Search tips
Search criteria

Results 1-25 (883326)

Clipboard (0)

Related Articles

1.  Biochemical and Structural Characterization of the Glucan and Fructan Exopolysaccharides Synthesized by the Lactobacillus reuteri Wild-Type Strain and by Mutant Strains 
Lactobacillus reuteri LB 121 cells growing on sucrose synthesize large amounts of a glucan (d-glucose) and a fructan (d-fructose) with molecular masses of 3,500 and 150 kDa, respectively. Methylation studies and 13C or 1H nuclear magnetic resonance analysis showed that the glucan has a unique structure consisting of terminal, 4-substituted, 6-substituted, and 4,6-disubstituted α-glucose in a molar ratio of 1.1:2.7:1.5:1.0. The fructan was identified as a (2→6)-β-d-fructofuranan or levan, the first example of levan synthesis by a Lactobacillus species. Strain LB 121 possesses glucansucrase and levansucrase enzymes that occur in a cell-associated and a cell-free state after growth on sucrose, raffinose, or maltose but remain cell associated during growth on glucose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of sucrose culture supernatants, followed by staining of gels for polysaccharide synthesizing activity with sucrose as a substrate, revealed the presence of a single glucansucrase protein of 146 kDa. Growth of strain LB 121 in chemostat cultures resulted in rapid accumulation of spontaneous exopolysaccharide-negative mutants that had lost both glucansucrase and levansucrase (e.g., strain K-24). Mutants lacking all levansucrase activity specifically emerged following a pH shiftdown (e.g., strain 35-5). Strain 35-5 still possessed glucansucrase and synthesized wild-type glucan.
PMCID: PMC91449  PMID: 10388696
2.  4,6-α-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily 
Family 70 glycoside hydrolase glucansucrase enzymes exclusively occur in lactic acid bacteria and synthesize a wide range of α-d-glucan (abbreviated as α-glucan) oligo- and polysaccharides. Of the 47 characterized GH70 enzymes, 46 use sucrose as glucose donor. A single GH70 enzyme was recently found to be inactive with sucrose and to utilize maltooligosaccharides [(1→4)-α-d-glucooligosaccharides] as glucose donor substrates for α-glucan synthesis, acting as a 4,6-α-glucanotransferase (4,6-αGT) enzyme. Here, we report the characterization of two further GH70 4,6-αGT enzymes, i.e., from Lactobacillus reuteri strains DSM 20016 and ML1, which use maltooligosaccharides as glucose donor. Both enzymes cleave α1→4 glycosidic linkages and add the released glucose moieties one by one to the non-reducing end of growing linear α-glucan chains via α1→6 glycosidic linkages (α1→4 to α1→6 transfer activity). In this way, they convert pure maltooligosaccharide substrates into linear α-glucan product mixtures with about 50% α1→6 glycosidic bonds (isomalto/maltooligosaccharides). These new α-glucan products may provide an exciting type of carbohydrate for the food industry. The results show that 4,6-αGTs occur more widespread in family GH70 and can be considered as a GH70 subfamily. Sequence analysis allowed identification of amino acid residues in acceptor substrate binding subsites +1 and +2, differing between GH70 GTF and 4,6-αGT enzymes.
Electronic supplementary material
The online version of this article (doi:10.1007/s00253-012-3943-1) contains supplementary material, which is available to authorized users.
PMCID: PMC3536977  PMID: 22361861
α-Glucan; Fiber; Glucansucrase; Glycoside hydrolase; 4,6-α-Glucanotransferase; Isomaltooligosaccharide; Starch
3.  The Probiotic Lactobacillus johnsonii NCC 533 Produces High-Molecular-Mass Inulin from Sucrose by Using an Inulosucrase Enzyme▿  
Applied and Environmental Microbiology  2008;74(11):3426-3433.
Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with β(2-6) and β(2-1) linkages, respectively. The probiotic bacterium Lactobacillus johnsonii strain NCC 533 possesses a single fructansucrase gene (open reading frame AAS08734) annotated as a putative levansucrase precursor. However, 13C nuclear magnetic resonance (NMR) analysis of the fructan product synthesized in situ revealed that this is of the inulin type. The ftf gene of L. johnsonii was cloned and expressed to elucidate its exact identity. The purified L. johnsonii protein was characterized as an inulosucrase enzyme, producing inulin from sucrose, as identified by 13C NMR analysis. Thin-layer chromatographic analysis of the reaction products showed that InuJ synthesized, besides the inulin polymer, a broad range of fructose oligosaccharides. Maximum InuJ enzyme activity was observed in a pH range of 4.5 to 7.0, decreasing sharply at pH 7.5. InuJ exhibited the highest enzyme activity at 55°C, with a drastic decrease at 60°C. Calcium ions were found to have an important effect on enzyme activity and stability. Kinetic analysis showed that the transfructosylation reaction of the InuJ enzyme does not obey Michaelis-Menten kinetics. The non-Michaelian behavior of InuJ may be attributed to the oligosaccharides that were initially formed in the reaction and which may act as better acceptors than the growing polymer chain. This is only the second example of the isolation and characterization of an inulosucrase enzyme and its inulin (oligosaccharide) product from a Lactobacillus strain. Furthermore, this is the first Lactobacillus strain shown to produce inulin polymer in situ.
