Search tips
Search criteria

Results 1-25 (984710)

Clipboard (0)

Related Articles

1.  Coordinate Control of Expression of Nrf2-Modulated Genes in the Human Small Airway Epithelium Is Highly Responsive to Cigarette Smoking 
Molecular Medicine  2009;15(7-8):203-219.
Nuclear factor erythroid 2–related factor 2 (Nrf2) is an oxidant-responsive transcription factor known to induce detoxifying and antioxidant genes. Cigarette smoke, with its large oxidant content, is a major stress on the cells of small airway epithelium, which are vulnerable to oxidant damage. We assessed the role of cigarette smoke in activation of Nrf2 in the human small airway epithelium in vivo. Fiberoptic bronchoscopy was used to sample the small airway epithelium in healthy-nonsmoker and healthy-smoker, and gene expression was assessed using microarrays. Relative to nonsmokers, Nrf2 protein in the small airway epithelium of smokers was activated and localized in the nucleus. The human homologs of 201 known murine Nrf2-modulated genes were identified, and 13 highly smoking-responsive Nrf2-modulated genes were identified. Construction of an Nrf2 index to assess the expression levels of these 13 genes in the airway epithelium of smokers showed coordinate control, an observation confirmed by quantitative PCR. This coordinate level of expression of the 13 Nrf2-modulated genes was independent of smoking history or demographic parameters. The Nrf2 index was used to identify two novel Nrf2-modulated, smoking-responsive genes, pirin (PIR) and UDP glucuronosyltransferase 1-family polypeptide A4 (UGT1A4). Both genes were demonstrated to contain functional antioxidant response elements in the promoter region. These observations suggest that Nrf2 plays an important role in regulating cellular defenses against smoking in the highly vulnerable small airway epithelium cells, and that there is variability within the human population in the Nrf2 responsiveness to oxidant burden.
PMCID: PMC2707520  PMID: 19593404
2.  Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq 
Cigarette smoke creates a molecular field of injury in epithelial cells that line the respiratory tract. We hypothesized that transcriptome sequencing (RNA-Seq) will enhance our understanding of the field of molecular injury in response to tobacco smoke exposure and lung cancer pathogenesis by identifying gene expression differences not interrogated or accurately measured by microarrays. We sequenced the high-molecular-weight fraction of total RNA (>200 nt) from pooled bronchial airway epithelial cell brushings (n = 3 patients per pool) obtained during bronchoscopy from healthy never smoker (NS) and current smoker (S) volunteers and smokers with (C) and without (NC) lung cancer undergoing lung nodule resection surgery. RNA-Seq libraries were prepared using 2 distinct approaches, one capable of capturing non-polyadenylated RNA (the prototype NuGEN Ovation RNA-Seq protocol) and the other designed to measure only polyadenylated RNA (the standard Illumina mRNA-Seq protocol) followed by sequencing generating approximately 29 million 36 nt reads per pool and approximately 22 million 75 nt paired-end reads per pool, respectively. The NuGEN protocol captured additional transcripts not detected by the Illumina protocol at the expense of reduced coverage of polyadenylated transcripts, while longer read lengths and a paired-end sequencing strategy significantly improved the number of reads that could be aligned to the genome. The aligned reads derived from the two complementary protocols were used to define the compendium of genes expressed in the airway epithelium (n = 20,573 genes). Pathways related to the metabolism of xenobiotics by cytochrome P450, retinol metabolism, and oxidoreductase activity were enriched among genes differentially expressed in smokers, whereas chemokine signaling pathways, cytokine–cytokine receptor interactions, and cell adhesion molecules were enriched among genes differentially expressed in smokers with lung cancer. There was a significant correlation between the RNA-Seq gene expression data and Affymetrix microarray data generated from the same samples (P < 0.001); however, the RNA-Seq data detected additional smoking- and cancer-related transcripts whose expression was were either not interrogated by or was not found to be significantly altered when using microarrays, including smoking-related changes in the inflammatory genes S100A8 and S100A9 and cancer-related changes in MUC5AC and secretoglobin (SCGB3A1). Quantitative real-time PCR confirmed differential expression of select genes and non-coding RNAs within individual samples. These results demonstrate that transcriptome sequencing has the potential to provide new insights into the biology of the airway field of injury associated with smoking and lung cancer. The measurement of both coding and non-coding transcripts by RNA-Seq has the potential to help elucidate mechanisms of response to tobacco smoke and to identify additional biomarkers of lung cancer risk and novel targets for chemoprevention.
PMCID: PMC3694393  PMID: 21636547
3.  Relation between smoking history and gene expression profiles in lung adenocarcinomas 
BMC Medical Genomics  2012;5:22.
Lung cancer is the worldwide leading cause of death from cancer. Tobacco usage is the major pathogenic factor, but all lung cancers are not attributable to smoking. Specifically, lung cancer in never-smokers has been suggested to represent a distinct disease entity compared to lung cancer arising in smokers due to differences in etiology, natural history and response to specific treatment regimes. However, the genetic aberrations that differ between smokers and never-smokers’ lung carcinomas remain to a large extent unclear.
Unsupervised gene expression analysis of 39 primary lung adenocarcinomas was performed using Illumina HT-12 microarrays. Results from unsupervised analysis were validated in six external adenocarcinoma data sets (n=687), and six data sets comprising normal airway epithelial or normal lung tissue specimens (n=467). Supervised gene expression analysis between smokers and never-smokers were performed in seven adenocarcinoma data sets, and results validated in the six normal data sets.
