PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1255868)

Clipboard (0)
None

Related Articles

1.  Prenatal Exposure to Bereavement and Type-2 Diabetes: A Danish Longitudinal Population Based Study 
PLoS ONE  2012;7(8):e43508.
Background
The etiology of type-2 diabetes is only partly known, and a possible role of prenatal stress in programming offspring for insulin resistance has been suggested by animal models. Previously, we found an association between prenatal stress and type-1 diabetes. Here we examine the association between prenatal exposure to maternal bereavement during preconception and pregnancy and development of type-2 diabetes in the off-spring.
Methods
We utilized data from the Danish Civil Registration System to identify singleton births in Denmark born January 1st 1979 through December 31st 2008 (N = 1,878,246), and linked them to their parents, grandparents, and siblings. We categorized children as exposed to bereavement during prenatal life if their mothers lost an elder child, husband or parent during the period from one year before conception to the child’s birth. We identified 45,302 children exposed to maternal bereavement; the remaining children were included in the unexposed cohort. The outcome of interest was diagnosis of type-2 diabetes. We estimated incidence rate ratios (IRRs) from birth using log-linear poisson regression models and used person-years as the offset variable. All models were adjusted for maternal residence, income, education, marital status, sibling order, calendar year, sex, and parents’ history of diabetes at the time of pregnancy.
Results
We found children exposed to bereavement during their prenatal life were more likely to have a type-2 diabetes diagnosis later in life (aIRR: 1.31, 1.01–1.69). These findings were most pronounced when bereavement was caused by death of an elder child (aIRR: 1.51, 0.94–2.44). Results also indicated the second trimester of pregnancy to be the most sensitive period of bereavement exposure (aIRR:2.08, 1.15–3.76).
Conclusions
Our data suggests that fetal exposure to maternal bereavement during preconception and the prenatal period may increase the risk for developing type-2 diabetes in childhood and young adulthood.
doi:10.1371/journal.pone.0043508
PMCID: PMC3429491  PMID: 22952698
2.  Mortality after Parental Death in Childhood: A Nationwide Cohort Study from Three Nordic Countries 
PLoS Medicine  2014;11(7):e1001679.
Jiong Li and colleagues examine mortality rates in children who lost a parent before 18 years old compared with those who did not using population-based data from Denmark, Sweden, and Finland.
Please see later in the article for the Editors' Summary
Background
Bereavement by spousal death and child death in adulthood has been shown to lead to an increased risk of mortality. Maternal death in infancy or parental death in early childhood may have an impact on mortality but evidence has been limited to short-term or selected causes of death. Little is known about long-term or cause-specific mortality after parental death in childhood.
Methods and Findings
This cohort study included all persons born in Denmark from 1968 to 2008 (n = 2,789,807) and in Sweden from 1973 to 2006 (n = 3,380,301), and a random sample of 89.3% of all born in Finland from 1987 to 2007 (n = 1,131,905). A total of 189,094 persons were included in the exposed cohort when they lost a parent before 18 years old. Log-linear Poisson regression was used to estimate mortality rate ratio (MRR). Parental death was associated with a 50% increased all-cause mortality (MRR = 1.50, 95% CI 1.43–1.58). The risks were increased for most specific cause groups and the highest MRRs were observed when the cause of child death and the cause of parental death were in the same category. Parental unnatural death was associated with a higher mortality risk (MRR = 1.84, 95% CI 1.71–2.00) than parental natural death (MRR = 1.33, 95% CI 1.24–1.41). The magnitude of the associations varied according to type of death and age at bereavement over different follow-up periods. The main limitation of the study is the lack of data on post-bereavement information on the quality of the parent-child relationship, lifestyles, and common physical environment.
Conclusions
Parental death in childhood or adolescence is associated with increased all-cause mortality into early adulthood. Since an increased mortality reflects both genetic susceptibility and long-term impacts of parental death on health and social well-being, our findings have implications in clinical responses and public health strategies.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
When someone close dies, it is normal to grieve, to mourn the loss of that individual. Initially, people who have lost a loved one often feel numb and disorientated and find it hard to grasp what has happened. Later, people may feel angry or guilty, and may be overwhelmed by feelings of sadness and despair. They may become depressed or anxious and may even feel suicidal. People who are grieving can also have physical reactions to their loss such as sleep problems, changes in appetite, and illness. How long bereavement—the period of grief and mourning after a death—lasts and how badly it affects an individual depends on the relationship between the individual and the deceased person, on whether the death was expected, and on how much support the mourner receives from relatives, friends, and professionals.
Why Was This Study Done?
The loss of a life-partner or of a child is associated with an increased risk of death (mortality), and there is also some evidence that the death of a parent during childhood leads to an increased mortality risk in the short term. However, little is known about the long-term impact on mortality of early parental loss or whether the impact varies with the type of death—a natural death from illness or an unnatural death from external causes such as an accident—or with the specific cause of death. A better understanding of the impact of early bereavement on mortality is needed to ensure that bereaved children receive appropriate health and social support after a parent's death. Here, the researchers undertake a nationwide cohort study in three Nordic countries to investigate long-term and cause-specific mortality after parental death in childhood. A cohort study compares the occurrence of an event (here, death) in a group of individuals who have been exposed to a particular variable (here, early parental loss) with the occurrence of the same event in an unexposed cohort.
What Did the Researchers Do and Find?
The researchers obtained data on everyone born in Denmark from 1968 to 2008 and in Sweden from 1973 to 2006, and on most people born in Finland from 1987 to 2007 (more than 7 million individuals in total) from national registries. They identified 189,094 individuals who had lost a parent between the age of 6 months and 18 years. They then estimated the mortality rate ratio (MRR) associated with parental death during childhood or adolescence by comparing the number of deaths in this exposed cohort (after excluding children who died on the same day as a parent or shortly after from the same cause) and in the unexposed cohort. Compared with the unexposed cohort, the exposed cohort had 50% higher all-cause mortality (MRR = 1.50). The risk of mortality in the exposed cohort was increased for most major categories of cause of death but the highest MRRs were seen when the cause of death in children, adolescents, and young adults during follow-up and the cause of parental death were in the same category. Notably, parental unnatural death was associated with a higher mortality risk (MRR = 1.84) than parental natural death (MRR = 1.33). Finally, the exposed cohort had increased all-cause MRRs well into early adulthood irrespective of child age at parental death, and the magnitude of MRRs differed by child age at parental death and by type of death.
What Do These Findings Mean?
These findings show that in three high-income Nordic countries parental death during childhood and adolescence is associated with an increased risk of all-cause mortality into early adulthood, irrespective of sex and age at bereavement and after accounting for baseline characteristics such as socioeconomic status. Part of this association may be due to “confounding” factors—the people who lost a parent during childhood may have shared other unknown characteristics that increased their risk of death. Because the study was undertaken in high-income countries, these findings are unlikely to be the result of a lack of material or health care needs. Rather, the increased mortality among the exposed group reflects both genetic susceptibility and the long-term impacts of parental death on health and social well-being. Given that increased mortality probably only represents the tip of the iceberg of the adverse effects of early bereavement, these findings highlight the need to provide long-term health and social support to bereaved children.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001679.
The UK National Health Service Choices website provides information about bereavement, including personal stories; it also provides information about children and bereavement and about young people and bereavement, including links to not-for-profit organizations that support children through bereavement
The US National Cancer Institute has detailed information about dealing with bereavement for the public and for health professionals that includes a section on children and grief (in English and Spanish)
The US National Alliance for Grieving Children promotes awareness of the needs of children and teens grieving a death and provides education and resources for anyone who wants to support them
MedlinePlus provides links to other resources about bereavement (in English and Spanish)
doi:10.1371/journal.pmed.1001679
PMCID: PMC4106717  PMID: 25051501
3.  Severe Maternal Stress Exposure Due to Bereavement before, during and after Pregnancy and Risk of Overweight and Obesity in Young Adult Men: A Danish National Cohort Study 
PLoS ONE  2014;9(5):e97490.
Background
Perinatal stress may programme overweight and obesity. We examined whether maternal pre- and post-natal bereavement was associated with overweight and obesity in young men.
Methods
A cohort study was conducted including 119,908 men born from 1976 to 1993 and examined for military service between 2006 and 2011. Among them, 4,813 conscripts were born to mothers bereaved by death of a close relative from 12 months preconception to birth of the child (exposed group). Median body mass index (BMI) and prevalence of overweight and obesity were estimated. Odds ratio of overweight (BMI≥25 kg/m2) and obesity (BMI≥30 kg/m2) were estimated by logistic regression analysis adjusted for maternal educational level.
