Search tips
Search criteria

Results 1-25 (916048)

Clipboard (0)

Related Articles

1.  Imaging amyloid deposition in Lewy body diseases 
Neurology  2008;71(12):903-910.
Extrapyramidal motor symptoms precede dementia in Parkinson disease (PDD) by many years, whereas dementia occurs early in dementia with Lewy bodies (DLB). Despite this clinical distinction, the neuropsychological and neuropathologic features of these conditions overlap. In addition to widespread distribution of Lewy bodies, both diseases have variable burdens of neuritic plaques and neurofibrillary tangles characteristic of Alzheimer disease (AD).
To determine whether amyloid deposition, as assessed by PET imaging with the β-amyloid–binding compound Pittsburgh Compound B (PiB), can distinguish DLB from PDD, and to assess whether regional patterns of amyloid deposition correlate with specific motor or cognitive features.
Eight DLB, 7 PDD, 11 Parkinson disease (PD), 15 AD, and 37 normal control (NC) subjects underwent PiB-PET imaging and neuropsychological assessment. Amyloid burden was quantified using the PiB distribution volume ratio.
Cortical amyloid burden was higher in the DLB group than in the PDD group, comparable to the AD group. Amyloid deposition in the PDD group was low, comparable to the PD and NC groups. Relative to global cortical retention, occipital PiB retention was lower in the AD group than in the other groups. For the DLB, PDD, and PD groups, amyloid deposition in the parietal (lateral and precuneus)/posterior cingulate region was related to visuospatial impairment. Striatal PiB retention in the DLB and PDD groups was associated with less impaired motor function.
Global cortical amyloid burden is high in dementia with Lewy bodies (DLB) but low in Parkinson disease dementia. These data suggest that β-amyloid may contribute selectively to the cognitive impairment of DLB and may contribute to the timing of dementia relative to the motor signs of parkinsonism.
PMCID: PMC2637553  PMID: 18794492
2.  Brain amyloid and cognition in Lewy body diseases 
Many patients with Parkinson disease (PD) develop dementia (PDD), a syndrome that overlaps clinically and pathologically with dementia with Lewy bodies (DLB); PDD and DLB differ chiefly in the relative timing of dementia and parkinsonism. Brain amyloid deposition is an early feature of DLB and may account in part for its early dementia. We sought to confirm this hypothesis and also to determine whether amyloid accumulation contributes to cognitive impairment and dementia in the broad range of parkinsonian diseases.
29 cognitively normal PD, 14 PD subjects with mild cognitive impairment (PD-MCI), 18 with DLB, 12 with PDD and 85 healthy control subjects (HCS) underwent standardized neurologic and neuropsychological examinations and PiB imaging with PET. Apolipoprotein (APOE) genotypes were obtained in many patients. PiB retention was expressed as the distribution volume ratio using a cerebellar tissue reference.
PiB retention was significantly higher in DLB than in any of the other diagnostic groups. PiB retention did not differ across PDD, PD-MCI, PD, and HCS. Amyloid burden increased with age and with the presence of the APOEε4 allele in all patient groups. Only in the DLB group was amyloid deposition associated with impaired cognition.
DLB subjects have higher amyloid burden than subjects with PDD, PD-MCI, PD or HCS; amyloid deposits are linked to cognitive impairment only in DLB. Early amyloid deposits in DLB relative to PDD may account for their difference in the timing of dementia and parkinsonism.
PMCID: PMC3725259  PMID: 22693110
dementia; Lewy; Parkinson; amyloid; PiB
3.  Amyloid imaging of Lewy body-associated disorders 
Clinicopathologic studies of Parkinson disease dementia (PDD) and dementia with Lewy bodies (DLB) commonly reveal abnormal β-amyloid deposition in addition to diffuse Lewy bodies (α-synuclein aggregates), but the relationship among these neuropathologic features and the development of dementia in these disorders remains uncertain.
To determine whether amyloid-βdeposition detected by PET imaging with Pittsburgh Compound B (PIB) distinguishes clinical subtypes of Lewy body-associated disorders.
Nine healthy controls (HC), eight PD with no cognitive impairment (PD-noCI), nine PD with mild cognitive impairment (PD-MCI), six dementia with Lewy bodies (DLB) and fifteen PD with dementia (PDD) patients underwent [11C]-PIB PET imaging, clinical examination, and cognitive testing. The binding potential (BP) of PIB for predefined regions and the mean cortical BP (MCBP) were calculated for each participant. Annual longitudinal follow-up and postmortem examinations were performed on a subset of participants.
Regional PIB BPs and the proportion of individuals with abnormally elevated MCBP were not significantly different across participant groups. Elevated PIB binding was associated with worse global cognitive impairment in participants with Lewy body disorders but was not associated with any other clinical or neuropsychological features, including earlier onset or faster rate of progression of cognitive impairment.
These results suggest that the presence of fibrillar amyloid-βdoes not distinguish between clinical subtypes of Lewy body-associated disorders, although larger numbers are needed to more definitively rule out this association. Amyloid-βmay modify the severity of global cognitive impairment in individuals with Lewy body-associated dementia.
PMCID: PMC2978796  PMID: 20922808
Parkinson’s disease; Parkinson’s disease with dementia; Dementia with Lewy bodies; PET
4.  In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia 
Neurology  2010;74(1):77-84.
To investigate the specificity of in vivo amyloid imaging with [11C]–Pittsburgh Compound B (PIB) in Parkinson disease dementia (PDD).
We performed detailed neuropathologic examination for 3 individuals with PDD who had PIB PET imaging within 15 months of death.
