosphate (Pi), followed by a slower release of Pi. As a consequence, actin filaments are composed mainly of ADP- and ADP-Pi-actin subunits, which have different depolymerization kinetics and mechanical properties, and can be targeted specifically by regulatory proteins that affect filament function. Hence, the understanding of many cellular processes requires a knowledge of the ADP/ADP-Pi composition of actin filaments at a molecular scale. This has so far remained elusive because traditional studies rely on measuring an average over many filaments in solution. To address this issue, we developed a microfluidics setup to monitor individual filaments with light microscopy while rapidly changing their chemical environment. We find that depolymerization accelerates progressively and corresponds to an exponential ADP-Pi-actin profile in the filament, meaning that each subunit releases its Pi with the same rate. Our method also provides novel insight into the function of profilin, a protein important for regulation of actin dynamics in cells, thus demonstrating the method's potential in the functional analysis of actin regulators.
doi:10.1371/journal.pbio.1001161
PMCID: PMC3181223  PMID: 21980262
11.  Distribution of G-actin is Related to Root Hair Growth of Wheat 
Annals of Botany  2006;98(1):49-55.
• Background and Aims Actin distribution in root hair tips is a controversial topic. Although the relationship between Ca2+ gradient and actin dynamics in plant tip-growth has been a focus of study, there is still little direct evidence on the exact relationship in root hair tip-growth.
• Methods G-actin was labelled by fluorescein isothiocyanate–DNase I. F-actin was labelled by tetramethylrhodamine isothiocyanate–phalloidin. Actin in root hairs of Triticum aestivum (wheat) was investigated using confocal laser-scanning microscopy.
• Key Results Thick F-actin bundles did not extend into a region of approx. 5–10 µm from the tip of the growing root hairs, although they gave off branches of fine actin filaments in the hair tips. A tip-focused G-actin gradient was shown at the extreme apex of growing root hairs. In full-grown wheat root hairs, the tip-focused G-actin gradient disappeared while the thick F-actin bundles extended into the tips. BAPTA-AM, a Ca2+ disruption agent, also caused the tip-focused G-actin gradient to disappear and the diffuse F-actin bundles to appear in the tips of wheat root hairs.
• Conclusions These results suggest that the tip-focused gradient of intracellular G-actin concentration at the extreme apex may be essential for root hair growth, and that preserving the tip-focused gradient needs a high Ca2+ concentration in the root hair tips.
doi:10.1093/aob/mcl084
PMCID: PMC2803535  PMID: 16675602
G-actin; F-actin; root hairs; plant tip-growth; Ca2+; BAPTA-AM; Triticum aestivum; wheat
12.  Investigating the Role of F-Actin in Human Immunodeficiency Virus Assembly by Live-Cell Microscopy 
Journal of Virology  2014;88(14):7904-7914.
ABSTRACT
Human immunodeficiency virus type 1 (HIV-1) particles assemble at the plasma membrane, which is lined by a dense network of filamentous actin (F-actin). Large amounts of actin have been detected in HIV-1 virions, proposed to be incorporated by interactions with the nucleocapsid domain of the viral polyprotein Gag. Previous studies addressing the role of F-actin in HIV-1 particle formation using F-actin-interfering drugs did not yield consistent results. Filamentous structures pointing toward nascent HIV-1 budding sites, detected by cryo-electron tomography and atomic force microscopy, prompted us to revisit the role of F-actin in HIV-1 assembly by live-cell microscopy. HeLa cells coexpressing HIV-1 carrying fluorescently labeled Gag and a labeled F-actin-binding peptide were imaged by live-cell total internal reflection fluorescence microscopy (TIR-FM). Computational analysis of image series did not reveal characteristic patterns of F-actin in the vicinity of viral budding sites. Furthermore, no transient recruitment of F-actin during bud formation was detected by monitoring fluorescence intensity changes at nascent HIV-1 assembly sites. The chosen approach allowed us to measure the effect of F-actin-interfering drugs on the assembly of individual virions in parallel with monitoring changes in the F-actin network of the respective cell. Treatment of cells with latrunculin did not affect the efficiency and dynamics of Gag assembly under conditions resulting in the disruption of F-actin filaments. Normal assembly rates were also observed upon transient stabilization of F-actin by short-term treatment with jasplakinolide. Taken together, these findings indicate that actin filament dynamics are dispensable for HIV-1 Gag assembly at the plasma membrane of HeLa cells.