Results
Median BMI was similar in the exposed and the unexposed group but the prevalence of overweight (33.3% versus 30.4%, p = 0.02) and obesity (9.8% versus 8.5%, p = 0.06) was higher in the exposed group. Conscripts exposed 6 to 0 months before conception and during pregnancy had a higher risk of overweight (odds ratio 1.15, 95% confidence interval (CI): 1.03; 1.27 and odds ratio 1.13, 95% CI: 1.03; 1.25, respectively). Conscripts born to mothers who experienced death of the child’s biological father before child birth had a two-fold risk of obesity (odds ratio 2.00, 95% CI: 0.93; 4.31). There was no elevated risk in those who experienced maternal bereavement postnatally.
Conclusion
Maternal bereavement during the prenatal period was associated with increased risk of overweight or obesity in a group of young male conscripts, and this may possibly be reflected to severe stress exposure early in life. However, not all associations were clear, and further studies are warranted.
doi:10.1371/journal.pone.0097490
PMCID: PMC4020839  PMID: 24828434
4.  Severe bereavement stress during the prenatal and childhood periods and risk of psychosis in later life: population based cohort study 
Objective To examine the risk of psychosis associated with severe bereavement stress during the antenatal and postnatal period, between conception to adolescence, and with different causes of death.
Design Population based cohort study.
Setting Swedish national registers including births between 1973 and 1985 and followed-up to 2006.
Participants In a cohort of 1 045 336 Swedish births (1973-85), offspring born to mothers exposed to severe maternal bereavement stress six months before conception or during pregnancy, or exposed to loss of a close family member subsequently from birth to 13 years of age were followed until 2006. Admissions were identified by linkage to national patient registers.
Main outcome measures Crude and adjusted odds ratios for all psychosis, non-affective psychosis, and affective psychosis.
Results Maternal bereavement stress occurring preconception or during the prenatal period was not associated with a significant excess risk of psychosis in offspring (adjusted odds ratio, preconception 1.24, 95% confidence interval 0.96 to 1.62; first trimester 0.95, 0.58 to1.56; second trimester 0.79, 0.46 to 1.33; third trimester 1.14, 0.78 to 1.66). Risks increased modestly after exposure to the loss of a close family member from birth to adolescence for all psychoses (adjusted odds ratio 1.17, 1.04 to 1.32). The pattern of risk was generally similar for non-affective and affective psychosis. Thus estimates were higher after death in the nuclear compared with extended family but remained non-significant for prenatal exposure; the earlier the exposure to death in the nuclear family occurred in childhood (all psychoses: adjusted odds ratio, birth to 2.9 years 1.84, 1.41 to 2.41; 3-6.9 years 1.47, 1.16 to 1.85; 7-12.9 years 1.32, 1.10 to 1.58) and after suicide. Following suicide, risks were especially higher for affective psychosis (birth to 2.9 years 3.33, 2.00 to 5.56; 6.9 years 1.84, 1.04 to 3.25; 7-12.9 years 2.68, 1.84 to 3.92). Adjustment for key confounders attenuated but did not explain associations with risk.
Conclusions Postnatal but not prenatal bereavement stress in mothers is associated with an increased risk of psychosis in offspring. Risks are especially high for affective psychosis after suicide in the nuclear family, an effect that is not explained by family psychiatric history. Future studies are needed to understand possible sources of risk and resilience so that structures can be put in place to support vulnerable children and their families.
doi:10.1136/bmj.f7679
PMCID: PMC3898661  PMID: 24449616
5.  Maternal Bereavement and Childhood Asthma—Analyses in Two Large Samples of Swedish Children 
PLoS ONE  2011;6(11):e27202.
Background
Prenatal factors such as prenatal psychological stress might influence the development of childhood asthma.
Methodology and Principal Findings
We assessed the association between maternal bereavement shortly before and during pregnancy, as a proxy for prenatal stress, and the risk of childhood asthma in the offspring, based on two samples of children 1–4 (n = 426 334) and 7–12 (n = 493 813) years assembled from the Swedish Medical Birth Register. Exposure was maternal bereavement of a close relative from one year before pregnancy to child birth. Asthma event was defined by a hospital contact for asthma or at least two dispenses of inhaled corticosteroids or montelukast. In the younger sample we calculated hazards ratios (HRs) of a first-ever asthma event using Cox models and in the older sample odds ratio (ORs) of an asthma attack during 12 months using logistic regression. Compared to unexposed boys, exposed boys seemed to have a weakly higher risk of first-ever asthma event at 1–4 years (HR: 1.09; 95% confidence interval [CI]: 0.98, 1.22) as well as an asthma attack during 12 months at 7–12 years (OR: 1.10; 95% CI: 0.96, 1.24). No association was suggested for girls. Boys exposed during the second trimester had a significantly higher risk of asthma event at 1–4 years (HR: 1.55; 95% CI: 1.19, 2.02) and asthma attack at 7–12 years if the bereavement was an older child (OR: 1.58; 95% CI: 1.11, 2.25). The associations tended to be stronger if the bereavement was due to a traumatic death compared to natural death, but the difference was not statistically significant.
Conclusions/Significance
Our results showed some evidence for a positive association between prenatal stress and childhood asthma among boys but not girls.
doi:10.1371/journal.pone.0027202
PMCID: PMC3210147  PMID: 22087265
6.  Prenatal Exposure to Maternal Bereavement and Childbirths in the Offspring: A Population-Based Cohort Study 
PLoS ONE  2014;9(7):e103353.
Introduction
The decline in birth rates is a concern in public health. Fertility is partly determined before birth by the intrauterine environment and prenatal exposure to maternal stress could, through hormonal disturbance, play a role. There has been such evidence from animal studies but not from humans. We aimed to examine the association between prenatal stress due to maternal bereavement following the death of a relative and childbirths in the offspring.
Materials and Methods
This population-based cohort study included all subjects born in Denmark after 1968 and in Sweden after 1973 and follow-up started at the age of 12 years. Subjects were categorized as exposed if their mothers lost a close relative during pregnancy or the year before and unexposed otherwise. The main outcomes were age at first child and age-specific mean numbers of childbirths. Data was analyzed using Cox Proportional Hazards models stratified by gender and adjusted for several covariates. Subanalyses were performed considering the type of relative deceased and timing of bereavement.
Results
A total of 4,121,596 subjects were followed-up until up to 41 years of age. Of these subjects, 93,635 (2.3%) were exposed and 981,989 (23.8%) had at least one child during follow-up time. Compared to unexposed, the hazard ratio (HR) [95% confidence interval] of having at least one child for exposed males and females were 0.98 [0.96–1.01] and 1.01 [0.98–1.03], respectively. We found a slightly reduced probability of having children in females born to mothers who lost a parent with HR = 0.97 [0.94–0.99] and increased probability in females born to mothers who lost another child (HR = 1.09 [1.04–1.14]), the spouse (HR = 1.29 [1.12–1.48]) or a sibling (HR = 1.13 [1.01–1.27]).
Conclusions
Our results suggested no overall association between prenatal exposure to maternal stress and having a child in early adulthood but a longer time of follow-up is necessary in order to reach a firmer conclusion.
doi:10.1371/journal.pone.0103353
PMCID: PMC4113360  PMID: 25068458
7.  Offspring psychopathology following preconception, prenatal, and postnatal maternal bereavement stress 
Psychological medicine  2013;44(1):10.1017/S0033291713000780.
Background
Preconception, prenatal, and postnatal maternal stress are associated with increased offspring psychopathology, but findings are inconsistent and need replication. We estimated associations between maternal bereavement stress and offspring autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), bipolar disorder, schizophrenia, suicide attempt, and completed suicide.
Methods
Using Swedish registers, we conducted the largest population-based study to date examining associations between stress exposure in 738,144 offspring born 1992–2000 for childhood outcomes and 2,155,221 offspring born 1973–1997 for adult outcomes with follow-up through 2009. Maternal stress was defined as death of a first degree relative during 6 months before conception, across pregnancy, or the first two postnatal years. Cox proportional survival analyses were used to obtain hazard ratios (HR) in unadjusted and adjusted analyses.
Results
Marginal increased risk of bipolar disorder and schizophrenia following preconception bereavement stress was not significant. Third trimester prenatal stress increased risk of ASD (adjusted HR=1.58, 95% CI: 1.15–2.17) and ADHD (adjusted HR=1.31, 95% CI: 1.04–1.66). First postnatal year stress increased risk for offspring suicide attempt (adjusted HR=1.13, 95% CI: 1.02–1.25) and completed suicide (adjusted HR=1.51, 95% CI: 1.08–2.11). Bereavement stress during the second postnatal year increased risk of ASD (adjusted HR=1.30, 95% CI: 1.09–1.55).