PMCID: PMC2423029  PMID: 18408060
4.  Structure of the α-1,6/α-1,4-specific glucansucrase GTFA from Lactobacillus reuteri 121 
A 118 kDa fragment, comprising the catalytic domain and four other domains, of the glucansucrase GTFA from L. reuteri 121, which synthesizes α-glucans with both α-1,6- and α-1,4-glycosidic linkages, was crystallized. The weakly diffracting crystals, which contained 85% solvent, were used to determine the structure at 3.6 Å resolution.
The reuteransucrase GTFA from Lactobacillus reuteri 121, which belongs to glycosyl hydrolase family GH70, synthesizes branched α-glucans with both α-­1,6- and α-1,4-glycosidic linkages (reuteran) from sucrose. The crystal structure of GTFA-ΔN, a 118 kDa fragment of GTFA comprising residues 745–1763 and including the catalytic domain, was determined at 3.6 Å resolution by molecular replacement. The crystals have large solvent channels and an unusually high solvent content of 85%. GTFA-ΔN has the same domain arrangement and domain topologies as observed in previously determined GH70 glucansucrase structures. The architecture of the GTFA-ΔN active site and binding pocket confirms that glucansucrases have a conserved substrate specificity for sucrose. However, this first crystal structure of an α-1,6/α-1,4-specific glucansucrase shows that residues from conserved sequence motif IV (1128–1136 in GTFA-ΔN) contribute to the acceptor-binding subsites and that they display differences compared with other structurally characterized glucansucrases. In particular, the structure clarifies the importance of residues following the transition-state stabilizer for product specificity, and especially residue Asn1134, which is in a position to interact with sugar units in acceptor subsite +2.
PMCID: PMC3509963  PMID: 23192022
lactic acid bacteria; glucansucrase; reuteransucrase
5.  Donor substrate recognition in the raffinose-bound E342A mutant of fructosyltransferase Bacillus subtilis levansucrase 
Fructans – β-D-fructofuranosyl polymers with a sucrose starter unit – constitute a carbohydrate reservoir synthesised by a considerable number of bacteria and plant species. Biosynthesis of levan (αGlc(1–2)βFru [(2–6)βFru]n), an abundant form of bacterial fructan, is catalysed by levansucrase (sucrose:2,6-β-D-fructan-6-β-D-fructosyl transferase), utilizing sucrose as the sole substrate. Previously, we described the tertiary structure of Bacillus subtilis levansucrase in the ligand-free and sucrose-bound forms, establishing the mechanistic roles of three invariant carboxylate side chains, Asp86, Asp247 and Glu342, which are central to the double displacement reaction mechanism of fructosyl transfer. Still, the structural determinants of the fructosyl transfer reaction thus far have been only partially defined.
Here, we report high-resolution structures of three levansucrase point mutants, D86A, D247A, and E342A, and that of raffinose-bound levansucrase-E342A. The D86A and D247A substitutions have little effect on the active site geometry. In marked contrast, the E342A mutant reveals conformational flexibility of functionally relevant side chains in the vicinity of the general acid Glu342, including Arg360, a residue required for levan polymerisation. The raffinose-complex reveals a conserved mode of donor substrate binding, involving minimal contacts with the raffinose galactosyl unit, which protrudes out of the active site, and specificity-determining contacts essentially restricted to the sucrosyl moiety.
The present structures, in conjunction with prior biochemical data, lead us to hypothesise that the conformational flexibility of Arg360 is linked to it forming a transient docking site for the fructosyl-acceptor substrate, through an interaction network involving nearby Glu340 and Asn242 at the rim of a central pocket forming the active site.
PMCID: PMC2277421  PMID: 18366639
6.  4,6-α-Glucanotransferase, a Novel Enzyme That Structurally and Functionally Provides an Evolutionary Link between Glycoside Hydrolase Enzyme Families 13 and 70▿ 
Applied and Environmental Microbiology  2011;77(22):8154-8163.