We observed elevated cortical uptake of [11C]-PIB on in vivo PET imaging in 2 of the 3 cases. At autopsy, all 3 individuals had abundant cortical Lewy bodies (Braak PD stage 6), and were classified as low-probability Alzheimer disease (AD) based on NIA-Reagan criteria. The 2 PIB-positive individuals had abundant diffuse Aβ plaques but only sparse neuritic plaques and intermediate neurofibrillary tangle pathology. The PIB-negative individual had rare diffuse plaques, no neuritic plaques, and low neurofibrillary tangle burden.
[11C]–Pittsburgh Compound B (PIB) PET is specific for fibrillar Aβ molecular pathology but not for pathologic diagnosis of comorbid Alzheimer disease in individuals with Parkinson disease dementia. The ability to specifically identify fibrillar Aβ amyloid in the setting of α-synucleinopathy makes [11C]-PIB PET a valuable tool for prospectively evaluating how the presence of Aβ amyloid influences the clinical course of dementia in patients with Lewy body disorders.
= Alzheimer disease;
= binding potentials;
= Clinical Dementia Rating;
= dementia of the Alzheimer type;
= dementia with Lewy bodies;
= distribution volume;
= Mental State Examination;
= Neuropsychiatric Inventory Questionnaire;
= Parkinson disease dementia;
= Pittsburgh Compound B;
= Unified Parkinson's Disease Rating Scale.
PMCID: PMC2809026  PMID: 20038776
5.  Performance on the dementia rating scale in Parkinson's disease with dementia and dementia with Lewy bodies: comparison with progressive supranuclear palsy and Alzheimer's disease 
Background: The relation between dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD) is unknown.
Objectives: To compare the cognitive profiles of patients with DLB and PDD, and compare those with the performance of patients with a subcortical dementia (progressive supranuclear palsy) and a cortical dementia (Alzheimer's disease).
Design: Survey of cognitive features.
Setting: General community in Rogaland county, Norway, and a university dementia and movement disorder research centre in the USA.
Patients: 60 patients with DLB, 35 with PDD, 49 with progressive supranuclear palsy, and 29 with Alzheimer's disease, diagnosed by either standardised clinical procedures and criteria (all PDD and Alzheimer cases and 76% of cases of progressive supranuclear palsy), or necropsy (all DLB cases and 24% of cases of progressive supranuclear palsy). Level of dementia severity was matched using the total score on the dementia rating scale adjusted for age and education.
Main outcome measures: Dementia rating scale subscores corrected for age.
Results: No significant differences between the dementia rating scale subscores in the PDD and DLB groups were found in the severely demented patients; in patients with mild to moderate dementia the conceptualisation subscore was higher in PDD than in DLB (p = 0.03). Compared with Alzheimer's disease, PDD and DLB had higher memory subscores (p < 0.001) but lower initiation and perseveration (p = 0.008 and p=0.021) and construction subscores (p = 0.009 and p = 0.001). DLB patients had a lower conceptualisation subscore (p = 0.004). Compared with progressive supranuclear palsy, PDD and DLB patients had lower memory subscores (p < 0.001).
Conclusions: The cognitive profiles of patients with DLB and PDD were similar, but they differed from those of patients with Alzheimer's disease and progressive supranuclear palsy. The cognitive pattern in DLB and PDD probably reflects the superimposition of subcortical deficits upon deficits typically associated with Alzheimer's disease.
PMCID: PMC1738667  PMID: 12933921
6.  Antemortem amyloid imaging and β-amyloid pathology in a case with dementia with Lewy Bodies 
Neurobiology of Aging  2010;33(5):878-885.
The association between antemortem [11C]-Pittsburgh Compound B (PiB) retention and β-amyloid (Aβ) load, Lewy body (LB) and neurofibrillary tangle (NFT) densities were investigated in a pathologically confirmed case of dementia with LB (DLB). 76-year-old man presenting with a clinical diagnosis of DLB had undergone PiB–positron emission tomography (PET), 18F FDG-PET and MRI 18 months before death. The pathologic diagnosis was DLB neocortical-type with low-likelihood of Alzheimer's disease by NIA-Reagan criteria. Sections from regions of interest (ROI) on post-mortem examination were studied. A significant correlation was found between cortical Aβ density and PiB retention in the 17 corresponding ROIs (r=0.899; p<0.0001). Bielschowsky silver stain revealed mostly sparse neocortical neuritic plaques; whereas diffuse plaques were frequent. There was no correlation between LB density and PiB retention (r=0.13; p=0.66); nor between NFT density and PiB retention (r=−0.36; p=0.17). The ROI-based analysis of imaging and histopathological data confirms that PiB uptake on PET is a specific marker for Aβ density, but cannot differentiate neuritic from diffuse amyloid plaques in this case with DLB.
PMCID: PMC3026854  PMID: 20961664
Dementia with Lewy bodies; amyloid imaging; PET; pathology; amyloid
7.  Dementia with Lewy bodies 
Neurology  2014;83(9):801-809.
To investigate clinical, imaging, and pathologic associations of the cingulate island sign (CIS) in dementia with Lewy bodies (DLB).
We retrospectively identified and compared patients with a clinical diagnosis of DLB (n = 39); patients with Alzheimer disease (AD) matched by age, sex, and education (n = 39); and cognitively normal controls (n = 78) who underwent 18F-fluorodeoxyglucose (FDG) and C11 Pittsburgh compound B (PiB)-PET scans. Among these patients, we studied those who came to autopsy and underwent Braak neurofibrillary tangle (NFT) staging (n = 10).