Initial unsupervised analysis of 39 adenocarcinomas identified two subgroups of which one harbored all never-smokers. A generated gene expression signature could subsequently identify never-smokers with 79-100% sensitivity in external adenocarcinoma data sets and with 76-88% sensitivity in the normal materials. A notable fraction of current/former smokers were grouped with never-smokers. Intriguingly, supervised analysis of never-smokers versus smokers in seven adenocarcinoma data sets generated similar results. Overlap in classification between the two approaches was high, indicating that both approaches identify a common set of samples from current/former smokers as potential never-smokers. The gene signature from unsupervised analysis included several genes implicated in lung tumorigenesis, immune-response associated pathways, genes previously associated with smoking, as well as marker genes for alveolar type II pneumocytes, while the best classifier from supervised analysis comprised genes strongly associated with proliferation, but also genes previously associated with smoking.
Based on gene expression profiling, we demonstrate that never-smokers can be identified with high sensitivity in both tumor material and normal airway epithelial specimens. Our results indicate that tumors arising in never-smokers, together with a subset of tumors from smokers, represent a distinct entity of lung adenocarcinomas. Taken together, these analyses provide further insight into the transcriptional patterns occurring in lung adenocarcinoma stratified by smoking history.
PMCID: PMC3447685  PMID: 22676229
Lung cancer; Smoking; Gene expression analysis; Adenocarcinoma; EGFR; Never-smokers; Immune response
4.  Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium 
BMC Genomics  2008;9:259.
Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal) and intrathoracic (bronchial) epithelium in healthy current and never smokers.
Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome"), we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure.
Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for tobacco exposure as well as a non-invasive screening or diagnostic tool providing information about individual susceptibility to smoking-induced lung diseases.
PMCID: PMC2435556  PMID: 18513428
5.  Modulation of Cystatin A Expression in Human Airway Epithelium Related to Genotype, Smoking, COPD and Lung Cancer* 
Cancer research  2011;71(7):2572-2581.
Cystatin A (gene: CSTA), is up-regulated in non-small-cell lung cancer(NSCLC) and dysplastic vs normal human bronchial epithelium. In the context that chronic obstructive pulmonary disease (COPD), a small airway epithelium (SAE) disorder, is independently associated with NSCLC(especially squamous cell carcinoma, SCC), but only occurs in a subset of smokers, we hypothesized that genetic variation, smoking and COPD modulate CSTA gene expression levels in SAE, with further up-regulation in SCC. Gene expression was assessed by microarray in SAE of 178 individuals [healthy nonsmokers (n=60), healthy smokers (n=82), and COPD smokers (n=36)], with corresponding large airway epithelium (LAE) data in a subset (n=52). Blood DNA was genotyped by SNP microarray. Twelve SNPs upstream of the CSTA gene were all significantly associated with CSTA SAE gene expression(p<0.04 to 5 × 10 −4). CSTA gene expression levels in SAE were higher in COPD smokers (28.4 ± 2.0) than healthy smokers (19.9 ± 1.4, p<10−3), who in turn had higher levels than nonsmokers(16.1 ± 1.1, p<0.04). CSTA LAE gene expression was also smoking-responsive (p<10−3). Using comparable publicly available NSCLC expression data, CSTA was up-regulated in SCC vs LAE (p<10−2) and down-regulated in adenocarcinoma vs SAE (p <10−7). All phenotypes were associated with significantly different proportional gene expression of CSTA to cathepsins. The data demonstrate that regulation of CSTA expression in human airway epithelium is influenced by genetic variability, smoking, and COPD, and is further up-regulated in SCC, all of which should be taken into account when considering the role of CSTA in NSCLC pathogenesis.
PMCID: PMC3209453  PMID: 21325429
cystatin; small airway epithelium; gene expression; genotype; COPD
6.  SIRT1 pathway dysregulation in the smoke-exposed airway epithelium and lung tumor tissue 
Cancer research  2012;72(22):5702-5711.
Cigarette smoke produces a molecular “field of injury” in epithelial cells lining the respiratory tract. However, the specific signaling pathways that are altered in the airway of smokers and the signaling processes responsible for the transition from smoking-induced airway damage to lung cancer remain unknown. In this study, we use a genomic approach to study the signaling processes associated with tobacco smoke exposure and lung cancer. First, we developed and validated pathway-specific gene expression signatures in bronchial airway epithelium that reflect activation of signaling pathways relevant to tobacco-exposure including ATM, BCL2, GPX1, NOS2, IKBKB, and SIRT1. Using these profiles and four independent gene expression datasets, we found that SIRT1 activity is significantly up-regulated in cytologically normal bronchial airway epithelial cells from active smokers compared to non-smokers. In contrast, this activity is strikingly down-regulated in non-small cell lung cancer. This pattern of signaling modulation was unique to SIRT1, and down-regulation of SIRT1 activity is confined to tumors from smokers. Decreased activity of SIRT1 was validated using genomic analyses of mouse models of lung cancer and biochemical testing of SIRT1 activity in patient lung tumors. Together, our findings indicate a role of SIRT1 in response to smoke and a potential role in repressing lung cancer. Further, our findings suggest that the airway gene-expression signatures derived in this study can provide novel insights into signaling pathways altered in the “field of inury” induced by tobacco smoke and thus may impact strategies for prevention of tobacco-related lung cancer.