IMPORTANCE HIV-1 particles assemble at the plasma membrane of virus-producing cells. This membrane is lined by a dense network of actin filaments that might either present a physical obstacle to the formation of virus particles or generate force promoting the assembly process. Drug-mediated interference with the actin cytoskeleton showed different results for the formation of retroviral particles in different studies, likely due to general effects on the cell upon prolonged drug treatment. Here, we characterized the effect of actin-interfering compounds on the HIV-1 assembly process by direct observation of virus formation in live cells, which allowed us to measure assembly rate constants directly upon drug addition. Virus assembly proceeded with normal rates when actin filaments were either disrupted or stabilized. Taken together with the absence of characteristic actin filament patterns at viral budding sites in our analyses, this indicates that the actin network is dispensable for HIV-1 assembly.
doi:10.1128/JVI.00431-14
PMCID: PMC4097803  PMID: 24789789
13.  Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface 
The Journal of Cell Biology  1995;130(2):345-354.
Using fluorescent membrane potential sensing dyes to stain budding yeast, mitochondria are resolved as tubular organelles aligned in radial arrays that converge at the bud neck. Time-lapse fluorescence microscopy reveals region-specific, directed mitochondrial movement during polarized yeast cell growth and mitotic cell division. Mitochondria in the central region of the mother cell move linearly towards the bud, traverse the bud neck, and progress towards the bud tip at an average velocity of 49 +/- 21 nm/sec. In contrast, mitochondria in the peripheral region of the mother cell and at the bud tip display significantly less movement. Yeast strains containing temperature sensitive lethal mutations in the actin gene show abnormal mitochondrial distribution. No mitochondrial movement is evident in these mutants after short-term shift to semi-permissive temperatures. Thus, the actin cytoskeleton is important for normal mitochondrial movement during inheritance. To determine the possible role of known myosin genes in yeast mitochondrial motility, we investigated mitochondrial inheritance in myo1, myo2, myo3 and myo4 single mutants and in a myo2, myo4 double mutant. Mitochondrial spatial arrangement and motility are not significantly affected by these mutations. We used a microfilament sliding assay to examine motor activity on isolated yeast mitochondria. Rhodamine-phalloidin labeled yeast actin filaments bind to immobilized yeast mitochondria, as well as unilamellar, right- side-out, sealed mitochondrial outer membrane vesicles. In the presence of low levels of ATP (0.1-100 microM), we observed F-actin sliding on immobilized yeast mitochondria. In the presence of high levels of ATP (500 microM-2 mM), bound filaments are released from mitochondria and mitochondrial outer membranes. The maximum velocity of mitochondria- driven microfilament sliding (23 +/- 11 nm/sec) is similar to that of mitochondrial movement in living cells. This motor activity requires hydrolysis of ATP, does not require cytosolic extracts, is sensitive to protease treatment, and displays an ATP concentration dependence similar to that of members of the myosin family of actin-based motors. This is the first demonstration of an actin-based motor activity in a defined organelle population.
PMCID: PMC2199926  PMID: 7615636
14.  Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton 
PLoS Biology  2013;11(11):e1001720.
Wdpcp, a protein required for both planar cell polarity and ciliogenesis, regulates cell polarity and alignment via direct modulation of the actin cytoskeleton.
Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet–Biedl/Meckel–Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration.