Patients with a clinical diagnosis of DLB had a higher ratio of posterior cingulate to precuneus plus cuneus metabolism, cingulate island sign (CIS), on FDG-PET than patients with AD (p < 0.001), a finding independent of β-amyloid load on PiB-PET (p = 0.56). Patients with CIS positivity on visual assessment of FDG-PET fit into the group of high- or intermediate-probability DLB pathology and received clinical diagnosis of DLB, not AD. Higher CIS ratio correlated with lower Braak NFT stage (r = −0.96; p < 0.001).
Our study found that CIS on FDG-PET is not associated with fibrillar β-amyloid deposition but indicates lower Braak NFT stage in patients with DLB. Identifying biomarkers that measure relative contributions of underlying pathologies to dementia is critical as neurotherapeutics move toward targeted treatments.
PMCID: PMC4155048  PMID: 25056580
8.  Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease 
Neurology  2011;76(21):1797-1803.
Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB.
Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus.
Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus.
Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD.
PMCID: PMC3100121  PMID: 21525427
9.  APOE ε4 Increases Risk for Dementia in Pure Synucleinopathies 
JAMA neurology  2013;70(2):223-228.
To test for an association between the apolipoprotein E (APOE) ε4 allele and dementias with synucleinopathy.
Genetic case-control association study.
Academic research.
Autopsied subjects were classified into 5 categories: dementia with high-level Alzheimer disease (AD) neuropathologic changes (NCs) but without Lewy body disease (LBD) NCs (AD group; n=244), dementia with LBDNCs and high-level ADNCs (LBD-AD group; n=224), dementia with LBDNCs and no or low levels of ADNCs (pure DLB [pDLB] group; n=91), Parkinson disease dementia (PDD) with no or low levels of ADNCs (n=81), and control group (n=269).
Main Outcome Measure
The APOE allele frequencies.
The APOE ε4 allele frequency was significantly higher in the AD (38.1%), LBD-AD (40.6%), pDLB (31.9%), and PDD (19.1%) groups compared with the control group (7.2%; overall χ42=185.25; P=5.56×10−39), and it was higher in the pDLB group than the PDD group (P=.01). In an age-adjusted and sex-adjusted dominant model, ε4 was strongly associated with AD (odds ratio, 9.9; 95% CI, 6.4–15.3), LBD-AD (odds ratio, 12.6; 95% CI, 8.1–19.8), pDLB (odds ratio, 6.1; 95% CI, 3.5–10.5), and PDD (odds ratio, 3.1; 95% CI, 1.7–5.6).
The APOE ε4 allele is a strong risk factor across the LBD spectrum and occurs at an increased frequency in pDLB relative to PDD. This suggests that ε4 increases the likelihood of presenting with dementia in the context of a pure synucleinopathy. The elevated ε4 frequency in the pDLB and PDD groups, in which the overall brain neuritic plaque burden was low, indicates that apoE might contribute to neurodegeneration through mechanisms unrelated to amyloid processing.
PMCID: PMC3580799  PMID: 23407718
10.  Multimodality Imaging Characteristics of Dementia with Lewy Bodies 
Neurobiology of Aging  2011;33(9):2091-2105.
Dementia with Lewy bodies (DLB) is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD). Our objective was to determine whether the 11C–Pittsburgh Compound-B (PiB) retention and regional hypometabolism on PET and regional cortical atrophy on MRI are complementary in characterizing patients with DLB and differentiating them from AD. We studied age, gender and education matched patients with a clinical diagnosis of DLB (n=21), AD (n=21), and cognitively normal subjects (n=42). Hippocampal atrophy, global cortical PiB retention and occipital lobe metabolism in combination distinguished DLB from AD better than any of the measurements alone (area under the receiver operating characteristic=0.98).Five of the DLB and AD patients who underwent autopsy were distinguished through multimodality imaging. These data demonstrate that MRI and PiB PET contribute to characterizing the distinct pathological mechanisms in patients with AD compared to DLB. Occipital and posterior parietotemporal lobe hypometabolism is a distinguishing feature of DLB and this regional hypometabolic pattern is independent of the amyloid pathology.
PMCID: PMC3288845  PMID: 22018896
Dementia with Lewy bodies; MRI; PET; FDG; PiB; Alzheimer's disease
11.  Demography, diagnostics, and medication in dementia with Lewy bodies and Parkinson’s disease with dementia: data from the Swedish Dementia Quality Registry (SveDem) 
Whether dementia with Lewy bodies (DLB) and Parkinson’s disease with dementia (PDD) should be considered as one entity or two distinct conditions is a matter of controversy. The aim of this study was to compare the characteristics of DLB and PDD patients using data from the Swedish Dementia Quality Registry (SveDem).
SveDem is a national Web-based quality registry initiated to improve the quality of diagnostic workup, treatment, and care of patients with dementia across Sweden. Patients with newly diagnosed dementia of various types were registered in SveDem during the years 2007–2011. The current cross-sectional report is based on DLB (n = 487) and PDD (n = 297) patients. Demographic characteristics, diagnostic workup, Mini-Mental State Examination (MMSE) score, and medications were compared between DLB and PDD groups.
No gender differences were observed between the two study groups (P = 0.706). PDD patients were significantly younger than DLB patients at the time of diagnosis (74.8 versus 76.8 years, respectively; P < 0.001). A significantly higher prevalence of patients with MMSE score ≤24 were found in the PDD group (75.2% versus 67.6%; P = 0.030). The mean number of performed diagnostic modalities was significantly higher in the DLB group (4.9 ± 1.7) than in the PDD group (4.1 ± 1.6; P < 0.001). DLB patients were more likely than PDD patients to be treated with cholinesterase inhibitors (odds ratio = 2.5, 95% confidence interval = 1.8–3.5), whereas the use of memantine, antidepressants, and antipsychotics did not differ between the groups.