Lactobacillus reuteri 121 uses the glucosyltransferase A (GTFA) enzyme to convert sucrose into large amounts of the α-d-glucan reuteran, an exopolysaccharide. Upstream of gtfA lies another putative glucansucrase gene, designated gtfB. Previously, we have shown that the purified recombinant GTFB protein/enzyme is inactive with sucrose. Various homologs of gtfB are present in other Lactobacillus strains, including the L. reuteri type strain, DSM 20016, the genome sequence of which is available. Here we report that GTFB is a novel α-glucanotransferase enzyme with disproportionating (cleaving α1→4 and synthesizing α1→6 and α1→4 glycosidic linkages) and α1→6 polymerizing types of activity on maltotetraose and larger maltooligosaccharide substrates (in short, it is a 4,6-α-glucanotransferase). Characterization of the types of compounds synthesized from maltoheptaose by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), methylation analysis, and 1-dimensional 1H nuclear magnetic resonance (NMR) spectroscopy revealed that only linear products were made and that with increasing degrees of polymerization (DP), more α1→6 glycosidic linkages were introduced into the final products, ranging from 18% in the incubation mixture to 33% in an enriched fraction. In view of its primary structure, GTFB clearly is a member of the glycoside hydrolase 70 (GH70) family, comprising enzymes with a permuted (β/α)8 barrel that use sucrose to synthesize α-d-glucan polymers. The GTFB enzyme reaction and product specificities, however, are novel for the GH70 family, resembling those of the GH13 α-amylase type of enzymes in using maltooligosaccharides as substrates but differing in introducing a series of α1→6 glycosidic linkages into linear oligosaccharide products. We conclude that GTFB represents a novel evolutionary intermediate between the GH13 and GH70 enzyme families, and we speculate about its origin.
PMCID: PMC3209003  PMID: 21948833
7.  Design of Chimeric Levansucrases with Improved Transglycosylation Activity 
Fructansucrases (FSs), including levansucrases and inulosucrases, are enzymes that synthesize fructose polymers from sucrose by the direct transfer of the fructosyl moiety to a growing polymer chain. These enzymes, particularly the single domain fructansucrases, also possess an important hydrolytic activity, which may account for as much as 70 to 80% of substrate conversion, depending on reaction conditions. Here, we report the construction of four chimeric levansucrases from SacB, a single domain levansucrase produced by Bacillus subtilis. Based on observations derived from the effect of domain deletion in both multidomain fructansucrases and glucansucrases, we attached different extensions to SacB. These extensions included the transitional domain and complete C-terminal domain of Leuconostoc citreum inulosucrase (IslA), Leuconostoc mesenteroides levansucrase (LevC), and a L. mesenteroides glucansucrase (DsrP). It was found that in some cases the hydrolytic activity was reduced to less than 10% of substrate conversion; however, all of the constructs were as stable as SacB. This shift in enzyme specificity was observed even when the SacB catalytic domain was extended only with the transitional region found in multidomain FSs. Specific kinetic analysis revealed that this change in specificity of the SacB chimeric constructs was derived from a 5-fold increase in the transfructosylation kcat and not from a reduction of the hydrolytic kcat, which remained constant.
PMCID: PMC3298123  PMID: 22247149
8.  Dietary carbohydrate source influences molecular fingerprints of the rat faecal microbiota 
BMC Microbiology  2006;6:98.
A study was designed to elucidate effects of selected carbohydrates on composition and activity of the intestinal microbiota. Five groups of eight rats were fed a western type diet containing cornstarch (reference group), sucrose, potato starch, inulin (a long- chained fructan) or oligofructose (a short-chained fructan). Fructans are, opposite sucrose and starches, not digestible by mammalian gut enzymes, but are known to be fermentable by specific bacteria in the large intestine.
Animals fed with diets containing potato starch, or either of the fructans had a significantly (p < 0.05) higher caecal weight and lower caecal pH when compared to the reference group, indicating increased fermentation. Selective cultivation from faeces revealed a higher amount of lactic acid bacteria cultivable on Rogosa agar in these animals. Additionally, the fructan groups had a lower amount of coliform bacteria in faeces. In the inulin and oligofructose groups, higher levels of butyrate and propionate, respectively, were measured.
Principal Component Analysis of profiles of the faecal microbiota obtained by Denaturing Gradient Gel Electrophoresis (DGGE) of PCR amplified bacterial 16S rRNA genes as well as of Reverse Transcriptase-PCR amplified bacterial 16S rRNA resulted in different phylogenetic profiles for each of the five animal groups as revealed by Principal Component Analysis (PCA) of band patterns.