Author Summary
Cilia are microscopic cell surface hair-like protrusions that can act as antennae to mediate cell signaling. Mutations disrupting ciliogenesis can cause many developmental anomalies associated with syndromes known as “ciliopathies.” Some developmental defects, such as limb polydactyly, arise from disruption of cilia-transduced sonic hedgehog signaling, while other defects, such as aberrant patterning of hair cells in the inner ear, arise from disrupted Wnt signaling resulting in modulation of planar cell polarity (PCP)—a process whereby cells are polarized and aligned. While ciliopathy phenotypes would suggest that cilia are involved in modulating PCP, the mechanistic link between cilia and PCP has been elusive. Our study using a mouse model carrying a mutation in Wdpcp, a gene required for both ciliogenesis and PCP, suggest that Wdpcp modulation of PCP involves interactions with the actin cytoskeleton separate from its function in ciliogenesis. We observe Wdpcp localization in cilia, where it is required for recruitment of proteins essential for ciliogenesis. Wdpcp interacts with Sept2, and is also found in actin filaments, where it regulates actin dynamics essential for PCP. Together, these findings show that PCP regulation by Wdpcp is distinct from its function in ciliogenesis and involves direct modulation of the actin cytoskeleton.
doi:10.1371/journal.pbio.1001720
PMCID: PMC3841097  PMID: 24302887
15.  High Rates of Actin Filament Turnover in Budding Yeast and Roles for Actin in Establishment and Maintenance of Cell Polarity Revealed Using the Actin Inhibitor Latrunculin-A 
The Journal of Cell Biology  1997;137(2):399-416.
We report that the actin assembly inhibitor latrunculin-A (LAT-A) causes complete disruption of the yeast actin cytoskeleton within 2–5 min, suggesting that although yeast are nonmotile, their actin filaments undergo rapid cycles of assembly and disassembly in vivo. Differences in the LAT-A sensitivities of strains carrying mutations in components of the actin cytoskeleton suggest that tropomyosin, fimbrin, capping protein, Sla2p, and Srv2p act to increase actin cytoskeleton stability, while End3p and Sla1p act to decrease stability. Identification of three LAT-A resistant actin mutants demonstrated that in vivo effects of LAT-A are due specifically to impairment of actin function and implicated a region on the three-dimensional actin structure as the LAT-A binding site.
LAT-A was used to determine which of 19 different proteins implicated in cell polarity development require actin to achieve polarized localization. Results show that at least two molecular pathways, one actindependent and the other actin-independent, underlie polarity development. The actin-dependent pathway localizes secretory vesicles and a putative vesicle docking complex to sites of cell surface growth, providing an explanation for the dependence of polarized cell surface growth on actin function. Unexpectedly, several proteins that function with actin during cell polarity development, including an unconventional myosin (Myo2p), calmodulin, and an actin-interacting protein (Bud6/Aip3p), achieved polarized localization by an actin-independent pathway, revealing interdependence among cell polarity pathways. Finally, transient actin depolymerization caused many cells to abandon one bud site or mating projection and to initiate growth at a second site. Thus, actin filaments are also required for maintenance of an axis of cell polarity.
PMCID: PMC2139767  PMID: 9128251
16.  GLUTAMATE-INDUCED Ca2+ INFLUX IN THIRD-ORDER NEURONS OF SALAMANDER RETINA IS REGULATED BY THE ACTIN CYTOSKELETON 
Neuroscience  2005;138(1):17-24.
Ligand-gated ion channels (ionotropic receptors) link to the cortical cytoskeleton via specialized scaffold proteins and thereby to appropriate signal transduction pathways in the cell. We studied the role of filamentous actin in the regulation of Ca influx through glutamate receptor-activated channels in third-order neurons of salamander retina. Staining by Alexa-Fluor 488-phalloidin, to visualize polymerized actin, we show localization of filamentous actin in neurites, and the membrane surrounding the cell soma. With Ca2+ imaging we found that in dissociated neurons, depolymerization of filamentous actin by latrunculin A, or cytochalasin D significantly reduced glutamate-induced intracellular Ca2+ accumulation to 53±7% of control value. Jasplakinolide, a stabilizer of filamentous actin, by itself slightly increased the glutamate-induced Ca2+ signal and completely attenuated the inhibitory effect when applied in combination with actin depolymerizing agents. These results indicate that in salamander retinal neurons the actin cytoskeleton regulates Ca2+ influx through ionotropic glutamate receptor-activated channels, suggesting regulatory roles for filamentous actin in a number of Ca2+-dependent physiological and pathological processes.
doi:10.1016/j.neuroscience.2005.11.002
PMCID: PMC2927977  PMID: 16359816
actin filament; AMPA; NMDA; latrunculin; channel; receptor
17.  AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana  
Journal of Experimental Botany  2012;64(2):585-597.
Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin–microtubule cross-talk.
doi:10.1093/jxb/ers351
PMCID: PMC3542049  PMID: 23202131
Actin; Arabidopsis; At5g25500; LatB; microtubules; SMIFH2; VAEM
18.  Myosin XIK of Arabidopsis thaliana Accumulates at the Root Hair Tip and Is Required for Fast Root Hair Growth 
PLoS ONE  2013;8(10):e76745.
Myosin motor proteins are thought to carry out important functions in the establishment and maintenance of cell polarity by moving cellular components such as organelles, vesicles, or protein complexes along the actin cytoskeleton. In Arabidopsis thaliana, disruption of the myosin XIK gene leads to reduced elongation of the highly polar root hairs, suggesting that the encoded motor protein is involved in this cell growth. Detailed live-cell observations in this study revealed that xik root hairs elongated more slowly and stopped growth sooner than those in wild type. Overall cellular organization including the actin cytoskeleton appeared normal, but actin filament dynamics were reduced in the mutant. Accumulation of RabA4b-containing vesicles, on the other hand, was not significantly different from wild type. A functional YFP-XIK fusion protein that could complement the mutant phenotype accumulated at the tip of growing root hairs in an actin-dependent manner. The distribution of YFP-XIK at the tip, however, did not match that of the ER or several tip-enriched markers including CFP-RabA4b. We conclude that the myosin XIK is required for normal actin dynamics and plays a role in the subapical region of growing root hairs to facilitate optimal growth.
doi:10.1371/journal.pone.0076745
PMCID: PMC3792037  PMID: 24116145
19.  Interaction between Mitochondria and the Actin Cytoskeleton in Budding Yeast Requires Two Integral Mitochondrial Outer Membrane Proteins, Mmm1p and Mdm10p  
The Journal of Cell Biology  1998;141(6):1371-1381.
Transfer of mitochondria to daughter cells during yeast cell division is essential for viable progeny. The actin cytoskeleton is required for this process, potentially as a track to direct mitochondrial movement into the bud. Sedimentation assays reveal two different components required for mitochondria–actin interactions: (1) mitochondrial actin binding protein(s) (mABP), a peripheral mitochondrial outer membrane protein(s) with ATP-sensitive actin binding activity, and (2) a salt-inextractable, presumably integral, membrane protein(s) required for docking of mABP on the organelle. mABP activity is abolished by treatment of mitochondria with high salt. Addition of either the salt-extracted mitochondrial peripheral membrane proteins (SE), or a protein fraction with ATP-sensitive actin-binding activity isolated from SE, to salt-washed mitochondria restores this activity. mABP docking activity is saturable, resistant to high salt, and inhibited by pre-treatment of salt-washed mitochondria with papain. Two integral mitochondrial outer membrane proteins, Mmm1p (Burgess, S.M., M. Delannoy, and R.E. Jensen. 1994. J.Cell Biol. 126:1375–1391) and Mdm10p, (Sogo, L.F., and M.P. Yaffe. 1994. J.Cell Biol. 126:1361– 1373) are required for these actin–mitochondria interactions. Mitochondria isolated from an mmm1-1 temperature-sensitive mutant or from an mdm10 deletion mutant show no mABP activity and no mABP docking activity. Consistent with this, mitochondrial motility in vivo in mmm1-1 and mdm10Δ mutants appears to be actin independent. Depolymerization of F-actin using latrunculin-A results in loss of long-distance, linear movement and a fivefold decrease in the velocity of mitochondrial movement. Mitochondrial motility in mmm1-1 and mdm10Δ mutants is indistinguishable from that in latrunculin-A–treated wild-type cells. We propose that Mmm1p and Mdm10p are required for docking of mABP on the surface of yeast mitochondria and coupling the organelle to the actin cytoskeleton.