This study demonstrates several differences in the dementia work-up between DLB and PDD. The onset of dementia was significantly earlier in PDD, while treatment with cholinesterase inhibitors was more common in DLB patients. Severe cognitive impairment (MMSE score ≤24) was more frequent in the PDD group, whereas more diagnostic tests were used to confirm a DLB diagnosis. Some similarities also were found, such as gender distribution and use of memantine, antidepressants, and antipsychotics drugs. Further follow-up cost-effectiveness studies are needed to provide more evidence for workup and treatment guidelines of DLB and PDD.
PMCID: PMC3700781  PMID: 23847419
dementia with Lewy bodies; Parkinson’s disease with dementia; age; diagnostic approach; medication; Mini-Mental State Examination
12.  PET imaging of amyloid with Florbetapir F 18 and PET imaging of dopamine degeneration with 18F-AV-133 (florbenazine) in patients with Alzheimer’s disease and Lewy body disorders 
BMC Neurology  2014;14:79.
Biomarkers based on the underlying pathology of Alzheimer’s disease (AD) and Dementia with Lewy Bodies (DLB) have the potential to improve diagnosis and understanding of the substrate for cognitive impairment in these disorders. The objective of this study was to compare the patterns of amyloid and dopamine PET imaging in patients with AD, DLB and Parkinson’s disease (PD) using the amyloid imaging agent florbetapir F 18 and 18F-AV-133 (florbenazine), a marker for vesicular monamine type 2 transporters (VMAT2).
Patients with DLB and AD, Parkinson’s disease (PD) and healthy controls (HC) were recruited for this study. On separate days, subjects received intravenous injections of florbetapir, and florbenazine. Amyloid burden and VMAT2 density were assessed quantitatively and by binary clinical interpretation. Imaging results for both tracers were compared across the four individual diagnostic groups and for combined groups based on underlying pathology (AD/DLB vs. PD/HC for amyloid burden and PD/DLB vs. AD/HC for VMAT binding) and correlated with measures of cognition and parkinsonism.
11 DLB, 10 AD, 5 PD, and 5 controls participated in the study. Amyloid binding was significantly higher in the combined AD/DLB patient group (n = 21) compared to the PD/HC groups (n = 10, mean SUVr: 1.42 vs. 1.07; p = 0.0006). VMAT2 density was significantly lower in the PD/DLB group (n = 16) compared to the AD/ HC group (n = 15; 1.83 vs. 2.97; p < 0.0001). Within the DLB group, there was a significant correlation between cognitive performance and striatal florbenazine binding (r = 0.73; p = 0.011).
The results of this study show significant differences in both florbetapir and florbenazine imaging that are consistent with expected pathology. In addition, VMAT density correlated significantly with cognitive impairment in DLB patients ( identifier: NCT00857506, registered March 5, 2009).
PMCID: PMC4027995  PMID: 24716655
PET imaging; Alzheimer’s disease; Parkinson’s disease; Biomarkers
13.  Dementia with Lewy Bodies versus Alzheimer's Disease and Parkinson's Disease Dementia: A Comparison of Cognitive Profiles 
Background and Purpose
It is particularly difficult to differentiate dementia with Lewy bodies (DLB) from the related dementias of Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Few studies have been designed to comparatively analyze detailed neuropsychological assessments of DLB patients and patients with AD and PDD.
Three groups of patients participated in this study: 10 with DLB, 76 with AD, and 17 with PDD, who had been diagnosed as probable DLB, AD, and PDD, respectively, according to the clinical criteria of the consortium on DLB, National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer's Disease and Related Disorder Association, and the clinical diagnostic criteria for PDD. All patients were evaluated by careful neurological examination with detailed neuropsychological testing.
Significant differences among the three groups were found for attention, memory, and executive function, which included tasks of backward digit span, three-word recall, verbal delayed recall, and the Stroop test. Post hoc analysis revealed that the deficiencies of attention on the digit span task were greater in the DLB group than in the AD and PDD groups. The scores for episodic verbal memory tasks were significantly lower in the DLB and AD groups than in the PDD group. The performance in frontal executive function, as indicated by the Stroop test, was significantly worse in the DLB and PDD groups than in the AD group.
The results of the present study show that the pattern of cognitive dysfunction, in terms of attention, episodic memory, and executive functions, differ between patients with DLB and patients with AD and PDD.
PMCID: PMC3079155  PMID: 21519522
dementia with lewy bodies; Alzheimer's disease; Parkinson's disease dementia; cognition; neuropsychology
14.  Thalamic cholinergic innervation is spared in Alzheimer disease compared to Parkinsonian disorders 
Neuroscience Letters  2012;514(2):169-172.
There are two major sources of cholinergic projections in the brain. The nucleus basalis of Meynert provides the principal cholinergic input of the cortical mantle and the pedunculopontine nucleus-laterodorsal tegmental complex (PPN-LDTC; hereafter referred to as PPN) provides the major cholinergic input to the thalamus. Cortical cholinergic denervation has previously been shown to be part of Alzheimer and parkinsonian dementia but there is less information about subcortical thalamic cholinergic denervation. We investigated thalamic cholinergic afferent integrity by measuring PPN-Thalamic (PPN-Thal) acetylcholinesterase (AChE) activity via PET imaging in Alzheimer (AD), Parkinson disease without dementia (PD), Parkinson disease with dementia (PDD) and dementia with Lewy bodies (DLB).