Conclusions
Further research is needed on associations between preconception stress and psychopathological outcomes. Prenatal bereavement stress increases risk of offspring ASD and ADHD. Postnatal bereavement stress moderately increases risk of offspring suicide attempt, completed suicide, and ASD. Smaller previous studies may have overestimated associations between early stress and psychopathological outcomes.
doi:10.1017/S0033291713000780
PMCID: PMC3766407  PMID: 23591021
stress; preconception; prenatal; postnatal; psychiatric; psychopathology; autism; attention-deficit/hyperactivity disorder; schizophrenia; suicide
8.  Pregnancy Weight Gain and Childhood Body Weight: A Within-Family Comparison 
PLoS Medicine  2013;10(10):e1001521.
David Ludwig and colleagues examine the within-family relationship between pregnancy weight gain and the offspring's childhood weight gain, thereby reducing the influence of genes and environment.
Please see later in the article for the Editors' Summary
Background
Excessive pregnancy weight gain is associated with obesity in the offspring, but this relationship may be confounded by genetic and other shared influences. We aimed to examine the association of pregnancy weight gain with body mass index (BMI) in the offspring, using a within-family design to minimize confounding.
Methods and Findings
In this population-based cohort study, we matched records of all live births in Arkansas with state-mandated data on childhood BMI collected in public schools (from August 18, 2003 to June 2, 2011). The cohort included 42,133 women who had more than one singleton pregnancy and their 91,045 offspring. We examined how differences in weight gain that occurred during two or more pregnancies for each woman predicted her children's BMI and odds ratio (OR) of being overweight or obese (BMI≥85th percentile) at a mean age of 11.9 years, using a within-family design. For every additional kg of pregnancy weight gain, childhood BMI increased by 0.0220 (95% CI 0.0134–0.0306, p<0.0001) and the OR of overweight/obesity increased by 1.007 (CI 1.003–1.012, p = 0.0008). Variations in pregnancy weight gain accounted for a 0.43 kg/m2 difference in childhood BMI. After adjustment for birth weight, the association of pregnancy weight gain with childhood BMI was attenuated but remained statistically significant (0.0143 kg/m2 per kg of pregnancy weight gain, CI 0.0057–0.0229, p = 0.0007).
Conclusions
High pregnancy weight gain is associated with increased body weight of the offspring in childhood, and this effect is only partially mediated through higher birth weight. Translation of these findings to public health obesity prevention requires additional study.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Childhood obesity has become a worldwide epidemic. For example, in the United States, the number of obese children has more than doubled in the past 30 years. 7% of American children aged 6–11 years were obese in 1980, compared to nearly 18% in 2010. Because of the rising levels of obesity, the current generation of children may have a shorter life span than their parents for the first time in 200 years.
Childhood obesity has both immediate and long-term effects on health. The initial problems are usually psychological. Obese children often experience discrimination, leading to low self-esteem and depression. Their physical health also suffers. They are more likely to be at risk of cardiovascular disease from high cholesterol and high blood pressure. They may also develop pre-diabetes or diabetes type II. In the long-term, obese children tend to become obese adults, putting them at risk of premature death from stroke, heart disease, or cancer.
There are many factors that lead to childhood obesity and they often act in combination. A major risk factor, especially for younger children, is having at least one obese parent. The challenge lies in unravelling the complex links between the genetic and environmental factors that are likely to be involved.
Why Was This Study Done?
Several studies have shown that a child's weight is influenced by his/her mother's weight before pregnancy and her weight gain during pregnancy. An obese mother, or a mother who puts on more pregnancy weight than average, is more likely to have an obese child.
One explanation for the effects of pregnancy weight gain is that the mother's overeating directly affects the baby's development. It may change the baby's brain and metabolism in such a way as to increase the child's long-term risk of obesity. Animal studies have confirmed that the offspring of overfed rats show these kinds of physiological changes. However, another possible explanation is that mother and baby share a similar genetic make-up and environment so that a child becomes obese from inheriting genetic risk factors, and growing up in a household where being overweight is the norm.
The studies in humans that have been carried out to date have not been able to distinguish between these explanations. Some have given conflicting results. The aim of this study was therefore to look for evidence of links between pregnancy weight gain and children's weight, using an approach that would separate the impact of genetic and environmental factors from a direct effect on the developing baby.
What Did the Researchers Do and Find?
The researchers examined data from the population of the US state of Arkansas recorded between 2003 and 2011. They looked at the health records of over 42,000 women who had given birth to more than one child during this period. This gave them information about how much weight the women had gained during each of their pregnancies. The researchers also looked at the school records of the children, over 91,000 in total, which included the children's body mass index (BMI, which factors in both height and weight). They analyzed the data to see if there was a link between the mothers' pregnancy weight gain and the child's BMI at around 12 years of age. Most importantly, they looked at these links within families, comparing children born to the same mother. The rationale for this approach was that these children would share a similar genetic make-up and would have grown up in similar environments. By taking genetics and environment into account in this manner, any remaining evidence of an impact of pregnancy weight gain on the children's BMI would have to be explained by other factors.
The results showed that the amount of weight each mother gained in pregnancy predicted her children's BMI and the likelihood of her children being overweight or obese. For every additional kg the mother gained during pregnancy, the children's BMI increased by 0.022. The children of mothers who put on the most weight had a BMI that was on average 0.43 higher than the children whose mothers had put on the least weight.
The study leaves some questions unanswered, including whether the mother's weight before pregnancy makes a difference to their children's BMI. The researchers were not able to obtain these measurements, nor the weight of the fathers. There may have also been other factors that weren't measured that might explain the links that were found.
What Do These Findings Mean?
This study shows that mothers who gain excessive weight during pregnancy increase the risk of their child becoming obese. This appears to be partly due to a direct effect on the developing baby.
These results represent a significant public health concern, even though the impact on an individual basis is relatively small. They could contribute to several hundred thousand cases of childhood obesity worldwide. Importantly, they also suggest that some cases could be prevented by measures to limit excessive weight gain during pregnancy. Such an approach could prove effective, as most mothers will not want to damage their child's health, and might therefore be highly motivated to change their behavior. However, because inadequate weight gain during pregnancy can also adversely affect the developing fetus, it will be essential for women to receive clear information about what constitutes optimal weight gain during pregnancy.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001521.
The US Centers for Disease Control and Prevention provide Childhood Obesity Facts
The UK National Health Service article “How much weight will I put on during my pregnancy?” provides information on pregnancy and weight gain and links to related resources
doi:10.1371/journal.pmed.1001521
PMCID: PMC3794857  PMID: 24130460
9.  Major Radiodiagnostic Imaging in Pregnancy and the Risk of Childhood Malignancy: A Population-Based Cohort Study in Ontario 
PLoS Medicine  2010;7(9):e1000337.
In a record-linkage study, Joel Ray and colleagues examine the association between diagnostic imaging during pregnancy and later childhood cancers.
Background
The association between fetal exposure to major radiodiagnostic testing in pregnancy—computed tomography (CT) and radionuclide imaging—and the risk of childhood cancer is not established.
Methods and Findings
We completed a population-based study of 1.8 million maternal-child pairs in the province of Ontario, from 1991 to 2008. We used Ontario's universal health care–linked administrative databases to identify all term obstetrical deliveries and newborn records, inpatient and outpatient major radiodiagnostic services, as well as all children with a malignancy after birth. There were 5,590 mothers exposed to major radiodiagnostic testing in pregnancy (3.0 per 1,000) and 1,829,927 mothers not exposed. The rate of radiodiagnostic testing increased from 1.1 to 6.3 per 1,000 pregnancies over the study period; about 73% of tests were CT scans. After a median duration of follow-up of 8.9 years, four childhood cancers arose in the exposed group (1.13 per 10,000 person-years) and 2,539 cancers in the unexposed group (1.56 per 10,000 person-years), a crude hazard ratio of 0.69 (95% confidence interval 0.26–1.82). After adjusting for maternal age, income quintile, urban status, and maternal cancer, as well as infant sex, chromosomal or congenital anomalies, and major radiodiagnostic test exposure after birth, the risk was essentially unchanged (hazard ratio 0.68, 95% confidence interval 0.25–1.80).
Conclusions
Although major radiodiagnostic testing is now performed in about 1 in 160 pregnancies in Ontario, the absolute annual risk of childhood malignancy following exposure in utero remains about 1 in 10,000. Since the upper confidence limit of the relative risk of malignancy may be as high as 1.8 times that of an unexposed pregnancy, we cannot exclude the possibility that fetal exposure to CT or radionuclide imaging is carcinogenic.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In industrialized countries, childhood cancer (any form of cancer in a child aged 14 years or under) remains a major cause of death. With the exception of a few known risk factors, such as acquired genetic predisposition to cancer, which accounts for about 10% of all childhood cancers, the etiology of most childhood cancer remains unknown. There is thought to be an association between exposure to ionizing radiation in pregnancy and the subsequent risk of development of cancer in the exposed mother's child, but the evidence base to support this association is conflicting. For example, studies examining maternal exposure to plain radiographs in pregnancy and subsequent childhood cancer are inconsistent. Furthermore, although their use has dramatically increased over the past two decades, little is known about the cancer risk related to certain types of radiodiagnostic tests, such as CT and radionuclide imaging, both of which expose the fetus to considerably higher doses of radiation than plain radiographs administered at the same anatomical level.