Even though sucrose and cornstarch are both easily digestible and are not expected to reach the large intestine, the DGGE band patterns obtained indicated that these carbohydrates indeed affected the composition of bacteria in the large gut. Also the two fructans resulted in completely different molecular fingerprints of the faecal microbiota, indicating that even though they are chemically similar, different intestinal bacteria ferment them. Comparison of DNA-based and RNA-based profiles suggested that two species within the phylum Bacteroidetes were not abundant in numbers but had a particularly high ribosome content in the animals fed with inulin.
PMCID: PMC1693562  PMID: 17137493
9.  In Situ Production of Exopolysaccharides during Sourdough Fermentation by Cereal and Intestinal Isolates of Lactic Acid Bacteria 
EPS formed by lactobacilli in situ during sourdough fermentation may replace hydrocolloids currently used as texturizing, antistaling, or prebiotic additives in bread production. In this study, a screening of >100 strains of cereal-associated and intestinal lactic acid bacteria was performed for the production of exopolysaccharides (EPS) from sucrose. Fifteen strains produced fructan, and four strains produced glucan. It was remarkable that formation of glucan and fructan was most frequently found in intestinal isolates and strains of the species Lactobacillus reuteri, Lactobacillus pontis, and Lactobacillus frumenti from type II sourdoughs. By the use of PCR primers derived from conserved amino acid sequences of bacterial levansucrase genes, it was shown that 6 of the 15 fructan-producing lactobacilli and none of 20 glucan producers or EPS-negative strains carried a levansucrase gene. In sourdough fermentations, it was determined whether those strains producing EPS in MRS medium modified as described by Stolz et al. (37) and containing 100 g of sucrose liter−1 as the sole source of carbon also produce the same EPS from sucrose during sourdough fermentation in the presence of 12% sucrose. For all six EPS-producing strains evaluated in sourdough fermentations, in situ production of EPS at levels ranging from 0.5 to 2 g/kg of flour was demonstrated. Production of EPS from sucrose is a metabolic activity that is widespread among sourdough lactic acid bacteria. Thus, the use of these organisms in bread production may allow the replacement of additives.
PMCID: PMC143589  PMID: 12571016
10.  Exopolysaccharide (EPS) Synthesis by Oenococcus oeni: From Genes to Phenotypes 
PLoS ONE  2014;9(6):e98898.
Oenococcus oeni is the bacterial species which drives malolactic fermentation in wine. The analysis of 50 genomic sequences of O. oeni (14 already available and 36 newly sequenced ones) provided an inventory of the genes potentially involved in exopolysaccharide (EPS) biosynthesis. The loci identified are: two gene clusters named eps1 and eps2, three isolated glycoside-hydrolase genes named dsrO, dsrV and levO, and three isolated glycosyltransferase genes named gtf, it3, it4. The isolated genes were present or absent depending on the strain and the eps gene clusters composition diverged from one strain to another. The soluble and capsular EPS production capacity of several strains was examined after growth in different culture media and the EPS structure was determined. Genotype to phenotype correlations showed that several EPS biosynthetic pathways were active and complementary in O. oeni. Can be distinguished: (i) a Wzy -dependent synthetic pathway, allowing the production of heteropolysaccharides made of glucose, galactose and rhamnose, mainly in a capsular form, (ii) a glucan synthase pathway (Gtf), involved in β-glucan synthesis in a free and a cell-associated form, giving a ropy phenotype to growth media and (iii) homopolysaccharide synthesis from sucrose (α-glucan or β-fructan) by glycoside-hydrolases of the GH70 and GH68 families. The eps gene distribution on the phylogenetic tree was examined. Fifty out of 50 studied genomes possessed several genes dedicated to EPS metabolism. This suggests that these polymers are important for the adaptation of O. oeni to its specific ecological niche, wine and possibly contribute to the technological performance of malolactic starters.
PMCID: PMC4047060  PMID: 24901216
11.  pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity? 
PLoS ONE  2012;7(5):e37453.
Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst.
PMCID: PMC3360783  PMID: 22662155
12.  Biosynthesis of Levan, a Bacterial Extracellular Polysaccharide, in the Yeast Saccharomyces cerevisiae 
PLoS ONE  2013;8(10):e77499.
Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast.
PMCID: PMC3795680  PMID: 24147008
13.  Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne) 
Journal of Experimental Botany  2010;62(6):1871-1885.
The main storage compounds in Lolium perenne are fructans with prevailing β(2–6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare.