AD (n=13; mean age 75.4±5.5), PD (n=11; age 71.4±6.4), PDD (n=6; age 70.8±4.7), DLB (n=6; age 68.0±8.6) and normal controls (NC; n=14; age 69.0±7.5) subjects underwent AChE [11C]-methyl-4-piperidinyl propionate (PMP) PET imaging. PPN-Thal PET data were analyzed using the Nagatsuka method.
There were no significant differences in mean age between the groups (F=1.86, p=0.134). Kruskal-Wallis testing demonstrated a significant group effect for PPN-Thal AChE hydrolysis rates (F=9.62, P<0.0001). Compared to NC, reduced thalamic k3 hydrolysis rate was noted in subjects with PDD (−19.8%; AChE k3 hydrolysis rates 0.1072±0.0143 min−1), DLB (−17.4%; 0.1103±0.0112 min−1) and PD (−12.8%; 0.1165±0.0114 min−1). Each of these 3 subgroups were statistically different from AD subjects (−0.7%; 0.1326±0.0095 min−1) who showed relatively spared thalamic k3 hydrolysis rates which were comparable to NC (0.1336±0.0142 min−1).
Thalamic cholinergic denervation is present in PD, PDD, and DLB but not in AD. Neurodegenerative involvement of thalamic cholinergic afferent projections may contribute to disease-specific motor and cognitive abnormalities.
PMCID: PMC3320689  PMID: 22414859
Acetylcholine; [11C] PMP PET; Alzheimer disease; Parkinson disease; PPN; Parkinson disease with dementia
15.  Early AD pathology in a [C-11]PiB-negative case: a PiB-amyloid imaging, biochemical, and immunohistochemical study 
Acta Neuropathologica  2012;123(3):433-447.
Amyloid-β (Aβ) deposits are detectable in the brain in vivo using positron emission tomography (PET) and [C-11]-labeled Pittsburgh Compound B ([C-11]PiB); however, the sensitivity of this technique is not well understood. In this study, we examined Aβ pathology in an individual who had clinical diagnoses of probable dementia with Lewy bodies and possible Alzheimer’s disease (AD) but with no detectable [C-11]PiB PET retention ([C-11]PiB(−)) when imaged 17 months prior to death. Brain samples were processed in parallel with region-matched samples from an individual with a clinical diagnosis of probable AD and a positive [C-11]PiB PET scan ([C-11]PiB(+)) when imaged 10 months prior to death. In the [C-11]PiB(−) case, Aβ plaques were sparse, occupying less than 2% cortical area, and were weakly labeled with 6-CN-PiB, a highly fluorescent derivative of PiB. In contrast, Aβ plaques occupied up to 12% cortical area in the [C-11]PiB(+) case, and were intensely labeled with 6-CN-PIB. The [C-11]PiB(−) case had low levels of [H-3]PiB binding (<100 pmol/g) and Aβ1–42 (<500 pmol/g) concentration except in the frontal cortex where Aβ1–42 values (788 pmol/g) approached cortical values in the [C-11]PiB(+) case (800–1,700 pmol/g). In several cortical regions of the [C-11]PiB(−) case, Aβ1–40 levels were within the range of cortical Aβ1–40 values in the [C-11]PiB(+) case. Antemortem [C-11]PiB DVR values correlated well with region-matched postmortem measures of Aβ1–42 and Aβ1–40 in the [C-11]PiB(+), and with Aβ1–42 only in the [C-11]PiB(−) case. The low ratios of [H-3]PiB binding levels to Aβ concentrations and 6-CN-PiB to Aβ plaque loads in the [C-11]PiB(−) case indicate that Aβ pathology in the brain may be associated with low or undetectable levels of [C-11]PiB retention. Studies in greater numbers of [C-11]PiB PET autopsy cases are needed to define the Aβ concentration and [H-3]PiB binding levels required to produce a positive [C-11]PiB PET signal.
PMCID: PMC3383058  PMID: 22271153
Alzheimer’s disease; Brain amyloidosis; Pittsburgh Compound B; Plaques; Imaging
16.  Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia 
F1000Research  2014;3:108.
Dementia with Lewy Bodies (DLB) and Parkinson’s Disease Dementia (PDD) together, represent the second most common cause of dementia, after Alzheimer’s disease (AD). The synaptic dysfunctions underlying the cognitive decline and psychiatric symptoms observed throughout the development of PDD and DLB are still under investigation. In this study we examined the expression level of Dynamin1 and phospho-CaMKII, key proteins of endocytosis and synaptic plasticity respectively, as potential markers of molecular processes specifically deregulated with DLB and/or PDD. In order to measure the levels of these proteins, we isolated grey matter from post-mortem prefrontal cortex area (BA9), anterior cingulated gyrus (BA24) and parietal cortex (BA40) from DLB and PDD patients in comparison to age-matched controls and a group of AD cases. Clinical and pathological data available included the MMSE score, neuropsychiatric history, and semi-quantitative scores for AD pathology (plaques - tangles) and for α-synuclein (Lewy bodies).
Changes in the expression of the synaptic markers, and correlates with neuropathological features and cognitive decline were predominantly found in the prefrontal cortex. On one hand, levels of Dynamin1 were significantly reduced, and correlated with a higher rate of cognitive decline observed in cases from three dementia groups. On the other hand, the fraction of phospho-CaMKII was decreased, and correlated with a high score of plaques and tangles in BA9. Interestingly, the correlation between the rate of cognitive decline and the level of Dynamin1 remained when the analysis was restricted to the PDD and DLB cases, highlighting an association of Dynamin1 with cognitive decline in people with Lewy Body dementia.