Why Was This Study Done?
Many women could be exposed to major radiodiagnostic tests, such as those used in emergency situations, before they are aware that they are pregnant, as almost 50% of pregnancies are unplanned. This situation means that it is important to determine the subsequent cancer risk to any child exposed to maternal radiodiagnostic tests before birth.
What Did the Researchers Do and Find?
The researchers conducted a retrospective population-based cohort study of women who delivered a live infant in Ontario, Canada between April 1, 1992 and March 31, 2008. The basis of the research was an anonymized database for the whole province of Ontario, where universal health care, including prenatal care and radiodiagnostic testing, is available to all residents. Database characteristics allowed the researchers to link maternal radiation exposure (a major radiodiagnostic test performed on the mother up to one day before her delivery date) in a specific (index) pregnancy to a subsequent malignancy in the child. After birth, maternal-infant pairs were only followed up if the infant was delivered at term, weighed 2,500 g or more, and survived for at least 30 days.
The researchers were able to follow up 1,835,517 maternal-child pairs. The overall rate of exposure to major radiodiagnostic testing in pregnancy was 3.0 per 1,000 and occurred at an estimated mean gestational age of 15.7 weeks. A total of four childhood cancers occurred in the exposed group and 2,539 cancers in the unexposed group corresponding to a crude hazard ratio of 0.69, which did not significantly change after adjustments were made for potential confounding factors, such as maternal age, sex, and the presence of any chromosomal or congenital anomalies in the infant. The overall prevalence of childhood cancer following exposure to CT or radionuclide imaging in pregnancy is under 0.07%, giving an incidence rate of 1.13 per 10,000 person-years.
What Do These Findings Mean?
These findings can help inform clinicians and mothers about the risk of childhood malignancy following major radiodiagnostic testing in pregnancy. The absolute risk appears to be low, while the relative risk is not materially higher than that of unexposed controls. However, as the upper confidence limit of the relative risk of malignancy may be a maximum of 1.8 times that of an unexposed pregnancy, the possibility that fetal exposure to CT or radionuclide imaging is carcinogenic cannot be excluded. Because this finding means that a very slight risk may exist, beta hCG testing should continue to be done in all potentially pregnant women before undergoing major radiodiagnostic testing, and lead apron shielding used in all women of reproductive age, whether or not known to be pregnant. In addition, nonradiation-emitting imaging, such as MRI and ultrasonography, should be considered first, when clinically appropriate. However, some pregnant women will still be faced with the decision to undergo CT or nuclear imaging because the test is clinically warranted. The findings of this study suggest that when clinically indicated, major radiodiagnostic testing in pregnancy should be performed, along with brief counseling to help lessen the anxiety experienced by an expectant mother before and after the birth of her child.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000337.
For information for patients and caregivers on radiodiagnostic testing, see The Royal College of Radiologists
The National Cancer Institute provides information about childhood cancer
CureSearch for Children's Cancer provides additional information about research into childhood cancer
doi:10.1371/journal.pmed.1000337
PMCID: PMC2935460  PMID: 20838660
10.  In-Utero Exposure to Bereavement and Offspring IQ: A Danish National Cohort Study 
PLoS ONE  2014;9(2):e88477.
Background
Intelligence is a life-long trait that has strong influences on lifestyle, adult morbidity and life expectancy. Hence, lower cognitive abilities are therefore of public health interest. Our primary aim was to examine if prenatal bereavement measured as exposure to death of a close family member is associated with the intelligence quotient (IQ) scores at 18-years of age of adult Danish males completing a military cognitive screening examination.
Methods
We extracted records for the Danish military screening test and found kinship links with biological parents, siblings, and maternal grandparents using the Danish Civil Registration System (N = 167,900). The prenatal exposure period was defined as 12 months before conception until birth of the child. We categorized children as exposed in utero to severe stress (bereavement) during prenatal life if their mothers lost an elder child, husband, parent or sibling during the prenatal period; the remaining children were included in the unexposed cohort. Mean score estimates were adjusted for maternal and paternal age at birth, residence, income, maternal education, gestational age at birth and birth weight.
Results
When exposure was due to death of a father the offsprings' mean IQ scores were lower among men completing the military recruitment exam compared to their unexposed counterparts, adjusted difference of 6.5 standard IQ points (p-value = 0.01). We did not observe a clinically significant association between exposure to prenatal maternal bereavement caused by death of a sibling, maternal uncle/aunt or maternal grandparent even after stratifying deaths only due to traumatic events.
Conclusion
We found maternal bereavement to be adversely associated with IQ in male offspring, which could be related to prenatal stress exposure though more likely is due to changes in family conditions after death of the father. This finding supports other literature on maternal adversity during fetal life and cognitive development in the offspring.
doi:10.1371/journal.pone.0088477
PMCID: PMC3928249  PMID: 24558394
11.  Maternal Overweight and Obesity and Risks of Severe Birth-Asphyxia-Related Complications in Term Infants: A Population-Based Cohort Study in Sweden 
PLoS Medicine  2014;11(5):e1001648.
Martina Persson and colleagues use a Swedish national database to investigate the association between maternal body mass index in early pregnancy and severe asphyxia-related outcomes in infants delivered at term.
Please see later in the article for the Editors' Summary
Background
Maternal overweight and obesity increase risks of pregnancy and delivery complications and neonatal mortality, but the mechanisms are unclear. The objective of the study was to investigate associations between maternal body mass index (BMI) in early pregnancy and severe asphyxia-related outcomes in infants delivered at term (≥37 weeks).
Methods and Findings
A nation-wide Swedish cohort study based on data from the Medical Birth Register included all live singleton term births in Sweden between 1992 and 2010. Logistic regression analyses were used to obtain odds ratios (ORs) with 95% CIs for Apgar scores between 0 and 3 at 5 and 10 minutes, meconium aspiration syndrome, and neonatal seizures, adjusted for maternal height, maternal age, parity, mother's smoking habits, education, country of birth, and year of infant birth. Among 1,764,403 term births, 86% had data on early pregnancy BMI and Apgar scores. There were 1,380 infants who had Apgar score 0–3 at 5 minutes (absolute risk  = 0.8 per 1,000) and 894 had Apgar score 0–3 at 10 minutes (absolute risk  = 0.5 per 1,000). Compared with infants of mothers with normal BMI (18.5–24.9), the adjusted ORs (95% CI) for Apgar scores 0–3 at 10 minutes were as follows: BMI 25–29.9: 1.32 (1.10–1.58); BMI 30–34.9: 1.57 (1.20–2.07); BMI 35–39.9: 1.80 (1.15–2.82); and BMI ≥40: 3.41 (1.91–6.09). The ORs for Apgar scores 0–3 at 5 minutes, meconium aspiration, and neonatal seizures increased similarly with maternal BMI. A study limitation was lack of data on effects of obstetric interventions and neonatal resuscitation efforts.
Conclusion
Risks of severe asphyxia-related outcomes in term infants increase with maternal overweight and obesity. Given the high prevalence of the exposure and the severity of the outcomes studied, the results are of potential public health relevance and should be confirmed in other populations. Prevention of overweight and obesity in women of reproductive age is important to improve perinatal health.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Economic, technologic, and lifestyle changes over the past 30 years have created an abundance of cheap, accessible, high-calorie food. Combined with fewer demands for physical activity, this situation has lead to increasing body mass throughout most of the world. Consequently, being overweight or obese is much more common in many high-income and low-and middle-income countries compared to 1980. Worldwide estimates put the percentage of overweight or obese adults as increasing by over 10%, between 1980 and 2008.
As being overweight becomes a global epidemic, its prevalence in women of reproductive age has also increased. Pregnant women who are overweight or obese are a cause for concern because of the possible associated health risks to both the infant and mother. Research is necessary to more clearly define these risks.
Why Was This Study Done?
In this study, the researchers investigated the complications associated with excess maternal weight that could hinder an infant from obtaining enough oxygen during delivery (neonatal asphyxia). All fetuses experience a loss of oxygen during contractions, however, a prolonged loss of oxygen can impact an infant's long-term development. To explore this risk, the researchers relied on a universal scoring system known as the Apgar score. An Apgar score is routinely recorded at one, five, and ten minutes after birth and is calculated from an assessment of heart rate, respiratory effort, and color, along with reflexes and muscle tone. An oxygen deficit during delivery will have an impact on the score. A normal score is in the range of 7–10. Body mass index (BMI) a calculation that uses height and weight, was used to assess the weight status (i.e., normal, overweight, obese) of the mother during pregnancy.