PMCID: PMC2132797  PMID: 9628893
20.  Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes 
The Journal of General Physiology  2012;139(5):321-331.
Mitochondrial dysfunction caused by excessive Ca2+ accumulation is a major contributor to cardiac cell and tissue damage during myocardial infarction and ischemia–reperfusion injury (IRI). At the molecular level, mitochondrial dysfunction is induced by Ca2+-dependent opening of the mitochondrial permeability transition pore (mPTP) in the inner mitochondrial membrane, which leads to the dissipation of mitochondrial membrane potential (ΔΨm), disruption of adenosine triphosphate production, and ultimately cell death. Although the role of Ca2+ for induction of mPTP opening is established, the exact molecular mechanism of this process is not understood. The aim of the present study was to test the hypothesis that the adverse effect of mitochondrial Ca2+ accumulation is mediated by its interaction with inorganic polyphosphate (polyP), a polymer of orthophosphates linked by phosphoanhydride bonds. We found that cardiac mitochondria contained significant amounts (280 ± 60 pmol/mg of protein) of short-chain polyP with an average length of 25 orthophosphates. To test the role of polyP for mPTP activity, we investigated kinetics of Ca2+ uptake and release, ΔΨm and Ca2+-induced mPTP opening in polyP-depleted mitochondria. polyP depletion was achieved by mitochondria-targeted expression of a polyP-hydrolyzing enzyme. Depletion of polyP in mitochondria of rabbit ventricular myocytes led to significant inhibition of mPTP opening without affecting mitochondrial Ca2+ concentration by itself. This effect was observed when mitochondrial Ca2+ uptake was stimulated by increasing cytosolic [Ca2+] in permeabilized myocytes mimicking mitochondrial Ca2+ overload observed during IRI. Our findings suggest that inorganic polyP is a previously unrecognized major activator of mPTP. We propose that the adverse effect of polyphosphate might be caused by its ability to form stable complexes with Ca2+ and directly contribute to inner mitochondrial membrane permeabilization.
doi:10.1085/jgp.201210788
PMCID: PMC3343371  PMID: 22547663
21.  A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs 
The Journal of Cell Biology  2005;168(5):801-812.
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) regulate signaling interfaces between lipid metabolism and membrane trafficking. Herein, we demonstrate that AtSfh1p, a member of a large and uncharacterized Arabidopsis thaliana Sec14p-nodulin domain family, is a PITP that regulates a specific stage in root hair development. AtSfh1p localizes along the root hair plasma membrane and is enriched in discrete plasma membrane domains and in the root hair tip cytoplasm. This localization pattern recapitulates that visualized for PtdIns(4,5)P2 in developing root hairs. Gene ablation experiments show AtSfh1p nullizygosity compromises polarized root hair expansion in a manner that coincides with loss of tip-directed PtdIns(4,5)P2, dispersal of secretory vesicles from the tip cytoplasm, loss of the tip f-actin network, and manifest disorganization of the root hair microtubule cytoskeleton. Derangement of tip-directed Ca2+ gradients is also apparent and results from isotropic influx of Ca2+ from the extracellular milieu. We propose AtSfh1p regulates intracellular and plasma membrane phosphoinositide polarity landmarks that focus membrane trafficking, Ca2+ signaling, and cytoskeleton functions to the growing root hair apex. We further suggest that Sec14p-nodulin domain proteins represent a family of regulators of polarized membrane growth in plants.
doi:10.1083/jcb.200412074
PMCID: PMC2171805  PMID: 15728190
22.  Roles of Small GTPase Rac1 in the Regulation of Actin Cytoskeleton during Dengue Virus Infection 
Background
Increased vascular permeability is a hallmark feature in severe dengue virus (DV) infection, and dysfunction of endothelial cells has been speculated to contribute in the pathogenesis of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Rho-family GTPase Rac1 is a significant element of endothelial barrier function regulation and has been implicated in the regulation of actin remodeling and intercellular junction formation. Yet there is little evidence linking Rac1 GTPase to alteration in endothelial cell function induced by DV infection.