PMCID: PMC4309165  PMID: 25671083
Alzheimer’s disease; Dementia with Lewy bodies; Parkinson’s disease with dementia; synaptic dysfunction; vesicle recycling; synaptic plasticity; beta amyloid; tau; cognitive impairment
17.  Clinicians' ability to diagnose dementia with Lewy bodies is not affected by β-amyloid load 
Neurology  2015;84(5):496-499.
To investigate whether an increasing load of β-amyloid and/or neuritic plaques influences the phenotype, and thus the clinical diagnostic accuracy, of dementia with Lewy bodies (DLB).
A series of 64 subjects with autopsy-proven DLB was studied. Last diagnosis before death was used to determine the clinical diagnostic accuracy of DLB in relation to Lewy body distribution and extent of Alzheimer β-amyloid and/or neuritic pathology. DLB pathologic diagnosis was made according to consensus criteria, using α-synuclein immunostaining for Lewy body identification. β-Amyloid immunostaining was used for quantifying β-amyloid deposits. The Consortium to Establish a Registry for Alzheimer's Disease criteria and Braak stage were applied for semiquantitative grading of neuritic plaque and neurofibrillary tangle pathology.
Overall clinical diagnostic accuracy for the entire DLB cohort was high (80%), reflecting the high prevalence of core clinical features (fluctuations [81%], parkinsonism [77%], visual hallucinations [70%]). Lower frequencies of core clinical features of DLB, resulting in lower accuracy of its clinical diagnosis, were associated with decreasing Lewy body distribution (p < 0.0001) and with increasing neuritic plaque pathology (p = 0.035), but not with the number of β-amyloid plaque deposits.
The likelihood of occurrence of the DLB clinical syndrome is positively related to the extent of Lewy body pathology and negatively related to the severity of Alzheimer neuritic pathology, while β-amyloid load has no effect.
PMCID: PMC4336072  PMID: 25552579
18.  Aβ-amyloid deposition in patients with Parkinson disease at risk for development of dementia 
Neurology  2012;79(11):1161-1167.
The aim of our study was to examine the relationship between corticostriatal Aβ-amyloid deposition and cognitive dysfunction in a cohort of patients with Parkinson disease (PD) at risk for dementia.
This was a cross-sectional study of 40 patients with PD with mild cognitive impairment (MCI) or other known dementia risk factors. Subjects underwent dynamic Aβ-amyloid and vesicular monoamine transporter 2 PET imaging using [11C] Pittsburgh compound B (PiB) and [11C]dihydrotetrabenazine (DTBZ), respectively, and neuropsychological assessment. PiB and DTBZ PET data were analyzed using the Logan graphical method to determine cerebral PiB deposition relative to the cerebellar hemispheres and striatal DTBZ binding relative to occipital neocortex. Component z scores were calculated for individual cognitive domains (memory, visuospatial processing, working memory/attention, and executive function) and combined linearly for global estimation of cognition. Correlation of cognitive function and cortical PiB binding was investigated.
Elevated cerebral PiB binding at levels seen in patients with AD was infrequent (6 of 40 subjects). Mean cortical PiB binding in the entire cohort was 1.16 ± 0.16 (distribution volume ratio; range 0.96–1.78). A significant correlation was noted between cortical PiB binding and global composite cognitive function (r = −0.55, p < 0.005) as well as the Wechsler Adult Intelligence Scale score (r = −0.54, p = 0.0004).
Elevated cerebral Aβ-amyloid deposition at levels seen in Alzheimer disease is uncommon in subjects with PD at risk for dementia. In our sample, the prevalence of markedly elevated PiB binding was significantly lower than that found in prior studies of cognitively normal elderly individuals. Neocortical PiB binding correlated robustly with measures of cognitive impairment in our cohort.
PMCID: PMC3525303  PMID: 22933741
19.  Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease 
Brain  2008;131(6):1630-1645.
The positron emission tomography (PET) radiotracer Pittsburgh Compound-B (PiB) binds with high affinity to β-pleated sheet aggregates of the amyloid-β (Aβ) peptide in vitro. The in vivo retention of PiB in brains of people with Alzheimer's disease shows a regional distribution that is very similar to distribution of Aβ deposits observed post-mortem. However, the basis for regional variations in PiB binding in vivo, and the extent to which it binds to different types of Aβ-containing plaques and tau-containing neurofibrillary tangles (NFT), has not been thoroughly investigated. The present study examined 28 clinically diagnosed and autopsy-confirmed Alzheimer's disease subjects, including one Alzheimer's disease subject who had undergone PiB-PET imaging 10 months prior to death, to evaluate region- and substrate-specific binding of the highly fluorescent PiB derivative 6-CN-PiB. These data were then correlated with region-matched Aβ plaque load and peptide levels, [3H]PiB binding in vitro, and in vivo PET retention levels. We found that in Alzheimer's disease brain tissue sections, the preponderance of 6-CN-PiB binding is in plaques immunoreactive to either Aβ42 or Aβ40, and to vascular Aβ deposits. 6-CN-PiB labelling was most robust in compact/cored plaques in the prefrontal and temporal cortices. While diffuse plaques, including those in caudate nucleus and presubiculum, were less prominently labelled, amorphous Aβ plaques in the cerebellum were not detectable with 6-CN-PiB. Only a small subset of NFT were 6-CN-PiB positive; these resembled extracellular ‘ghost’ NFT. In Alzheimer's disease brain tissue homogenates, there was a direct correlation between [3H]PiB binding and insoluble Aβ peptide levels. In the Alzheimer's disease subject who underwent PiB-PET prior to death, in vivo PiB retention levels correlated directly with region-matched post-mortem measures of [3H]PiB binding, insoluble Aβ peptide levels, 6-CN-PiB- and Aβ plaque load, but not with measures of NFT. These results demonstrate, in a typical Alzheimer's disease brain, that PiB binding is highly selective for insoluble (fibrillar) Aβ deposits, and not for neurofibrillary pathology. The strong direct correlation of in vivo PiB retention with region-matched quantitative analyses of Aβ plaques in the same subject supports the validity of PiB-PET imaging as a method for in vivo evaluation of Aβ plaque burden.