PMCID: PMC4053174  PMID: 22986747
7.  Bronchial airway gene expression in smokers with lung or head and neck cancer 
Cancer Medicine  2014;3(2):322-336.
Cigarette smoking is the major cause of cancers of the respiratory tract, including non-small cell lung cancer (NSCLC) and head and neck cancer (HNC). In order to better understand carcinogenesis of the lung and upper airways, we have compared the gene expression profiles of tumor-distant, histologically normal bronchial biopsy specimens obtained from current smokers with NSCLC or HNC (SC, considered as a single group), as well as nonsmokers (NS) and smokers without cancer (SNC). RNA from a total of 97 biopsies was used for gene expression profiling (Affymetrix HG-U133 Plus 2.0 array). Differentially expressed genes were used to compare NS, SNC, and SC, and functional analysis was carried out using Ingenuity Pathway Analysis (IPA). Smoking-related cancer of the respiratory tract was found to affect the expression of genes encoding xenobiotic biotransformation proteins, as well as proteins associated with crucial inflammation/immunity pathways and other processes that protect the airway from the chemicals in cigarette smoke or contribute to carcinogenesis. Finally, we used the prediction analysis for microarray (PAM) method to identify gene signatures of cigarette smoking and cancer, and uncovered a 15-gene signature that distinguished between SNC and SC with an accuracy of 83%. Thus, gene profiling of histologically normal bronchial biopsy specimens provided insight into cigarette-induced carcinogenesis of the respiratory tract and gene signatures of cancer in smokers.
PMCID: PMC3987082  PMID: 24497500
Bronchial biopsy; cigarette smoking; gene expression microarrays; head and neck cancer; non-small cell lung cancer
8.  Characterizing the molecular spatial and temporal field of injury in early stage smoker non-small cell lung cancer patients after definitive surgery by expression profiling 
Gene expression alterations in response to cigarette smoke have been characterized in normal-appearing bronchial epithelium of healthy smokers and it has been suggested that adjacent histologically normal tissue display tumor-associated molecular abnormalities. We sought to delineate the spatial and temporal molecular lung field of injury in smoker early stage non-small cell lung cancer (NSCLC) patients (n=19) who were accrued into a surveillance clinical trial for annual follow-up and bronchoscopies within one year after definitive surgery. Bronchial brushings and biopsies were obtained from six different sites in the lung at the time of inclusion in the study and at 12, 24 and 36 months after the first time point. Affymetrix Human Gene 1.0 ST arrays were used for whole-transcript expression profiling of airways (n=391). Microarray analysis identified gene features (n=1165) that were non-uniform by site and differentially expressed between airways adjacent to tumors relative to more distant samples as well as those (n=1395) that were significantly altered with time up to three years. In addition, gene-interaction networks mediated by PI3K and ERK1/2 were modulated in adjacent compared to contralateral airways and the latter network with time. Furthermore, phosphorylated AKT and ERK1/2 immunohistochemical expression were significantly increased with time (nuclear pAKT, p=0.03; cytoplasmic pAKT, p<0.0001; pERK1/2, p=0.02) and elevated in adjacent compared to more distant airways (nuclear pAKT, p=0.04; pERK1/2, p=0.03). This study highlights spatial and temporal cancer-associated expression alterations in the molecular field of injury of early stage NSCLC patients after definitive surgery that warrant further validation in independent studies.
PMCID: PMC3774536  PMID: 23087048
Early stage NSCLC; gene expression profiling; lung airway epithelium; chemoprevention
9.  Variability in Small Airway Epithelial Gene Expression Among Normal Smokers 
Chest  2008;133(6):1344-1353.
Despite overwhelming data that cigarette smoking causes chronic obstructive pulmonary disease (COPD), only a minority of chronic smokers are affected, strongly suggesting that genetic factors modify susceptibility to this disease. We hypothesized that there are individual variations in the response to cigarette smoking, with variability among smokers in expression levels of protective / susceptibility genes.
Affymetrix arrays and TaqMan PCR were used to assess the variability of gene expression in the small airway epithelium obtained by fiberoptic bronchoscopy of 18 normal non-smokers, 18 normal smokers and 18 smokers with COPD.
We identified 201 probesets representing 152 smoking-responsive genes that were significantly up- or down-regulated, and assessed the coefficient of variation in expression levels among the study population. Variation was a reproducible property of each gene as assessed by different microarray probesets and realtime PCR and was observed in both normal smokers and smokers with COPD. There was greater individual variability in smokers with COPD than in normal smokers. The majority of these highly variable smoking responsive genes were in the functional categories of signal transduction, xenobiotic degradation, metabolism, transport, oxidant-related and transcription. A similar pattern of the same highly variable genes was observed in an independent data set.
We propose that there is likely genetic diversity within this subset of genes with highly variable individual to individual responses of the small airway epithelium to smoking, and this subset of genes represent putative candidates for assessment of susceptibility/protection from disease in future gene-based epidemiological studies of smokers’ risk for COPD.
PMCID: PMC3632367  PMID: 18339782
10.  Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression 
Genome Biology  2007;8(9):R201.
Oligonucleotide microarray analysis revealed 175 genes that are differentially expressed in large airway epithelial cells of people who currently smoke compared with those who never smoked, with 28 classified as irreversible, 6 as slowly reversible, and 139 as rapidly reversible.
Tobacco use remains the leading preventable cause of death in the US. The risk of dying from smoking-related diseases remains elevated for former smokers years after quitting. The identification of irreversible effects of tobacco smoke on airway gene expression may provide insights into the causes of this elevated risk.