What Did the Researchers Do and Find?
Using the Swedish medical birth registry (a database including nearly all the births occurring in Sweden since 1973) the researchers selected records for single births that took place between 1992 to 2010. The registry also incorporates prenatal care data and researchers further selected for records that included weight and height measurement taken during the first prenatal visit. BMI was calculated using the weight and height measurement. Based on BMI ranges that define weight groups as normal, overweight, and obesity grades I, II, and III, the researchers analyzed and compared the number of low Apgar scoring infants (Apgar 0–3) in each group. Mothers with normal weight gave birth to the majority of infants with Apgar 0–3. In comparison the proportion of low Apgar scores were greater in babies of overweight and obese mothers. The researchers found that the rates of low Apgar scores increased with maternal BMI: the authors found that rates of low Apgar score at 5 minutes increased from 0.4 per 1,000 among infants of underweight women (BMI <18.5) to 2.4 per 1,000 among infants of women with obesity class III (BMI ≥40). Furthermore, overweight (BMI 25.0–29.9) was associated with a 55% increased risk of low Apgar scores at 5 minutes; obesity grade I (BMI 30–34.9) and grade II (BMI 35.0–39.9) with an almost 2-fold and a more than 2-fold increased risk, respectively; and obesity grade ΙΙΙ (BMI ≥40.0) with a more than 3-fold increase in risk. Finally, maternal overweight and obesity also increase the risks for seizures and meconium aspiration in the neonate.
What Do These Findings Mean?
These findings suggest that the risk of experiencing an oxygen deficit increases for the babies of women who are overweight or obese. Given the high prevalence of overweight and obesity in many countries worldwide, these findings are important and suggest that preventing women of reproductive age from becoming overweight or obese is therefore important to the health of their children.
A limitation of this study is the lack of data on the effects of clinical interventions and neonatal resuscitation efforts that may have been performed at the time of birth. Also Apgar scoring is based on five variables and a low score is not the most direct way to determine if the infant has experienced an oxygen deficit. However, these findings suggest that early detection of perinatal asphyxia is particularly relevant among infants of overweight and obese women although more studies are necessary to confirm the results in other populations.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001648.
The US National Institutes of Health explains and calculates body mass index
The NIH also defines the Apgar scoring system
The United Kingdom's National Health Service has information for pregnant woman who are overweight
The UK-based Overseas Development Institute discusses how changes in diet have led to a worldwide health crisis in its “Future Diets” publication
Information about the Swedish health care system is available
Information in English is available from the National Board of Health and Welfare in Sweden
doi:10.1371/journal.pmed.1001648
PMCID: PMC4028185  PMID: 24845218
12.  Can Prenatal Malaria Exposure Produce an Immune Tolerant Phenotype?: A Prospective Birth Cohort Study in Kenya 
PLoS Medicine  2009;6(7):e1000116.
In a prospective cohort study of newborns residing in a malaria holoendemic area of Kenya, Christopher King and colleagues find a subset of children born to malaria-infected women who acquire a tolerant phenotype, which persists into childhood and is associated with increased susceptibility to malarial infection and anemia.
Background
Malaria in pregnancy can expose the fetus to malaria-infected erythrocytes or their soluble products, thereby stimulating T and B cell immune responses to malaria blood stage antigens. We hypothesized that fetal immune priming, or malaria exposure in the absence of priming (putative tolerance), affects the child's susceptibility to subsequent malaria infections.
Methods and Findings
We conducted a prospective birth cohort study of 586 newborns residing in a malaria-holoendemic area of Kenya who were examined biannually to age 3 years for malaria infection, and whose malaria-specific cellular and humoral immune responses were assessed. Newborns were classified as (i) sensitized (and thus exposed), as demonstrated by IFNγ, IL-2, IL-13, and/or IL-5 production by cord blood mononuclear cells (CBMCs) to malaria blood stage antigens, indicative of in utero priming (n = 246), (ii) exposed not sensitized (mother Plasmodium falciparum [Pf]+ and no CBMC production of IFNγ, IL-2, IL-13, and/or IL-5, n = 120), or (iii) not exposed (mother Pf−, no CBMC reactivity, n = 220). Exposed not sensitized children had evidence for prenatal immune experience demonstrated by increased IL-10 production and partial reversal of malaria antigen-specific hyporesponsiveness with IL-2+IL-15, indicative of immune tolerance. Relative risk data showed that the putatively tolerant children had a 1.61 (95% confidence interval [CI] 1.10–2.43; p = 0.024) and 1.34 (95% CI 0.95–1.87; p = 0.097) greater risk for malaria infection based on light microscopy (LM) or PCR diagnosis, respectively, compared to the not-exposed group, and a 1.41 (95%CI 0.97–2.07, p = 0.074) and 1.39 (95%CI 0.99–2.07, p = 0.053) greater risk of infection based on LM or PCR diagnosis, respectively, compared to the sensitized group. Putatively tolerant children had an average of 0.5 g/dl lower hemoglobin levels (p = 0.01) compared to the other two groups. Exposed not sensitized children also had 2- to 3-fold lower frequency of malaria antigen-driven IFNγ and/or IL-2 production (p<0.001) and higher IL-10 release (p<0.001) at 6-month follow-ups, when compared to sensitized and not-exposed children. Malaria blood stage–specific IgG antibody levels were similar among the three groups.
Conclusions
These results show that a subset of children exposed to malaria in utero acquire a tolerant phenotype to blood-stage antigens that persists into childhood and is associated with an increased susceptibility to malaria infection and anemia. This finding could have important implications for malaria vaccination of children residing in endemic areas.
Please see later in the article for Editors' Summary
Editors' Summary
Background
Each year, Plasmodium falciparum, a mosquito-borne parasite, causes about 500 million cases of malaria and about one million people die as a result. Most of these deaths occur in young children in sub-Saharan Africa. Indeed, malaria accounts for a fifth of all childhood deaths in Africa, which makes it one of the most important childhood infectious diseases in this region. Very young children—those up to 6 months old—are relatively resistant to high-density parasitaemia and to clinical malaria, but children between 6 and 36 months old have an increased susceptibility to parasitaemia and to clinical malaria. Parasitaemia is the presence of P. falciparum parasites in the blood; a high density of blood-stage parasites causes the symptoms of clinical malaria (including high fever) and life-threatening organ damage and anemia (a lack of red blood cells).
Why Was This Study Done?
The age-dependent pattern of susceptibility to malaria suggests that young babies are protected by antibodies provided by their mothers, but that by 6 months old, when these antibodies have largely disappeared, babies have not yet fully developed their own anti-malaria immunity. However, little is known about the acquisition of anti-malaria immunity in infants, a process that needs to be understood in order to design effective vaccines for this age group. In particular, it is unclear how maternal malaria infection affects the acquisition of anti-malaria immunity. Malaria in pregnancy may expose the unborn child to malaria-infected red blood cells and to soluble malaria antigens (molecules that the immune system recognizes as foreign). This exposure could increase or decrease the child's immune responses to blood-stage malaria antigens and thus affect his/her ability to fight off malaria. In this study, the researchers investigated how prenatal malaria exposure affects anti-malaria immunity in young children and their susceptibility to subsequent malaria infections.
What Did the Researchers Do and Find?
The researchers determined which of 586 newborn babies enrolled into their study in an area of Kenya where malaria is very common had been exposed to P. falciparum before birth by looking for parasites in their mother's blood at delivery. They looked for malaria-specific immune responses in T cells (a type of immune system cell) in the newborn babies' cord blood by measuring the production of cytokines (molecules that either activate or inhibit the immune system) by these cells after exposure to malaria antigens. Finally, they examined the infants twice yearly for 3 years for malaria infection, malaria-specific immune responses, and anemia. The researchers classified the babies into three groups; cord blood cells of “sensitized” babies made activating cytokines in response to malaria antigens; cord blood cells of “exposed, not-sensitized” babies did not make activating cytokines but made an inhibitory cytokine (IL-10); and “not-exposed” babies were born to mothers with no P. falciparum infection at delivery. In their first 3 years of life, the exposed, not-sensitized group had a 60% greater risk of malaria infection (measured by counting parasites in their blood) than the unexposed group and a slightly higher risk of malaria infection than the sensitized group. They also had lower hemoglobulin levels (a sign of anemia) than the other babies. At age 6 months, the T cells of exposed, not-sensitized children were less likely to make activating cytokines in response to malaria antigens but made more IL-10 than the T cells of the other children; malaria-specific antibody levels were similar in the three groups.