PMCID: PMC3060680  PMID: 21196473
Bifurcose; fructan; gene expression; heterologous expression; Hordeum vulgare; levan neoseries; Lolium perenne; Pichia pastoris; sucrose:fructan 6-fructosyltransferase
14.  Roles of Fructosyltransferase and Levanase-Sucrase of Actinomyces naeslundii in Fructan and Sucrose Metabolism 
Infection and Immunity  2001;69(9):5395-5402.
The ability of Actinomyces naeslundii to convert sucrose to extracellular homopolymers of fructose and to catabolize these types of polymers is suspected to be a virulence trait that contributes to the initiation and progression of dental caries and periodontal diseases. Previously, we reported on the isolation and characterization of the gene, ftf, encoding the fructosyltransferase (FTF) of A. naeslundii WVU45. Allelic exchange mutagenesis was used to inactivate ftf, revealing that FTF-deficient stains were completely devoid of the capacity to produce levan-type (β2,6-linked) polysaccharides. A polyclonal antibody was raised to a histidine-tagged, purified A. naeslundii FTF, and the antibody was used to localize the enzyme in the supernatant fluid. A sensitive technique was developed to detect levan formation by proteins that had been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the method was used to confirm that the levan-synthesizing activity of A. naeslundii existed predominantly in a cell-free form, that a small amount of the activity was cell associated, and that the ftf mutant was unable to produce levans. By using the nucleotide sequence of the levanase gene of a genospecies 2 A. naeslundii, formerly Actinomyces viscosus, a portion of a homologue of this gene (levJ) was amplified by PCR and inserted into a suicide vector, and the resulting construct was used to inactivate the levJ gene in the genospecies 1 strain WVU45. A variety of physiologic and biochemical studies were performed on the wild-type and LevJ-deficient strains to demonstrate that (i) this enzyme was the dominant levanase and sucrase of A. naeslundii; (ii) that LevJ was inducible by growth in sucrose; (iii) that the LevJ activity was found predominantly (>90%) in a cell-associated form; and (iv) that there was a second, fructose-inducible fructan hydrolase activity produced by these strains. The data provide the first detailed molecular analysis of fructan production and catabolism in this abundant and important oral bacterium.
PMCID: PMC98649  PMID: 11500409
15.  TaMYB13-1, a R2R3 MYB transcription factor, regulates the fructan synthetic pathway and contributes to enhanced fructan accumulation in bread wheat 
Journal of Experimental Botany  2013;64(12):3681-3696.
Fructans are the major component of temporary carbon reserve in the stem of temperate cereals, which is used for grain filling. Three families of fructosyltransferases are directly involved in fructan synthesis in the vacuole of Triticum aestivum. The regulatory network of the fructan synthetic pathway is largely unknown. Recently, a sucrose-upregulated wheat MYB transcription factor (TaMYB13-1) was shown to be capable of activating the promoter activities of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in transient transactivation assays. This work investigated TaMYB13-1 target genes and their influence on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression resulted in upregulation of all three families of fructosyltransferases including fructan:fructan 1-fructosyltransferase (1-FFT). A γ-vacuolar processing enzyme (γ-VPE1), potentially involved in processing the maturation of fructosyltransferases in the vacuole, was also upregulated by TaMYB13-1 overexpression. Multiple TaMYB13 DNA-binding motifs were identified in the Ta1-FFT1 and Taγ-VPE1 promoters and were bound strongly by TaMYB13-1. The expression profiles of these target genes and TaMYB13-1 were highly correlated in recombinant inbred lines and during stem development as well as the transgenic and non-transgenic wheat dataset, further supporting a direct regulation of these genes by TaMYB13-1. TaMYB13-1 overexpression in wheat led to enhanced fructan accumulation in the leaves and stems and also increased spike weight and grain weight per spike in transgenic plants under water-limited conditions. These data suggest that TaMYB13-1 plays an important role in coordinated upregulation of genes necessary for fructan synthesis and can be used as a molecular tool to improve the high fructan trait.
PMCID: PMC3745729  PMID: 23873993
Fructans; fructosyltransferases; gene regulation; MYB transcription factor; γ-vacuolar processing enzyme; wheat.
16.  Use of Specifically Labeled Sucrose for Comparison of Extracellular Glucan and Fructan Metabolism by Oral Streptococci 
Infection and Immunity  1972;5(2):263-266.