Using oligonucleotide microarrays, we measured gene expression in large airway epithelial cells obtained via bronchoscopy from never, current, and former smokers (n = 104). Linear models identified 175 genes differentially expressed between current and never smokers, and classified these as irreversible (n = 28), slowly reversible (n = 6), or rapidly reversible (n = 139) based on their expression in former smokers. A greater percentage of irreversible and slowly reversible genes were down-regulated by smoking, suggesting possible mechanisms for persistent changes, such as allelic loss at 16q13. Similarities with airway epithelium gene expression changes caused by other environmental exposures suggest that common mechanisms are involved in the response to tobacco smoke. Finally, using irreversible genes, we built a biomarker of ever exposure to tobacco smoke capable of classifying an independent set of former and current smokers with 81% and 100% accuracy, respectively.
We have categorized smoking-related changes in airway gene expression by their degree of reversibility upon smoking cessation. Our findings provide insights into the mechanisms leading to reversible and persistent effects of tobacco smoke that may explain former smokers increased risk for developing tobacco-induced lung disease and provide novel targets for chemoprophylaxis. Airway gene expression may also serve as a sensitive biomarker to identify individuals with past exposure to tobacco smoke.
PMCID: PMC2375039  PMID: 17894889
11.  Upregulation of pirin expression by chronic cigarette smoking is associated with bronchial epithelial cell apoptosis 
Respiratory Research  2007;8(1):10.
Cigarette smoke disrupts the protective barrier established by the airway epithelium through direct damage to the epithelial cells, leading to cell death. Since the morphology of the airway epithelium of smokers does not typically demonstrate necrosis, the most likely mechanism for epithelial cell death in response to cigarette smoke is apoptosis. We hypothesized that cigarette smoke directly up-regulates expression of apoptotic genes, which could play a role in airway epithelial apoptosis.
Microarray analysis of airway epithelium obtained by bronchoscopy on matched cohorts of 13 phenotypically normal smokers and 9 non-smokers was used to identify specific genes modulated by smoking that were associated with apoptosis. Among the up-regulated apoptotic genes was pirin (3.1-fold, p < 0.002), an iron-binding nuclear protein and transcription cofactor. In vitro studies using human bronchial cells exposed to cigarette smoke extract (CSE) and an adenovirus vector encoding the pirin cDNA (AdPirin) were performed to test the direct effect of cigarette smoke on pirin expression and the effect of pirin expression on apoptosis.
Quantitative TaqMan RT-PCR confirmed a 2-fold increase in pirin expression in the airway epithelium of smokers compared to non-smokers (p < 0.02). CSE applied to primary human bronchial epithelial cell cultures demonstrated that pirin mRNA levels increase in a time-and concentration-dependent manner (p < 0.03, all conditions compared to controls).
Overexpression of pirin, using the vector AdPirin, in human bronchial epithelial cells was associated with an increase in the number of apoptotic cells assessed by both TUNEL assay (5-fold, p < 0.01) and ELISA for cytoplasmic nucleosomes (19.3-fold, p < 0.01) compared to control adenovirus vector.
These observations suggest that up-regulation of pirin may represent one mechanism by which cigarette smoke induces apoptosis in the airway epithelium, an observation that has implications for the pathogenesis of cigarette smoke-induced diseases.
PMCID: PMC1805431  PMID: 17288615
12.  High Correlation of the Response of Upper and Lower Lobe Small Airway Epithelium to Smoking 
PLoS ONE  2013;8(9):e72669.
The distribution of lung disease induced by inhaled cigarette smoke is complex, depending on many factors. With the knowledge that the small airway epithelium (SAE) is the earliest site of smoking-induced lung disease, and that the SAE gene expression is likely sensitive to inhaled cigarette smoke, we compared upper vs. lower lobe gene expression in the SAE within the same cigarette smokers to determine if the gene expression patterns were similar or different. Active smokers (n = 11) with early evidence of smoking-induced lung disease (normal spirometry but low diffusing capacity) underwent bronchoscopy and brushing of the upper and lower lobe SAE in order to compare upper vs lower lobe genome-wide and smoking-responsive gene expression by microarray. Cluster and principal component analysis demonstrated that, for each individual, the expression of the known SAE smoking-responsive genes were highly correlated in upper and lower lobe pairs, although, as expected, there were differences in the smoking-induced changes in gene expression from individual to individual. These observations support the concept that the heterogeneity observed among smokers in the anatomic distribution of smoking-induced disease are not secondary to the topographic differences in the effects of cigarette smoke on the airway epithelium.
PMCID: PMC3767732  PMID: 24039793
13.  Gene expression subtraction of non-cancerous lung from smokers and non-smokers with adenocarcinoma, as a predictor for smokers developing lung cancer 
Lung cancer is the commonest cause of cancer death in developed countries. Adenocarcinoma is becoming the most common form of lung cancer. Cigarette smoking is the main risk factor for lung cancer. Long-term cigarettes smoking may be characterized by genetic alteration and diffuse injury of the airways surface, named field cancerization, while cancer in non-smokers is usually clonally derived. Detecting specific genes expression changes in non-cancerous lung in smokers with adenocarcinoma may give us instrument for predicting smokers who are going to develop this malignancy.
We described the gene expression in non-cancerous lungs from 21 smoker patients with lung adenocarcinoma and compare it to gene expression in non-cancerous lung tissue from 10 non-smokers with primary lung adenocarcinoma.