What Do These Findings Mean?
These findings suggest that some children who are exposed to malaria before birth become “tolerant” to blood-stage malaria antigens. Exposure to malaria antigens before birth “tricks” their T cells into recognizing these antigens as self antigens. This immune tolerance, which persists into childhood, reduces the ability of the immune system to attack and destroy parasites and increases the susceptibility of these tolerant children to malaria infection. Why some children who are exposed to malaria before birth become tolerant while exposure to malaria antigens “primes” the immune system of other children to respond efficiently to these antigens is not clear. However, these findings could have important implications for the design of malaria vaccines for use in areas where children are often exposed to malaria before birth and for the design of strategies for the prevention of malaria during pregnancy.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000116.
This study is further discussed in a PLoS Medicine Perspective by Lars Hviid
Information is available from the World Health Organization on malaria (in several languages)
The US Centers for Disease Control and Prevention provides information on malaria (in English and Spanish)
Information is available from the Roll Back Malaria Partnership on all aspects of global malaria control, including information on malaria in pregnancy and on children and malaria
MedlinePlus provides links to additional information on malaria (in English and Spanish)
doi:10.1371/journal.pmed.1000116
PMCID: PMC2707618  PMID: 19636353
13.  Antenatal maternal bereavement and childhood cancer in the offspring: a population-based cohort study in 6 million children 
British Journal of Cancer  2012;107(3):544-548.
Background:
Prenatal stress may increase the susceptibility to childhood cancer by affecting immune responses and hormonal balance. We examined whether antenatal stress following maternal bereavement increased the risk of childhood cancer.
Methods:
All children born in Denmark from 1968 to 2007 (N=2 743 560) and in Sweden from 1973 to 2006 (N=3 400 212) were included in this study. We compared cancer risks in children born to women who lost a first-degree relative (a child, spouse, a parent, or a sibling) the year before pregnancy or during pregnancy with cancer risks in children of women who did not experience such bereavement.
Results:
A total of 9795 childhood cancer cases were observed during follow-up of 68 360 707 person years. Children born to women who lost a child or a spouse, but not those who lost other relatives, had an average 30% increased risk of any cancer (hazard ratio (HR) 1.30, 95% confidence interval (CI) 0.96–1.77). The HRs were the highest for non-Hodgkin disease (512 cases in total, HR 3.40, 95% CI 1.51–7.65), hepatic cancer (125 cases in total, HR 5.51, 95% CI 1.34–22.64), and testicular cancer (86 cases in total, HR 8.52, 95% CI 2.03–37.73).
Conclusion:
Our data suggest that severe antenatal stress following maternal bereavement, especially due to loss of a child or a spouse, is associated with an increased risk of certain childhood cancers in the offspring, such as hepatic cancer and non-Hodgkin disease, but not with childhood cancer in general.
doi:10.1038/bjc.2012.288
PMCID: PMC3405225  PMID: 22759879
childhood cancer; bereavement; prenatal stress; mother; association
14.  Prenatal Treatment for Serious Neurological Sequelae of Congenital Toxoplasmosis: An Observational Prospective Cohort Study 
PLoS Medicine  2010;7(10):e1000351.
An observational study by Ruth Gilbert and colleagues finds that prenatal treatment of congenital toxoplasmosis could substantially reduce the proportion of infected fetuses that develop serious neurological sequelae.
Background
The effectiveness of prenatal treatment to prevent serious neurological sequelae (SNSD) of congenital toxoplasmosis is not known.
Methods and Findings
Congenital toxoplasmosis was prospectively identified by universal prenatal or neonatal screening in 14 European centres and children were followed for a median of 4 years. We evaluated determinants of postnatal death or SNSD defined by one or more of functional neurological abnormalities, severe bilateral visual impairment, or pregnancy termination for confirmed congenital toxoplasmosis. Two-thirds of the cohort received prenatal treatment (189/293; 65%). 23/293 (8%) fetuses developed SNSD of which nine were pregnancy terminations. Prenatal treatment reduced the risk of SNSD. The odds ratio for prenatal treatment, adjusted for gestational age at maternal seroconversion, was 0.24 (95% Bayesian credible intervals 0.07–0.71). This effect was robust to most sensitivity analyses. The number of infected fetuses needed to be treated to prevent one case of SNSD was three (95% Bayesian credible intervals 2–15) after maternal seroconversion at 10 weeks, and 18 (9–75) at 30 weeks of gestation. Pyrimethamine-sulphonamide treatment did not reduce SNSD compared with spiramycin alone (adjusted odds ratio 0.78, 0.21–2.95). The proportion of live-born infants with intracranial lesions detected postnatally who developed SNSD was 31.0% (17.0%–38.1%).
Conclusion
The finding that prenatal treatment reduced the risk of SNSD in infected fetuses should be interpreted with caution because of the low number of SNSD cases and uncertainty about the timing of maternal seroconversion. As these are observational data, policy decisions about screening require further evidence from a randomized trial of prenatal screening and from cost-effectiveness analyses that take into account the incidence and prevalence of maternal infection.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Toxoplasmosis is a very common parasitic infection. People usually become infected with Toxoplasma gondii, the parasite that causes toxoplasmosis, by eating raw or undercooked meat that contains the parasite, but it can also be contracted by drinking unfiltered water or by handling cat litter. Most people with toxoplasmosis never know they have the disease. However, if a pregnant woman becomes infected with T. gondii, she can transmit the parasite to her unborn baby (fetus). Overall, about a quarter of women who catch toxoplasmosis during pregnancy transmit the parasite to their fetus. If transmission occurs early during pregnancy, the resultant “congenital toxoplasmosis” increases the risk of miscarriage and the risk of the baby being born with brain damage, epilepsy, deafness, blindness, or developmental problems (“serious neurological sequelae”). In the worst cases, babies may be born dead or die soon after birth. Congenital toxoplasmosis caught during the final third of pregnancy may not initially cause any health problems but eyesight problems often develop later in life.
Why Was This Study Done?
Clinicians can find out if a woman has been infected with T. gondii during pregnancy by looking for parasite-specific antibodies (proteins made by the immune system that fight infections) in her blood. If the pattern of antibodies suggests a recent infection, the woman can be given spiramycin or pyrimethamine-sulfonamide, antibiotics that are thought to reduce the risk of transmission to the fetus and the severity of toxoplasmosis in infected fetuses. In some countries where toxoplasmosis is particularly common (for example, France), pregnant women are routinely screened for toxoplasmosis and treated with antibiotics if there are signs of recent infection. But is prenatal treatment an effective way to prevent the serious neurological sequelae or postnatal death (SNSD) associated with congenital toxoplasmosis? In this observational study, the researchers examine this question by studying a group of children identified as having congenital toxoplasmosis by prenatal or neonatal screening in six European countries. An observational study measures outcomes in a group of patients without trying to influence those outcomes by providing a specific treatment.
What Did the Researchers Do and Find?
The researchers followed 293 children in whom congenital toxoplasmosis had been identified by prenatal screening (in France, Austria, and Italy) or by neonatal screening (in Denmark, Sweden, and Poland) for an average 4 years. Two-thirds of the children received prenatal treatment for toxoplasmosis and 23 fetuses (8% of the fetuses) developed SNSD; nine of these cases of SNSD were terminated during pregnancy. By comparing the number of cases of SNSD among children who received prenatal treatment with the number among children who did not receive prenatal treatment, the researchers estimate that prenatal treatment reduced the risk of SNSD by three-quarters. They also estimate that to prevent one case of SNSD after maternal infection at 10 weeks of pregnancy, it would be necessary to treat three fetuses with confirmed infection. To prevent one case of SNSD after maternal infection at 30 weeks of pregnancy, 18 fetuses would need to be treated. Finally, the researchers report that the effectiveness of pyrimethamine-sulfonamide and spiramycin (which is less toxic) was similar, and that a third of live-born infants with brain damage that was detected after birth subsequently developed SNSD.
What Do These Findings Mean?
These findings suggest that prenatal treatment of congenital toxoplasmosis could substantially reduce the proportion of infected fetuses that develop SNDS and would be particularly effective in fetuses whose mothers acquired T. gondii during the first third of pregnancy. These findings should be interpreted with caution, however, because of the small number of affected fetuses in the study and because of uncertainty about the timing of maternal infection. Furthermore, these findings only relate to the relatively benign strain of T. gondii that predominates in Europe and North America; further studies are needed to test whether prenatal treatment is effective against the more virulent strains of the parasite that occur in South America. Finally, because this study is an observational study, its findings might reflect differences between the study participants other than whether or not they received prenatal treatment. These findings need to be confirmed in randomized controlled trials of prenatal screening, therefore, before any policy decisions are made about routine prenatal screening and treatment for congenital toxoplasmosis.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000351.