Sucrose labeled in the fructosyl (3H) and glucosyl (14C) moieties was used to quantitate extracellular polysaccharide production and degradation by cariogenic and noncariogenic oral streptococci. All of the strains produced glucan and fructan. Streptococcus salivarius produced primarily fructan, whereas S. mutans and S. sanguis produced more glucan than fructan. The cariogenic streptococci could degrade the fructan produced by noncariogenic strains. Although the soluble glucans from all of the strains were sensitive to dextranase, the insoluble glucan from S. mutans could be distinguished from the S. sanguis insoluble glucan by its greater resistance to this enzyme.
PMCID: PMC422359  PMID: 4564402
17.  Genetic analysis of fructan-hyperproducing strains of Streptococcus mutans. 
Infection and Immunity  1994;62(7):2679-2686.
Fructan polymer, synthesized from sucrose by the extracellular fructosyltransferase of Streptococcus mutans, is thought to contribute to the progression of dental caries. It may serve as an extracellular storage polysaccharide facilitating survival and acid production. It may also have a role in adherence or accumulation of bacterial cells on the tooth surface. A number of clinical isolates of S. mutans which produce large, mucoid colonies on sucrose-containing agar as a result of increased production of fructan have been discovered. By using eight independent isolates, we sought to determine if such fructan-hyperproducing strains represented a genetically homogeneous group of organisms. Restriction fragment patterns of total cellular DNA were examined by using pulsed-field and conventional gel electrophoresis. Four genetic types which appeared to correlate with the serotype of the organism and the geographic site of isolation were evident. Southern blot analysis of several genetic loci for extracellular enzymes revealed some minor differences between the strains, but the basic genomic organizations of these loci were similar. To evaluate whether the excess fructan produced by these strains enhanced the virulence of these organisms in the oral cavity, it was of interest to create mutants deficient in fructosidase (FruA), the extracellular enzyme which degrades this polymer. The fruA gene was inactivated by allelic exchange in two fructan-hyperproducing strains as well as in S. mutans GS5, a strain which does not hyperproduce fructan. All of the fruA mutant strains were devoid of fructan hydrolase activity when levan was used as a substrate. However, the fructan-hyperproducing strains retained the ability to hydrolyze inulin, suggesting the presence of a second fructosidase with specificity for inulin in these strains.
PMCID: PMC302868  PMID: 7911782
18.  Pp6-FEH1 encodes an enzyme for degradation of highly polymerized levan and is transcriptionally induced by defoliation in timothy (Phleum pratense L.) 
Journal of Experimental Botany  2011;62(10):3421-3431.
The ability of grasses to regrow after defoliation by cutting or grazing is a vital factor in their survival and an important trait when they are used as forage crops. In temperate grass species accumulating fructans, defoliation induces the activity of a fructan exohydrolase (FEH) that degrades fructans to serve as a carbon source for regrowth. Here, a cDNA from timothy was cloned, named Pp6-FEH1, that showed similarity to wheat fructan 6-exohydrolase (6-FEH). The recombinant enzyme expressed in Pichia pastoris completely degraded fructans that were composed mainly of β(2,6)-linked and linear fructans (levan) with a high degree of polymerization (DP) in the crown tissues of timothy. The substrate specificity of Pp6-FEH1 differed from previously characterized enzymes with 6-FEH activity in fructan-accumulating plants: (i) Pp6-FEH1 showed 6-FEH activity against levan (mean DP 20) that was 4-fold higher than against 6-kestotriose (DP 3), indicating that Pp6-FEH1 has a preference for β(2,6)-linked fructans with high DP; (ii) Pp6-FEH1 had significant activity against β(2,1)-linked fructans, but considerably less than against β(2,6)-linked fructans; (iii) Pp6-FEH1 had weak invertase activity, and its 6-FEH activity was inhibited slightly by sucrose. In the stubble of seedlings and in young haplocorms from adult timothy plants, transcripts of Pp6-FEH1 were significantly increased within 3 h of defoliation, followed by an increase in 6-FEH activity and in the degradation of fructans. These results suggest that Pp6-FEH1 plays a role in the degradation of fructans and the mobilization of carbon sources for regrowth after defoliation in timothy.
PMCID: PMC3130170  PMID: 21317211
Defoliation; fructan; fructan exohydrolase; levan; timothy (Phleum pratense L.)