Total RNA was isolated from peripheral non-cancerous lung tissue. The cDNA was hybridized to the U133A GeneChip array. Hierarchical clustering analysis on genes obtained from smokers and non-smokers, after subtracting were exported to the Ingenuity Pathway Analysis software for further analysis.
The genes subtraction resulted in disclosure of 36 genes with high score. They were subsequently mapped and sorted based on location, cellular components, and biochemical activity. The gene functional analysis disclosed 20 genes, which are involved in cancer process (P = 7.05E-5 to 2.92E-2).
Detected genes may serve as a predictor for smokers who may be at high risk of developing lung cancer. In addition, since these genes originating from non-cancerous lung, which is the major area of the lungs, a sample from an induced sputum may represent it.
PMCID: PMC2570656  PMID: 18811983
14.  Biologic Phenotyping of the Human Small Airway Epithelial Response to Cigarette Smoking 
PLoS ONE  2011;6(7):e22798.
The first changes associated with smoking are in the small airway epithelium (SAE). Given that smoking alters SAE gene expression, but only a fraction of smokers develop chronic obstructive pulmonary disease (COPD), we hypothesized that assessment of SAE genome-wide gene expression would permit biologic phenotyping of the smoking response, and that a subset of healthy smokers would have a “COPD-like” SAE transcriptome.
Methodology/Principal Findings
SAE (10th–12th generation) was obtained via bronchoscopy of healthy nonsmokers, healthy smokers and COPD smokers and microarray analysis was used to identify differentially expressed genes. Individual responsiveness to smoking was quantified with an index representing the % of smoking-responsive genes abnormally expressed (ISAE), with healthy smokers grouped into “high” and “low” responders based on the proportion of smoking-responsive genes up- or down-regulated in each smoker. Smokers demonstrated significant variability in SAE transcriptome with ISAE ranging from 2.9 to 51.5%. While the SAE transcriptome of “low” responder healthy smokers differed from both “high” responders and smokers with COPD, the transcriptome of the “high” responder healthy smokers was indistinguishable from COPD smokers.
The SAE transcriptome can be used to classify clinically healthy smokers into subgroups with lesser and greater responses to cigarette smoking, even though these subgroups are indistinguishable by clinical criteria. This identifies a group of smokers with a “COPD-like” SAE transcriptome.
PMCID: PMC3145669  PMID: 21829517
15.  Cigarette Smoking Reprograms Apical Junctional Complex Molecular Architecture in the Human Airway Epithelium In Vivo 
Cellular and molecular life sciences : CMLS  2010;68(5):10.1007/s00018-010-0500-x.
The apical junctional complex (AJC), composed of tight and adherens junctions, maintains epithelial barrier function. Since cigarette smoking and chronic obstructive pulmonary disease (COPD), the major smoking-induced disease, are associated with increased lung epithelial permeability, we hypothesized that smoking alters the transcriptional program regulating airway epithelial AJC integrity. Transcriptome analysis revealed global down-regulation of physiological AJC gene expression in the airway epithelium of healthy smokers (n=59) compared to nonsmokers (n=53) in association with changes in canonical epithelial differentiation pathways such as PTEN signaling accompanied by induction of cancer-related AJC components. The overall expression of AJC-related genes was further decreased in COPD smokers (n=23). Exposure of airway epithelial cells to cigarette smoke extract in vitro resulted in down-regulation of several AJC genes paralleled by decreased transepithelial resistance. Thus, cigarette smoking induces transcriptional reprogramming of airway epithelial AJC architecture from its physiological pattern necessary for barrier function toward disease-associated molecular phenotype.
PMCID: PMC3838912  PMID: 20820852
tight junctions; adherens junctions; airway epithelium; epithelial polarity; cigarette smoking; transcriptional regulation; chronic obstructive pulmonary disease
16.  CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma 
BMC Cancer  2005;5:141.
Cigarette smoking is the primary cause of bronchogenic carcinoma (BC), yet only 10–15% of heavy smokers develop BC and it is likely that this variation in risk is, in part, genetically determined. We previously reported a set of antioxidant genes for which transcript abundance was lower in normal bronchial epithelial cells (NBEC) of BC individuals compared to non-BC individuals. In unpublished studies of the same NBEC samples, transcript abundance values for several DNA repair genes were correlated with these antioxidant genes. From these data, we hypothesized that antioxidant and DNA repair genes are co-regulated by one or more transcription factors and that inter-individual variation in expression and/or function of one or more of these transcription factors is responsible for inter-individual variation in risk for BC.
The putative transcription factor recognition sites common to six of the antioxidant genes were identified through in silico DNA sequence analysis. The transcript abundance values of these transcription factors (n = 6) and an expanded group of antioxidant and DNA repair genes (n = 16) were measured simultaneously by quantitative PCR in NBEC of 24 non-BC and 25 BC individuals.
CEBPG transcription factor was significantly (p < 0.01) correlated with eight of the antioxidant or DNA repair genes in non-BC individuals but not in BC individuals. In BC individuals the correlation with CEBPG was significantly (p < 0.01) lower than that of non-BC individuals for four of the genes (XRCC1, ERCC5, GSTP1, and SOD1) and the difference was nearly significant for GPX1. The only other transcription factor correlated with any of these five target genes in non-BC individuals was E2F1. E2F1 was correlated with GSTP1 among non-BC individuals, but in contrast to CEBPG, there was no significant difference in this correlation in non-BC individuals compared to BC individuals.