Methods and Findings
Here, we showed that actin is essential for DV serotype 2 (DV2) entry into and release from ECV304 cells, and Rac1 signaling is involved these processes. At early infection, actin cytoskeleton rearranged significantly during 1 hour post infection, and disrupting actin filament dynamics with jasplakinolide or cytochalasin D reduced DV2 entry. DV2 entry induced reduction of Rac1 activity within 1 hour post infection. The expression of dominant-negative forms of Rac1 established that DV2 entry is negatively regulated by Rac1. At late infection, actin drugs also inhibited the DV2 release and induced accumulation of viral proteins in the cytoplasm. Meanwhile, the activity of Rac1 increased significantly with the progression of DV2 infection and was up-regulated in transfected cells expressing E protein. Confocal microscopy showed that DV2 E protein was closely associated with either actin or Rac1 in DV2-infected cells. The interaction between E protein and actin was further confirmed by co-immunoprecipitation assay.
Conclusions
These results defined roles for actin integrity in DV2 entry and release, and indicated evidence for the participation of Rac1 signaling pathways in DV2-induced actin reorganizations and E-actin interaction. Our results may provide further insight into the pathogenesis of DHF/DSS.
Author Summary
An important clinical characteristic of dengue hemorrhagic fever/dengue shock syndrome is increased vascular permeability. Actin cytoskeleton is a significant element of endothelial barrier function regulation. In vitro study showed that dengue virus infection could induce redistributions of actin cytoskeleton. It is not precisely clear the roles of actin and the mechanisms of its reorganization during the infection. Using immunochemical assays, drug inhibition assays and protein interaction profiling methods, we aimed to identify the ways in which dengue virus serotype 2 interacts with actin cytoskeleton. The study showed that dynamic treadmilling of actin is necessary for dengue virus entry, production and release, while small GTPase Rac1 also plays multiple roles during these processes. In addition, we demonstrated the association of viral E protein with actin, indicating a direct effect of viral protein on the structural modifications of actin cytoskeleton. Our results provide evidence for the participation of Rac1 signaling pathways in viral protein-induced actin reorganizations, which may be a mechanism involved in the etiology of dengue hemorrhagic fever.
doi:10.1371/journal.pntd.0000809
PMCID: PMC2930870  PMID: 20824170
23.  The Actin-Driven Movement and Formation of Acetylcholine Receptor Clusters 
The Journal of Cell Biology  2000;150(6):1321-1334.
A new method was devised to visualize actin polymerization induced by postsynaptic differentiation signals in cultured muscle cells. This entails masking myofibrillar filamentous (F)-actin with jasplakinolide, a cell-permeant F-actin–binding toxin, before synaptogenic stimulation, and then probing new actin assembly with fluorescent phalloidin. With this procedure, actin polymerization associated with newly induced acetylcholine receptor (AChR) clustering by heparin-binding growth-associated molecule–coated beads and by agrin was observed. The beads induced local F-actin assembly that colocalized with AChR clusters at bead–muscle contacts, whereas both the actin cytoskeleton and AChR clusters induced by bath agrin application were diffuse. By expressing a green fluorescent protein–coupled version of cortactin, a protein that binds to active F-actin, the dynamic nature of the actin cytoskeleton associated with new AChR clusters was revealed. In fact, the motive force generated by actin polymerization propelled the entire bead-induced AChR cluster with its attached bead to move in the plane of the membrane. In addition, actin polymerization is also necessary for the formation of both bead and agrin-induced AChR clusters as well as phosphotyrosine accumulation, as shown by their blockage by latrunculin A, a toxin that sequesters globular (G)-actin and prevents F-actin assembly. These results show that actin polymerization induced by synaptogenic signals is necessary for the movement and formation of AChR clusters and implicate a role of F-actin as a postsynaptic scaffold for the assembly of structural and signaling molecules in neuromuscular junction formation.