19.  Purification and Characterization of 2,6-β-d-Fructan 6-Levanbiohydrolase from Streptomyces exfoliatus F3-2 
Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60°C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50°C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only β-2,6-linkage of levan, but also β-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-β-d-fructan 6-levanbiohydrolase (EC
PMCID: PMC91814  PMID: 10618232
20.  Multifunctional fructans and raffinose family oligosaccharides 
Fructans and raffinose family oligosaccharides (RFOs) are the two most important classes of water-soluble carbohydrates in plants. Recent progress is summarized on their metabolism (and regulation) and on their functions in plants and in food (prebiotics, antioxidants). Interest has shifted from the classic inulin-type fructans to more complex fructans. Similarly, alternative RFOs were discovered next to the classic RFOs. Considerable progress has been made in the understanding of structure–function relationships among different kinds of plant fructan metabolizing enzymes. This helps to understand their evolution from (invertase) ancestors, and the evolution and role of so-called “defective invertases.” Both fructans and RFOs can act as reserve carbohydrates, membrane stabilizers and stress tolerance mediators. Fructan metabolism can also play a role in osmoregulation (e.g., flower opening) and source–sink relationships. Here, two novel emerging roles are highlighted. First, fructans and RFOs may contribute to overall cellular reactive oxygen species (ROS) homeostasis by specific ROS scavenging processes in the vicinity of organellar membranes (e.g., vacuole, chloroplasts). Second, it is hypothesized that small fructans and RFOs act as phloem-mobile signaling compounds under stress. It is speculated that such underlying antioxidant and oligosaccharide signaling mechanisms contribute to disease prevention in plants as well as in animals and in humans.
PMCID: PMC3713406  PMID: 23882273
antioxidant; fructan; immunity; oligosaccharide; raffinose; signaling; stress; sucrose
21.  Cloning and functional characterization of a fructan 1-exohydrolase (1-FEH) in edible burdock (Arctium lappa L.) 
We have previously reported on the variation of total fructooligosaccharides (FOS), total inulooligosaccharides (IOS) and inulin in the roots of burdock stored at different temperatures. During storage at 0°C, an increase of FOS as a result of the hydrolysis of inulin was observed. Moreover, we suggested that an increase of IOS would likely be due to the synthesis of the IOS by fructosyltransfer from 1-kestose to accumulated fructose and elongated fructose oligomers which can act as acceptors for fructan:fructan 1-fructosyltransferase (1-FFT). However, enzymes such as inulinase or fructan 1-exohydorolase (1-FEH) involved in inulin degradation in burdock roots are still not known. Here, we report the isolation and functional analysis of a gene encoding burdock 1-FEH.
A cDNA, named aleh1, was obtained by the RACE method following PCR with degenerate primers designed based on amino-acid sequences of FEHs from other plants. The aleh1 encoded a polypeptide of 581 amino acids. The relative molecular mass and isoelectric point (pI) of the deduced polypeptide were calculated to be 65,666 and 4.86. A recombinant protein of aleh1 was produced in Pichia pastoris, and was purified by ion exchange chromatography with DEAE-Sepharose CL-6B, hydrophobic chromatography with Toyopearl HW55S and gel filtration chromatography with Toyopearl HW55S. Purified recombinant protein showed hydrolyzing activity against β-2, 1 type fructans such as 1-kestose, nystose, fructosylnystose and inulin. On the other hand, sucrose, neokestose, 6-kestose and high DP levan were poor substrates.
The purified recombinant protein released fructose from sugars extracted from burdock roots. These results indicated that aleh1 encoded 1-FEH.
PMCID: PMC3080278  PMID: 21463533
22.  Highly Hydrolytic Reuteransucrase from Probiotic Lactobacillus reuteri Strain ATCC 55730 
Lactobacillus reuteri strain ATCC 55730 (LB BIO) was isolated as a pure culture from a Reuteri tablet purchased from the BioGaia company. This probiotic strain produces a soluble glucan (reuteran), in which the majority of the linkages are of the α-(1→4) glucosidic type (∼70%). This reuteran also contains α-(1→6)- linked glucosyl units and 4,6-disubstituted α-glucosyl units at the branching points. The LB BIO glucansucrase gene (gtfO) was cloned and expressed in Escherichia coli, and the GTFO enzyme was purified. The recombinant GTFO enzyme and the LB BIO culture supernatants synthesized identical glucan polymers with respect to linkage type and size distribution. GTFO thus is a reuteransucrase, responsible for synthesis of this reuteran polymer in LB BIO. The preference of GTFO for synthesizing α-(1→4) linkages is also evident from the oligosaccharides produced from sucrose with different acceptor substrates, e.g., isopanose from isomaltose. GTFO has a relatively high hydrolysis/transferase activity ratio. Complete conversion of 100 mM sucrose by GTFO nevertheless yielded large amounts of reuteran, although more than 50% of sucrose was converted into glucose. This is only the second example of the isolation and characterization of a reuteransucrase and its reuteran product, both found in different L. reuteri strains. GTFO synthesizes a reuteran with the highest amount of α-(1→4) linkages reported to date.