We conclude that CEBPG is the transcription factor primarily responsible for regulating transcription of key antioxidant and DNA repair genes in non-BC individuals. Further, we conclude that the heavy smokers selected for development of BC are those who have sub-optimal regulation of antioxidant and DNA repair genes by CEBPG.
PMCID: PMC1310620  PMID: 16255782
17.  Airway PI3K Pathway Activation Is an Early and Reversible Event in Lung Cancer Development 
Science translational medicine  2010;2(26):26ra25.
Although only a subset of smokers develop lung cancer, we cannot determine which smokers are at highest risk for cancer development, nor do we know the signaling pathways altered early in the process of tumorigenesis in these individuals. On the basis of the concept that cigarette smoke creates a molecular field of injury throughout the respiratory tract, this study explores oncogenic pathway deregulation in cytologically normal proximal airway epithelial cells of smokers at risk for lung cancer. We observed a significant increase in a genomic signature of phosphatidylinositol 3-kinase (PI3K) pathway activation in the cytologically normal bronchial airway of smokers with lung cancer and smokers with dysplastic lesions, suggesting that PI3K is activated in the proximal airway before tumorigenesis. Further, PI3K activity is decreased in the airway of high-risk smokers who had significant regression of dysplasia after treatment with the chemopreventive agent myo-inositol, and myo-inositol inhibits the PI3K pathway in vitro. These results suggest that deregulation of the PI3K pathway in the bronchial airway epithelium of smokers is an early, measurable, and reversible event in the development of lung cancer and that genomic profiling of these relatively accessible airway cells may enable personalized approaches to chemoprevention and therapy. Our work further suggests that additional lung cancer chemoprevention trials either targeting the PI3K pathway or measuring airway PI3K activation as an intermediate endpoint are warranted.
PMCID: PMC3694402  PMID: 20375364
18.  Down-Regulation of the Canonical Wnt β-Catenin Pathway in the Airway Epithelium of Healthy Smokers and Smokers with COPD 
PLoS ONE  2011;6(4):e14793.
The Wnt pathway mediates differentiation of epithelial tissues; depending on the tissue types, Wnt can either drive or inhibit the differentiation process. We hypothesized that key genes in the Wnt pathway are suppressed in the human airway epithelium under the stress of cigarette smoking, a stress associated with dysregulation of the epithelial differentiated state.
Methodology/Principal Findings
Microarrays were used to assess the expression of Wnt-related genes in the small airway epithelium (SAE) obtained via bronchoscopy and brushing of healthy nonsmokers, healthy smokers, and smokers with COPD. Thirty-three of 56 known Wnt-related genes were expressed in the SAE. Wnt pathway downstream mediators β-catenin and the transcription factor 7-like 1 were down-regulated in healthy smokers and smokers with COPD, as were many Wnt target genes. Among the extracellular regulators that suppress the Wnt pathway, secreted frizzled-related protein 2 (SFRP2), was up-regulated 4.3-fold in healthy smokers and 4.9-fold in COPD smokers, an observation confirmed by TaqMan Real-time PCR, Western analysis and immunohistochemistry. Finally, cigarette smoke extract mediated up-regulation of SFRP2 and down-regulation of Wnt target genes in airway epithelial cells in vitro.
Smoking down-regulates the Wnt pathway in the human airway epithelium. In the context that Wnt pathway plays an important role in differentiation of epithelial tissues, the down-regulation of Wnt pathway may contribute to the dysregulation of airway epithelium differentiation observed in smoking-related airway disorders.
PMCID: PMC3072378  PMID: 21490961
19.  Trachea Epithelium as a “Canary” for Cigarette Smoking-induced Biologic Phenotype of the Small Airway Epithelium* 
Clinical and translational science  2009;2(4):10.1111/j.1752-8062.2009.00129.x.
The initial site of smoking-induced lung disease is the small airway epithelium, which is difficult and time consuming to sample by fiberoptic bronchoscopy. We developed a rapid, office-based procedure to obtain trachea epithelium without conscious sedation from healthy nonsmokers (n=26) and healthy smokers (n=19, 27 ± 15 pack-yr). Gene expression differences (fold-change >1.5, p<0.01, Benjamini-Hochberg correction) were assessed with Affymetrix microarrays. 1,057 probe sets were differentially expressed in healthy smokers vs nonsmokers, representing >500 genes. Trachea gene expression was compared to an independent group of small airway epithelial samples (n=23 healthy nonsmokers, n=19 healthy smokers, 25 ± 12 pack-yr). The trachea epithelium is more sensitive to smoking, responding with 3-fold more differentially-expressed genes than small airway epithelium. The trachea transcriptome paralleled the small airway epithelium, with 156 of 167 (93%) genes that are significantly upand down-regulated by smoking in the small airway epithelium showing similar direction and magnitude of response to smoking in the trachea. Trachea epithelium can be obtained without conscious sedation, representing a less invasive surrogate “canary” for smoking-induced changes in the small airway epithelium. This should prove useful in epidemiologic studies correlating gene expression with clinical outcome in assessing smoking-induced lung disease.
PMCID: PMC3875387  PMID: 20443905
20.  Threshold of Biologic Responses of the Small Airway Epithelium to Low Levels of Tobacco Smoke 
Rationale: Epidemiologic data demonstrate that individuals exposed to low levels of tobacco smoke have decrements in lung function and higher risk for lung disease compared with unexposed individuals. Although this risk is small, low-level tobacco smoke exposure is so widespread, it is a significant public health concern.