The US Centers for Disease Control and Prevention provides detailed information about all aspects of toxoplasmosis, including toxoplasmosis in pregnant women (in English and Spanish)
The UK National Health Services Choices website has information for patients about toxoplasmosis and about the risks of toxoplasmosis during pregnancy
KidsHealth, a resource maintained by the Nemours Foundation (a not-for-profit organization for children's health), provides information for parents about toxoplasmosis (in English and Spanish)
Tommy's, a nonprofit organization that funds research on the health of babies, also has information on toxoplasmosis
MedlinePlus provides links to other information on toxoplasmosis (in English and Spanish)
EUROTOXO contains reports generated by a European consensus development project
Uptodate provides information about toxoplasmosis and pregnancy
doi:10.1371/journal.pmed.1000351
PMCID: PMC2953528  PMID: 20967235
15.  Prenatal Tobacco Smoke Exposure and Early Childhood BMI 
Summary
Maternal smoking during pregnancy is associated with increased risk of childhood overweight body mass index (BMI). Less is known about the association between prenatal secondhand tobacco smoke (SHS) exposure and childhood BMI. We followed 292 mother-child dyads from early pregnancy to 3 years of age. Prenatal tobacco smoke exposure during pregnancy was quantified using self-report and serum cotinine biomarkers. We used linear mixed models to estimate the association between tobacco smoke exposure and BMI at birth, 4 weeks, and 1, 2, and 3 years. During pregnancy, 15% of women reported SHS exposure and 12% reported active smoking, but 51% of women had cotinine levels consistent with SHS exposure and 10% had cotinine concentrations indicative of active smoking. After adjustment for confounders, children born to active smokers had higher BMI at 2 and 3 years of age (self-report or serum cotinine), compared to unexposed children. Children born to women with prenatal serum cotinine concentrations indicative of SHS exposure had higher BMI at 2 (Mean Difference [MD]:0.3; 95% confidence interval [CI]:−0.1, 0.7) and 3 (MD:0.4; [0, 0.8]) years compared to unexposed children. Using self-reported prenatal exposure resulted in non-differential exposure misclassification of SHS exposures that attenuated the association between SHS exposure and BMI compared to serum cotinine concentrations. These findings suggest active and secondhand prenatal tobacco smoke exposure may be related to an important public health problem in childhood and later life. In addition, accurate quantification of prenatal secondhand tobacco smoke exposures is essential to obtaining valid estimates.
doi:10.1111/j.1365-3016.2010.01146.x
PMCID: PMC3509191  PMID: 20955230
Body Mass Index; Children; Cotinine; Growth; Prenatal; Tobacco Smoke
16.  Maternal Distress during Pregnancy and Offspring Childhood Overweight 
Journal of Obesity  2012;2012:462845.
Background. Maternal distress during pregnancy increases the intrauterine level of glucocorticoids, which may have long-term health consequences for the child. Objective. To examine if distress as a combined measure of anxiety, depression, and stress of the mother during pregnancy was associated with offspring childhood overweight at age 7. Methods. We performed a cohort study using prospective data from 37,764 women and child dyads from the Danish National Birth Cohort (1996–2002). At a telephone interview at approximately 30 weeks gestation, the women reported whether they felt anxious, depressed, or stressed. The 95 percentile for body mass index in an international reference defined childhood overweight at any given age. Logistic regression was used for the analyses. Results. The prevalence of overweight children at 7 years of age was 9.9%. Prenatal exposure to maternal distress during pregnancy was not associated with childhood overweight at 7 years of age (adjusted OR 1.06 (95% CI 0.96; 1.18)). In analyses stratified on sex, a small tendency of overweight was seen in boys (OR 1.15 (0.99; 1.33)), but not in girls (OR 0.98 (0.85; 1.13)). Conclusions. Maternal distress during pregnancy appeared to have limited, if any, influence on the risk of overweight in offspring at 7 years of age.
doi:10.1155/2012/462845
PMCID: PMC3364588  PMID: 22685634
17.  Risk Factors for Childhood Overweight in Offspring of Type 1 Diabetic Women With Adequate Glycemic Control During Pregnancy 
Diabetes Care  2009;32(11):2099-2104.
OBJECTIVE
Pregnancy in type 1 diabetic women remains a high-risk situation for both mother and child. In this study, we investigated long-term effects on body composition, prevalence of overweight, and insulin resistance in children of type 1 diabetic women who had had adequate glycemic control during pregnancy (mean A1C 6.2%), and we related their outcome to perinatal factors, including macrosomia (birth weight >90th percentile).
RESEARCH DESIGN AND METHODS
Anthropometric measurements were performed at 6–8 years of age in 213 offspring of type 1 diabetic mothers who participated in a previous nationwide study. Homeostasis model assessment of insulin resistance (HOMA-IR) was determined from a fasting blood sample in 155 of these children. In addition, we studied BMI standard deviation score (SDS) growth trajectories. Results were compared with national reference data.
RESULTS
The prevalence of overweight in the study population was not different from that in the reference population. However, children who were born macrosomic showed twice as much overweight as nonmacrosomic children. Macrosomia and maternal overweight were independent predictors of childhood overweight. Overweight children showed an increase in BMI SDS starting already after 6 months of age and had a significantly increased HOMA-IR.
CONCLUSIONS
In type 1 diabetic women with adequate glycemic control during pregnancy, long-term effects on body composition and overweight in their offspring at school age are limited and related mainly to macrosomia at birth. Possible targets for prevention of childhood overweight are fetal macrosomia, maternal overweight, and an increase in BMI SDS during the first years of life.
doi:10.2337/dc09-0652
PMCID: PMC2768216  PMID: 19651922
18.  Prenatal Stress and Risk of Febrile Seizures in Children: A Nationwide Longitudinal Study in Denmark 
We aimed to examine whether exposure to prenatal stress following maternal bereavement is associated with an increased risk of febrile seizures. In a longitudinal population-based cohort study, we followed 1,431,175 children born in Denmark. A total of 34,777 children were born to women who lost a close relative during pregnancy or within 1 year before the pregnancy and they were included in the exposed group. The exposed children had a risk of febrile seizures similar to that of the unexposed children (hazard ratio (HR) 1.00, 95% CI 0.94–1.06). The HRs did not differ according to the nature or timing of bereavement. Our data do not suggest any causal link between exposure to prenatal stress and febrile seizures in childhood.
doi:10.1007/s10803-009-0717-4
PMCID: PMC2694316  PMID: 19291382
Prenatal stress; Bereavement; Febrile seizures; Fetal programming; Longitudinal study
19.  Risks of Overweight and Abdominal Obesity at Age 16 Years Associated With Prenatal Exposures to Maternal Prepregnancy Overweight and Gestational Diabetes Mellitus 
Diabetes Care  2010;33(5):1115-1121.
OBJECTIVE
The associations of prenatal exposures to maternal prepregnancy overweight and gestational diabetes mellitus (GDM) with offspring overweight are controversial. Research estimating risk for offspring overweight due to these exposures, separately and concomitantly, is limited.
RESEARCH DESIGN AND METHODS
Prevalence of overweight and abdominal obesity at age 16 years and odds ratios (ORs) for prenatal exposures to maternal prepregnancy overweight and GDM were estimated in participants of the prospective longitudinal Northern Finland Birth Cohort of 1986 (N = 4,168).
RESULTS
The prevalence and estimates of risk for overweight and abdominal obesity were highest in those exposed to both maternal prepregnancy overweight and GDM (overweight prevalence 40% [OR 4.05], abdominal obesity prevalence 25.7% [3.82]). Even in offspring of mothers with a normal oral glucose tolerance test during pregnancy, maternal prepregnancy overweight is associated with increased risk for these outcomes (overweight prevalence 27.9% [2.56], abdominal obesity prevalence 19.5% [2.60]). In offspring of women with prepregnancy normal weight, the prevalence or risks of the outcomes were not increased by prenatal exposure to GDM. These estimates of risk were adjusted for parental prepregnancy smoking, paternal overweight, and offspring sex and size at birth.
CONCLUSIONS
Maternal prepregnancy overweight is an independent risk factor for offspring overweight and abdominal obesity at age 16 years. The risks are highest in offspring with concomitant prenatal exposure to maternal prepregnancy overweight and GDM, whereas the risks associated with GDM are only small.
doi:10.2337/dc09-1871
PMCID: PMC2858187  PMID: 20427685
20.  Dynamics of Early Childhood Overweight 
Pediatrics  2005;116(6):1329-1338.