PMCID: PMC2408940  PMID: 18339640
Pittsburgh Compound-B; PiB; amyloid imaging; plaques; PET imaging
20.  Verbal Learning and Memory in Patients with Dementia with Lewy Bodies or Parkinson's Disease with Dementia 
This study compared verbal learning and memory in patients with autopsy-confirmed dementia with Lewy Bodies (DLB) and patients with Parkinson's disease with dementia (PDD). Twenty-four DLB patients, 24 PDD patients, and 24 normal comparison participants were administered the California Verbal Learning Test. The three groups were matched on demographic variables and the two patient groups were matched on the Mattis Dementia Rating Scale. The results indicated that DLB patients recalled less information than PDD patients on all but one recall measure and displayed a more rapid rate of forgetting. In contrast, the PDD patients committed a greater percent of perseveration errors than the DLB patients. The two groups did not differ in the percentage of recall intrusion errors or any measures of recognition. A discriminant function analysis (DFA) using short delay cued recall, percent perseveration errors, and list b recall, differentiated the DLB and PDD groups with 81.3% accuracy. The application of the DFA algorithm to another sample of 42 PDD patients resulted in a 78.6% correct classification rate. The results suggest that, despite equivalent levels of general cognitive impairment, patients with DLB or PDD exhibit a different pattern of verbal learning and memory deficits.
PMCID: PMC2935683  PMID: 19221922
21.  Neuropathologic substrates of Parkinson’s disease dementia 
Annals of neurology  2012;72(4):587-598.
To examine the neuropathological substrates of cognitive dysfunction and dementia in Parkinson’s disease (PD).
140 patients with a clinical diagnosis of PD and either normal cognition or onset of dementia two or more years after motor symptoms (PDD) were studied. Patients with a clinical diagnosis of dementia with Lewy bodies were excluded.
Autopsy records of genetic data and semi-quantitative scores for the burden of neurofibrillary tangles (NFTs), senile plaques (SPs), Lewy body (LB/LN) and other pathologies were used to develop a multivariate logistic regression model to determine the independent association of these variables with dementia. Correlates of co-morbid Alzheimer’s disease (PDD+AD) were also examined.
92 PD patients developed dementia and 48 remained cognitively normal. Severity of cortical LB/LN (CLB/LN) pathology was positively associated with dementia (p<0.001), with an odds-ratio (OR) of 4.06 (CI95%1.87–8.81), as was Apolipoprotein E4 (APOE4) genotype (p=0.018,OR4.19 CI95% 1.28–13.75). 28.6% of all PD cases had sufficient pathology for co-morbid AD, of which 89.5% were demented. The neuropathological diagnosis of PDD+AD correlated with an older age of PD onset (p=0.001,OR1.12 CI95%1.04–1.21), higher CLB/LN burden (p=0.037,OR 2.48 CI95%1.06–5.82), and cerebral amyloid angiopathy severity (p=0.032, OR4.16 CI95%1.13–15.30).
CLB/LN pathology is the most significant correlate of dementia in PD. Additionally, APOE4 genotype may independently influence the risk of dementia in PD. AD pathology was abundant in a subset of patients, and may modify the clinical phenotype. Thus, therapies that target α-synuclein, tau, or Aβ could potentially improve cognitive performance in PD.
PMCID: PMC3484250  PMID: 23037886
22.  Evaluating the relationship between amyloid-β and α-synuclein phosphorylated at Ser129 in dementia with Lewy bodies and Parkinson’s disease 
Lewy body and Alzheimer-type pathologies often co-exist. Several studies suggest a synergistic relationship between amyloid-β (Aβ) and α-synuclein (α-syn) accumulation. We have explored the relationship between Aβ accumulation and the phosphorylation of α-syn at serine-129 (pSer129 α-syn), in post-mortem human brain tissue and in SH-SY5Y neuroblastoma cells transfected to overexpress human α-syn.
We measured levels of Aβ40, Aβ42, α-syn and pSer129 α-syn by sandwich enzyme-linked immunosorbent assay, in soluble and insoluble fractions of midfrontal, cingulate and parahippocampal cortex and thalamus, from cases of Parkinson’s disease (PD) with (PDD; n = 12) and without dementia (PDND; n = 23), dementia with Lewy bodies (DLB; n = 10) and age-matched controls (n = 17). We also examined the relationship of these measurements to cognitive decline, as measured by time-to-dementia and the mini-mental state examination (MMSE) score in the PD patients, and to Braak tangle stage.
In most brain regions, the concentration of insoluble pSer129 α-syn correlated positively, and soluble pSer129 α-syn negatively, with the levels of soluble and insoluble Aβ. Insoluble pSer129 α-syn also correlated positively with Braak stage. In most regions, the levels of insoluble and soluble Aβ and the proportion of insoluble α-syn that was phosphorylated at Ser129 were significantly higher in the PD and DLB groups than the controls, and higher in the PDD and DLB groups than the PDND brains. In PD, the MMSE score correlated negatively with the level of insoluble pSer129 α-syn. Exposure of SH-SY5Y cells to aggregated Aβ42 significantly increased the proportion of α-syn that was phosphorylated at Ser129 (aggregated Aβ40 exposure had a smaller, non-significant effect).