Objectives: To identify biologic correlates of this risk we hypothesized that, compared with unexposed individuals, individuals exposed to low levels of tobacco smoke have biologic changes in the small airway epithelium, the site of the first abnormalities associated with smoking.
Methods: Small airway epithelium was obtained by bronchoscopy from 121 individuals; microarrays were used to assess genome-wide gene expression; urine nicotine and cotinine were used to categorize subjects as “nonsmokers,” “active smokers,” and “low exposure.” Gene expression data were used to determine the threshold and induction half maximal level (ID50) of urine nicotine and cotinine at which the small airway epithelium showed abnormal responses.
Measurements and Main Results: There was no threshold of urine nicotine without a small airway epithelial response, and only slightly above detectable urine cotinine threshold with a small airway epithelium response. The ID50 for nicotine was 25 ng/ml and for cotinine it was 104 ng/ml.
Conclusions: The small airway epithelium detects and responds to low levels of tobacco smoke with transcriptome modifications. This provides biologic correlates of epidemiologic studies linking low-level tobacco smoke exposure to lung health risk, identifies the genes most sensitive to tobacco smoke, and defines thresholds at which the lung epithelium responds to low levels of tobacco smoke.
PMCID: PMC3029938  PMID: 20693378
threshold; exposure; dose-dependant; ID50
21.  Cytotoxic T cells expressing the co-stimulatory receptor NKG2 D are increased in cigarette smoking and COPD 
Respiratory Research  2010;11(1):128.
A suggested role for T cells in COPD pathogenesis is based on associations between increased lung cytotoxic T lymphocyte (CD8+) numbers and airflow limitation. CD69 is an early T cell activation marker. Natural Killer cell group 2 D (NKG2D) receptors are co-stimulatory molecules induced on CD8+ T cells upon activation. The activating function of NKG2 D is triggered by binding to MHC class 1 chain-related (MIC) molecules A and B, expressed on surface of stressed epithelial cells. The aim of this study was to evaluate the expression of MIC A and B in the bronchial epithelium and NKG2 D and CD69 on BAL lymphocytes in subjects with COPD, compared to smokers with normal lung function and healthy never-smokers.
Bronchoscopy with airway lavages and endobronchial mucosal biopsy sampling was performed in 35 patients with COPD, 21 healthy never-smokers and 16 smokers with normal lung function. Biopsies were immunohistochemically stained and BAL lymphocyte subsets were determined using flow cytometry.
Epithelial CD3+ lymphocytes in bronchial biopsies were increased in both smokers with normal lung function and in COPD patients, compared to never-smokers. Epithelial CD8+ lymphocyte numbers were higher in the COPD group compared to never-smoking controls. Among gated CD3+cells in BAL, the percentage of CD8+ NKG2D+ cells was enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. The percentage of CD8+ CD69+ cells and cell surface expression of CD69 were enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. No changes in the expression of MIC A or MIC B in the airway epithelium could be detected between the groups, whereas significantly decreased soluble MICB was detected in bronchial wash from smokers with normal lung function, compared to never-smokers.
In COPD, we found increased numbers of cytotoxic T cells in both bronchial epithelium and airway lumen. Further, the proportions of CD69- and NKG2D-expressing cytotoxic T cells in BAL fluid were enhanced in both subjects with COPD and smokers with normal lung function and increased expression of CD69 was found on CD8+ cells, indicating the cigarette smoke exposure-induced expansion of activated cytotoxic T cells, which potentially can respond to stressed epithelial cells.
PMCID: PMC2955660  PMID: 20863413
22.  Decline in NRF2-regulated Antioxidants in Chronic Obstructive Pulmonary Disease Lungs Due to Loss of Its Positive Regulator, DJ-1 
Rationale: Oxidative stress is a key contributor in chronic obstructive pulmonary disease (COPD) pathogenesis caused by cigarette smoking. NRF2, a redox-sensitive transcription factor, dissociates from its inhibitor, KEAP1, to induce antioxidant expression that inhibits oxidative stress.
Objectives: To determine the link between severity of COPD, oxidative stress, and NRF2-dependent antioxidant levels in the peripheral lung tissue of patients with COPD.
Methods: We assessed the expression of NRF2, NRF2-dependent antioxidants, regulators of NRF2 activity, and oxidative damage in non-COPD (smokers and former smokers) and smoker COPD lungs (mild and advanced). Cigarette smoke–exposed human lung epithelial cells (Beas2B) and mice were used to understand the mechanisms.
Measurements and Main Results: When compared with non-COPD lungs, the COPD patient lungs showed (1) marked decline in NRF2-dependent antioxidants and glutathione levels, (2) increased oxidative stress markers, (3) significant decrease in NRF2 protein with no change in NRF2 mRNA levels, and (4) similar KEAP1 but significantly decreased DJ-1 levels (a protein that stabilizes NRF2 protein by impairing KEAP1-dependent proteasomal degradation of NRF2). Exposure of Bea2B cells to cigarette smoke caused oxidative modification and enhanced proteasomal degradation of DJ-1 protein. Disruption of DJ-1 in mouse lungs, mouse embryonic fibroblasts, and Beas2B cells lowered NRF2 protein stability and impaired antioxidant induction in response to cigarette smoke. Interestingly, targeting KEAP1 by siRNA or the small-molecule activator sulforaphane restored induction of NRF2-dependent antioxidants in DJ-1–disrupted cells in response to cigarette smoke.