PMCID: PMC1169070  PMID: 16000808
23.  Expression, purification, and characterization of an exo-beta-D-fructosidase of Streptococcus mutans. 
Journal of Bacteriology  1987;169(10):4507-4517.
A genetic library of Streptococcus mutans GS-5, constructed in an Escherichia coli plasmid vector, was screened for cells which could utilize sucrose as the sole carbon and energy source. The recombinant plasmid pFRU1, containing a 4.2-kilobase pair insert of S. mutans DNA, was shown to confer this phenotype. Further characterization of the gene product encoded by pFRU1 revealed that the enzyme was a beta-D-fructosidase with the highest specificity for the beta (2----6)-linked fructan polymer levan. The enzyme could also hydrolyze inulin [beta (2----1)-linked fructan], sucrose, and raffinose with 34, 21, and 12%, respectively, of the activity observed for levan. The gene (designated fruA) appeared to be expressed under its own control in E. coli, as judged by the lack of influence on gene product activity of induction or repression of the beta-galactosidase promoter adjacent to the insertion site on the cloning vector. The protein was purified to homogeneity, as judged by silver staining of purified protein in denaturing and reducing conditions in polyacrylamide gels, from sonic lysate of E. coli, as well as from culture supernatants of S. mutans GS-5 grown in a chemostat at low dilution rate with fructose as the sole carbohydrate source. Both purified proteins had an apparent molecular mass of 140,000 daltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were immunologically related and comigrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as determined by Western blotting with antisera raised against the cloned gene product, and were identical in all physical and biochemical properties tested. The pH optimum of the enzyme acting on fructan polymers was 5.5, with a significant amount of activity remaining at pH 4.0. The optimum pH for sucrose degradation was broader and lower, with a peak at approximately 4.5. Enzyme activity was inhibited almost completely by Hg2+ and Ag2+, inhibited partially by Cu2+, not inhibited by fluoride ion or Tris, and slightly stimulated by Mn2+ and Co2+. Fructan polymers were attacked exohydrolytically by the enzyme, fructose being the only product released. With sufficient time, both levan and inulin were degraded to completion, with no evidence of product inhibition.
PMCID: PMC213815  PMID: 3308844
24.  Purification and characterization of a primer-independent glucosyltransferase from Streptococcus mutans 6715-13 mutant 27. 
Infection and Immunity  1985;50(3):771-777.
Affinity chromatography on Sephadex G-50 and subsequent ion-exchange chromatography on Trisacryl-M-DEAE were used to purify the glucosyltransferase (GTF) enzymes produced by mutant 27 of Streptococcus mutans 6715-13. Complete separation of three types of GTF, including a primer-independent GTF capable of synthesizing a slightly branched, water-soluble glucan (GTF-S), was obtained. The characteristics of this primer-independent GTF-S were compared with those of the normally occurring primer-dependent GTF-S. The Km for sucrose was easily obtained for each enzyme (10(-2) M), but the Km for dextran could only be determined for the primer-dependent GTF-S (5 X 10(-7) M for clinical dextran of molecular weight 60,000 to 90,000). The primer-independent GTF-S did not respond catalytically to the presence of either clinical dextran or the highly branched, water-soluble glucan produced by primer-dependent GTF-S, although it was capable of binding these polysaccharides at a noncatalytic site and of responding to the low-molecular-weight acceptor 1-O-methyl-alpha-D-glucopyranoside. The water-soluble glucan product of primer-independent GTF-S was a superior priming glucan for primer-dependent GTF enzymes as compared with the glucan product of primer-dependent GTF-S. The presence of primer-independent GTF-S in reaction mixtures stimulated glucan synthesis by primer-dependent GTF-S and by GTF synthesizing water-insoluble glucan by at least 10-fold, whereas the presence of similar amounts of primer-dependent GTF-S had no effect on synthesis by GTF synthesizing water-insoluble glucan. Primer-independent GTF-S appears to be a potent source of priming glucan for the primer-dependent GTF enzymes. Its possession of a noncatalytic binding site for glucan, the first observed for the GTF of S. mutans, suggests that it may also serve as a glucan receptor on the S. mutans cell surface.
PMCID: PMC261147  PMID: 2933338
25.  Characterization of a Novel Fructosyltransferase from Lactobacillus reuteri That Synthesizes High-Molecular-Weight Inulin and Inulin Oligosaccharides 
Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with β-(2→1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>107) with β-(2→1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.
PMCID: PMC124061  PMID: 12200292

Results 1-25 (883326)