Together, these data show that the concentration of pSer129 α-syn in brain tissue homogenates is directly related to the level of Aβ and Braak tangle stage, and predicts cognitive status in Lewy body diseases.
Electronic supplementary material
The online version of this article (doi:10.1186/s13195-014-0077-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4248436  PMID: 25452767
23.  Clinical and Neuropsychological Differences between Mild Parkinson's Disease Dementia and Dementia with Lewy Bodies 
The specific profile of dementia in Parkinson's disease (PDD) and dementia with Lewy bodies (DLB) in the earliest stages of dementia is still unclear and subject of considerable controversy.
We investigated 27 PDD patients and 24 DLB patients with parkinsonism in the early stage of dementia, i.e. with a Mini-Mental State Examination score of ≥24.
Compared to PDD, patients with DLB demonstrated significantly lower scores when testing attention and executive functions [modified card sorting test (p < 0.001) and digit span backward (p < 0.02)], as well as when testing constructive abilities [copy of complex designs (p = 0.001) and pentagon (p < 0.001)]. Using logistic regression analysis, diagnosis was predicted from the cognitive profile, with an overall accuracy of 88.2%. In addition, PDD patients showed a significantly higher Unified Parkinson's Disease Rating Scale (UPDRS) motor subscore (p < 0.001) as well as higher UPDRS motor item scores [tremor at rest (p = 0.01) and bradykinesia (p = 0.001)].
The cognitive profile in PDD differs from that in DLB in the early stage of dementia, with worse performance on tests of attention and executive functions and constructive abilities in DLB compared to PDD patients. In contrast, motor symptoms are more severe in PDD than in DLB.
PMCID: PMC4483490  PMID: 26195977
Parkinson's disease; Mild dementia; Dementia with Lewy bodies; Clinical presentation
24.  Striatal and extrastriatal dopamine transporter levels relate to cognition in Lewy body diseases: an 11C altropane positron emission tomography study 
The biological basis of cognitive impairment in parkinsonian diseases is believed to be multifactorial. We investigated the contribution of dopamine deficiency to cognition in Parkinson disease (PD) and dementia with Lewy bodies (DLB) with dopamine transporter (DAT) imaging.
We acquired 11C altropane PET, magnetic resonance imaging and cognitive testing in 19 nondemented subjects with PD, 10 DLB and 17 healthy control subjects (HCS). We analyzed DAT concentration in putamen, caudate, anterior cingulate (AC), orbitofrontal and prefrontal regions, using the Standardized Uptake Volume Ratio with partial volume correction, and we related DAT concentration and global cortical thickness to neuropsychological performance.
DAT concentration in putamen and in caudate were similar in PD and DLB groups and significantly lower than in HCS. Reduced caudate DAT concentration was associated with worse Clinical Dementia Rating Scale–sum of boxes (CDR-SB) scores and visuospatial skills in DLB but not in PD or HCS groups. Adjusting for putamen DAT concentration, as a measure of severity of motor disease, caudate DAT concentration was lower in DLB than in PD. Higher AC DAT concentration was associated with lower putamen DAT concentration in DLB and with higher putamen DAT concentration in PD. Higher AC DAT concentration in DLB correlated with greater impairment in semantic memory and language.
Caudate and AC dopamine dysfunction contribute in opposing directions to cognitive impairment in DLB.
PMCID: PMC4245149  PMID: 25429309
25.  Analysis of the Substantia Innominata Volume in Patients with Parkinson’s Disease with Dementia, Dementia with Lewy Bodies, and Alzheimer’s Disease 
Journal of Movement Disorders  2011;4(2):68-72.
Background and Purpose
The substantia innominata (SI) contains the nucleus basalis of Meynert, which is the major source of cholinergic input to the cerebral cortex. We hypothesized that degeneration of the SI and its relationship to general cognitive performance differs in amyloidopathy and synucleinopathy.
We used magnetic resonance imaging (MRI)-based volumetric analysis to evaluate the SI volume in patients with amnestic mild cognitive impairment (aMCI), Alzheimer’s disease (AD), Parkinson’s disease-mild cognitive impairment (PD-MCI), PD with dementia (PDD), dementia with Lewy bodies (DLB), and healthy elderly controls. The correlation between SI volume and general cognitive performance, measured using the Korean version of the Mini-Mental State Examination (K-MMSE), was examined.
Compared to control subjects, the mean normalized SI volume was significantly decreased in all of the other groups. The normalized SI volume did not differ between the subjects with PDD and DLB, whereas it was significantly smaller in subjects with PDD (p = 0.029) and DLB (p = 0.011) compared with AD. In subjects with PD-related cognitive impairment (PD-MCI, PDD, or DLB), there was a significant positive correlation between the SI volume and K-MMSE score (r = 0.366, p < 0.001), whereas no correlation was seen in subjects with AD-related cognitive impairment (aMCI or AD).
Our data suggest that the SI loss is greater in synucleinopathy-related dementia (PDD or DLB) than in AD and that the contribution of the SI to cognitive performance is greater in synucleinopathy than in amyloidopathy.
PMCID: PMC4027689  PMID: 24868398
The substantia innominata; Alzheimer’s disease; Parkinson’s disease-related cognitive dysfunction

Results 1-25 (916048)