Conclusions: NRF2-dependent antioxidants and DJ-1 expression was negatively associated with severity of COPD. Therapy directed toward enhancing NRF2-regulated antioxidants may be a novel strategy for attenuating the effects of oxidative stress in the pathogenesis of COPD.
PMCID: PMC2542433  PMID: 18556627
chronic obstructive pulmonary disease; NRF2; DJ-1; oxidative stress; antioxidants
23.  Effect of active smoking on the human bronchial epithelium transcriptome 
BMC Genomics  2007;8:297.
Lung cancer is the most common cause of cancer-related deaths. Tobacco smoke exposure is the strongest aetiological factor associated with lung cancer. In this study, using serial analysis of gene expression (SAGE), we comprehensively examined the effect of active smoking by comparing the transcriptomes of clinical specimens obtained from current, former and never smokers, and identified genes showing both reversible and irreversible expression changes upon smoking cessation.
Twenty-four SAGE profiles of the bronchial epithelium of eight current, twelve former and four never smokers were generated and analyzed. In total, 3,111,471 SAGE tags representing over 110 thousand potentially unique transcripts were generated, comprising the largest human SAGE study to date. We identified 1,733 constitutively expressed genes in current, former and never smoker transcriptomes. We have also identified both reversible and irreversible gene expression changes upon cessation of smoking; reversible changes were frequently associated with either xenobiotic metabolism, nucleotide metabolism or mucus secretion. Increased expression of TFF3, CABYR, and ENTPD8 were found to be reversible upon smoking cessation. Expression of GSK3B, which regulates COX2 expression, was irreversibly decreased. MUC5AC expression was only partially reversed. Validation of select genes was performed using quantitative RT-PCR on a secondary cohort of nine current smokers, seven former smokers and six never smokers.
Expression levels of some of the genes related to tobacco smoking return to levels similar to never smokers upon cessation of smoking, while expression of others appears to be permanently altered despite prolonged smoking cessation. These irreversible changes may account for the persistent lung cancer risk despite smoking cessation.
PMCID: PMC2001199  PMID: 17727719
24.  Cigarette Smoking Induces Overexpression of a Fat Depleting Gene AZGP1 in the Human Airway Epithelium* 
Chest  2009;135(5):1197-1208.
Smokers weigh less and have less body fat than nonsmokers. Increased body fat and weight gain are observed following smoking cessation. To assess a possible molecular mechanism underlying the inverse association between smoking and body weight, we hypothesized that smoking may induce the expression of a fat depleting gene in the airway epithelium, the cell population that takes the brunt of the stress of cigarette smoke.
To assess if smoking up-regulates expression in the airway epithelium of genes associated with weight loss, microarray analysis was used to evaluate genes associated with fat-depletion in large airway epithelial samples obtained by fiberoptic bronchoscopy from normal smokers and normal nonsmokers. As a candidate gene we further evaluated the expression of alpha2-zinc-glycoprotein1 (AZGP1), a soluble protein that stimulates lipolysis, induces a reduction in body fat in mice, is associated with the cachexia related to cancer, and is known to be expressed in secretory cells of lung epithelium. AZGP1 protein expression was assessed by Western analysis and localization in the large airway epithelium by immunohistochemistry.
Both microarray and TaqMan analysis demonstrated that AZGP1 mRNA levels were higher in the large airway epithelium of normal smokers compared to normal nonsmokers (p<0.05, all comparisons). Western analysis of airway biopsies of smokers compared with non-smokers demonstrated upregulation of AZGP1 at the protein level, and immunohistochemical analysis demonstrated upregulation of AZGP1 in secretory as well as neuroendocrine cells of smokers.
In the context that AZGP1 is involved in lipolysis and fat loss, its overexpression in the airway epithelium of chronic smokers may represent one mechanism for the weight difference in smokers vs nonsmokers.
PMCID: PMC2679098  PMID: 19188554
AZGP1; smoking; weight loss; airway epithelium; gene expression
25.  Disparate oxidant gene expression of airway epithelium compared to alveolar macrophages in smokers 
Respiratory Research  2009;10(1):111.
The small airway epithelium and alveolar macrophages are exposed to oxidants in cigarette smoke leading to epithelial dysfunction and macrophage activation. In this context, we asked: what is the transcriptome of oxidant-related genes in small airway epithelium and alveolar macrophages, and does their response differ substantially to inhaled cigarette smoke?
Using microarray analysis, with TaqMan RT-PCR confirmation, we assessed oxidant-related gene expression in small airway epithelium and alveolar macrophages from the same healthy nonsmoker and smoker individuals.
Of 155 genes surveyed, 87 (56%) were expressed in both cell populations in nonsmokers, with higher expression in alveolar macrophages (43%) compared to airway epithelium (24%). In smokers, there were 15 genes (10%) up-regulated and 7 genes (5%) down-regulated in airway epithelium, but only 3 (2%) up-regulated and 2 (1%) down-regulated in alveolar macrophages. Pathway analysis of airway epithelium showed oxidant pathways dominated, but in alveolar macrophages immune pathways dominated.
Thus, the response of different cell-types with an identical genome exposed to the same stress of smoking is different; responses of alveolar macrophages are more subdued than those of airway epithelium. These findings are consistent with the observation that, while the small airway epithelium is vulnerable, alveolar macrophages are not "diseased" in response to smoking.
Trial Registration ID: NCT00224185 and NCT00224198
PMCID: PMC2787510  PMID: 19919714

Results 1-25 (984710)