PMCID: PMC2150690  PMID: 10995438
acetylcholine receptor cluster; actin; neuromuscular junction; latrunculin; jasplakinolide
24.  Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms 
Virology Journal  2013;10:249.
Background
Cytoskeletal proteins are often involved in the virus life cycle, either at early steps during virus entry or at later steps during formation of new virus particles. Though actin filaments have been shown to play a role in the production of measles virus (MV), the importance of actin dynamics for virus assembly and budding steps is not known yet. Aim of this work was thus to analyze the distinctive consequences of F-actin stabilization or disruption for MV protein trafficking, particle assembly and virus release.
Results
MV infection studies in the presence of inhibitors differently affecting the actin cytoskeleton revealed that not only actin disruption but also stabilization of actin filaments interfered with MV particle release. While overall viral protein synthesis, surface expression levels of the MV glycoproteins, and cell-associated infectivity was not altered, cell-free virus titers were decreased. Interestingly, the underlying mechanisms of interference with late MV maturation steps differed principally after F-actin disruption by Cytochalasin D (CD) and F-actin stabilization by Jasplakinolide (Jaspla). While intact actin filaments were shown to be required for transport of nucleocapsids and matrix proteins (M-RNPs) from inclusions to the plasma membrane, actin dynamics at the cytocortex that are blocked by Jaspla are necessary for final steps in virus assembly, in particular for the formation of viral buds and the pinching-off at the plasma membrane. Supporting our finding that F-actin disruption blocks M-RNP transport to the plasma membrane, cell-to-cell spread of MV infection was enhanced upon CD treatment. Due to the lack of M-glycoprotein-interactions at the cell surface, M-mediated fusion downregulation was hindered and a more rapid syncytia formation was observed.
Conclusion
While stable actin filaments are needed for intracellular trafficking of viral RNPs to the plasma membrane, and consequently for assembly at the cell surface and prevention of an overexerted fusion by the viral surface glycoproteins, actin dynamics are required for the final steps of budding at the plasma membrane.
doi:10.1186/1743-422X-10-249
PMCID: PMC3750272  PMID: 23914985
Measles virus; Assembly; Budding; Jasplakinolide; Actin dynamics
25.  Annexin5 Plays a Vital Role in Arabidopsis Pollen Development via Ca2+-Dependent Membrane Trafficking 
PLoS ONE  2014;9(7):e102407.
The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative “linker” between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for pollen development and pollen tube growth. Our recent report suggested that downregulation of the function of Arabidopsis annexin 5 (Ann5) in transgenic Ann5-RNAi lines caused severely sterile pollen grains. However, little is known about the underlying mechanisms of the function of Ann5 in pollen. This study demonstrated that Ann5 associates with phospholipid membrane and this association is stimulated by Ca2+ in vitro. Brefeldin A (BFA) interferes with endomembrane trafficking and inhibits pollen germination and pollen tube growth. Both pollen germination and pollen tube growth of Ann5-overexpressing plants showed increased resistance to BFA treatment, and this effect was regulated by calcium. Overexpression of Ann5 promoted Ca2+-dependent cytoplasmic streaming in pollen tubes in vivo in response to BFA. Lactrunculin (LatB) significantly prohibited pollen germination and tube growth by binding with high affinity to monomeric actin and preferentially targeting dynamic actin filament arrays and preventing actin polymerization. Overexpression of Ann5 did not affect pollen germination or pollen tube growth in response to LatB compared with wild-type, although Ann5 interacts with actin filaments in a manner similar to some animal annexins. In addition, the sterile pollen phenotype could be only partially rescued by Ann5 mutants at Ca2+-binding sites when compared to the complete recovery by wild-type Ann5. These data demonstrated that Ann5 is involved in pollen development, germination and pollen tube growth through the promotion of endomembrane trafficking modulated by calcium. Our results provide reliable molecular mechanisms that underlie the function of Ann5 in pollen.
doi:10.1371/journal.pone.0102407
PMCID: PMC4097066  PMID: 25019283

Results 1-25 (344869)