Objective
To study the dynamic processes that drive development of childhood overweight by examining the effects of prenatal characteristics and early-life feeding (breastfeeding versus bottle feeding) on weight states through age 7 years. We test a model to determine whether prenatal characteristics and early-life feeding influence the development of a persistent early tendency toward overweight and/or whether prenatal characteristics and early-life feeding factors influence the likelihood that children will change weight states as they get older.
Methods
Data from the National Longitudinal Survey of Youth's Child-Mother file were used to implement these analyses. A total of 3022 children were included in this sample. For inclusion in this sample, valid information on height and weight during 3 consecutive interviews when the child was aged 24 to 95 months as well as valid data on prenatal and birth characteristics were needed. The primary outcome measure was childhood overweight (BMI > 95th percentile). Multivariate logistic models and first-order Markov models were estimated.
Results
Early development of childhood overweight was associated with race, ethnicity, maternal prepregnancy obesity, maternal smoking during pregnancy, and later birth years. In later years, the factor that contributed the most to being overweight was having been overweight in the previous observation period. However, with conditioning on the child's having been overweight in the previous observation period, the prenatal factors that contributed to early childhood overweight, except for birth cohort, were also associated with development of overweight among children who had previously been normal weight and perpetuated the persistence of overweight over time.
Conclusions
This research suggests that prenatal characteristics, particularly race, ethnicity, maternal smoking during pregnancy, and maternal prepregnancy obesity, exert influence on the child's weight states through an early tendency toward overweight, which then is perpetuated as the child ages. These findings are intriguing as they provide additional clues to the genesis of childhood overweight and suggest that overweight prevention may need to begin before pregnancy and in early childhood.
doi:10.1542/peds.2004-2583
PMCID: PMC1479091  PMID: 16322155
21.  Earlier Mother's Age at Menarche Predicts Rapid Infancy Growth and Childhood Obesity 
PLoS Medicine  2007;4(4):e132.
Background
Early menarche tends to be preceded by rapid infancy weight gain and is associated with increased childhood and adult obesity risk. As age at menarche is a heritable trait, we hypothesised that age at menarche in the mother may in turn predict her children's early growth and obesity risk.
Methods and Findings
We tested associations between mother's age at menarche, mother's adult body size and obesity risk, and her children's growth and obesity risk in 6,009 children from the UK population-based Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort who had growth and fat mass at age 9 y measured by dual-energy X-ray absorptiometry. A subgroup of 914 children also had detailed infancy and childhood growth data. In the mothers, earlier menarche was associated with shorter adult height (by 0.64 cm/y), increased weight (0.92 kg/y), and body mass index (BMI, 0.51 kg/m2/y; all p < 0.001). In contrast, in her children, earlier mother's menarche predicted taller height at 9 y (by 0.41 cm/y) and greater weight (0.80 kg/y), BMI (0.29 kg/m2/y), and fat mass index (0.22 kg/m2/year; all p < 0.001). Children in the earliest mother's menarche quintile (≤11 y) were more obese than the oldest quintile (≥15 y) (OR, 2.15, 95% CI 1.46 to 3.17; p < 0.001, adjusted for mother's education and BMI). In the subgroup, children in the earliest quintile showed faster gains in weight (p < 0.001) and height (p < 0.001) only from birth to 2 y, but not from 2 to 9 y (p = 0.3–0.8).
Conclusions
Earlier age at menarche may be a transgenerational marker of a faster growth tempo, characterised by rapid weight gain and growth, particularly during infancy, and leading to taller childhood stature, but likely earlier maturation and therefore shorter adult stature. This growth pattern confers increased childhood and adult obesity risks.
Earlier age at menarche may be a transgenerational marker of faster growth, particularly during infancy, leading to taller childhood stature but earlier maturation and hence shorter adult stature.
Editors' Summary
Background.
Childhood obesity is a rapidly growing problem. Twenty-five years ago, overweight children were rare. Now, 155 million of the world's children are overweight and 30–45 million are obese. Overweight and obese children—those having a higher than average body mass index (BMI; weight divided by height squared) for their age and sex—are at increased risk of becoming obese adults. Such people are more likely to develop heart disease, diabetes, and other health problems than lean people. Many factors are involved in the burgeoning size of children. Parental obesity, for example, predisposes children to being overweight. In part, this is because parents influence the eating habits of their offspring and the amount of exercise they do. In addition, though, children inherit genetic factors from their parents that make them more likely to put on weight.
Why Was This Study Done?
To prevent childhood obesity, health care professionals need ways to predict which infants are likely to become obese so that they can give parents advice on controlling their children's weight. In girls, early menarche (the start of menstruation) is associated with an increased risk of childhood and adult obesity and tends to be preceded by rapid weight gain in the first two years of life. Because age at menarche is inherited, the researchers in this study have investigated whether mothers' age at menarche predicts rapid growth in infancy and childhood obesity in their offspring using data from the Avon Longitudinal Study of Parents and Children (ALSPAC). In 1991–1992, this study recruited nearly 14,000 children born in Bristol, UK. Since then, the children have been regularly examined to investigate how their environment and genetic inheritance interact to affect their health.
What Did the Researchers Do and Find?
The researchers measured the growth and fat mass of 6,009 children from ALSPAC at 9 years of age. For 914 of these children, the researchers had detailed data on their growth during infancy and early childhood. They then looked for any associations between the mother's age at menarche (as recalled during pregnancy), mother's adult body size, and the children's growth and obesity risk. In the mothers, earlier menarche was associated with shorter adult height and increased weight and BMI. In the children, those whose mothers had earlier menarche were taller and heavier than those whose mothers had a later menarche. They also had a higher BMI and more body fat. The children whose mothers had their first period before they were 11 were twice as likely to be obese as those whose mothers did not menstruate until they were 15 or older. Finally, for the children with detailed early growth data, those whose mothers had the earliest menarche had faster weight and height gains in the first two years of life (but not in the next seven years) than those whose mothers had the latest menarche.
What Do These Findings Mean?
These findings indicate that earlier mother's menarche predicts a faster growth tempo (the speed at which an individual reaches their adult height) in their offspring, which is characterized by rapid weight and height gain during infancy. This faster growth tempo leads to taller childhood stature, earlier sexual maturity, and—because age at puberty determines adult height—shorter adult stature. An inherited growth pattern like this, the researchers write, confers an increased risk of childhood and adult obesity. As with all studies that look for associations between different measurements, these findings will be affected by the accuracy of the measurements—for example, how well the mothers recalled their age at menarche. Furthermore, because puberty, particularly in girls, is associated with an increase in body fat, a high BMI at age nine might indicate imminent puberty rather than a risk of long-standing obesity—further follow-up studies will clarify this point. Nevertheless, the current findings provide a new factor—earlier mother's menarche—that could help health care professionals identify which infants require early growth monitoring to avoid later obesity.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040132.
The Avon Longitudinal Study of Parents and Children has a description of the study and results to date
The US Centers for Disease Control and Prevention provides information on overweight and obesity (in English and Spanish)
US Department of Health and Human Services's program, Smallstep Kids, is an interactive site for children about healthy eating (in English and Spanish)
The International Obesity Taskforce has information on obesity and its prevention
The World Heart Federation's Global Prevention Alliance provides details of international efforts to halt the obesity epidemic and its associated chronic diseases
The Child Growth Foundation has information on childhood growth and its measurement
doi:10.1371/journal.pmed.0040132
PMCID: PMC1876410  PMID: 17455989
22.  Exploring the Developmental Overnutrition Hypothesis Using Parental–Offspring Associations and FTO as an Instrumental Variable 
PLoS Medicine  2008;5(3):e33.
Background
The developmental overnutrition hypothesis suggests that greater maternal obesity during pregnancy results in increased offspring adiposity in later life. If true, this would result in the obesity epidemic progressing across generations irrespective of environmental or genetic changes. It is therefore important to robustly test this hypothesis.
Methods and Findings
We explored this hypothesis by comparing the associations of maternal and paternal pre-pregnancy body mass index (BMI) with offspring dual energy X-ray absorptiometry (DXA)–determined fat mass measured at 9 to 11 y (4,091 parent–offspring trios) and by using maternal FTO genotype, controlling for offspring FTO genotype, as an instrument for maternal adiposity. Both maternal and paternal BMI were positively associated with offspring fat mass, but the maternal association effect size was larger than that in the paternal association in all models: mean difference in offspring sex- and age-standardised fat mass z-score per 1 standard deviation BMI 0.24 (95% confidence interval [CI]: 0.22 to 0.26) for maternal BMI versus 0.13 (95% CI: 0.11, 0.15) for paternal BMI; p-value for difference in effect < 0.001. The stronger maternal association was robust to sensitivity analyses assuming levels of non-paternity up to 20%. When maternal FTO, controlling for offspring FTO, was used as an instrument for the effect of maternal adiposity, the mean difference in offspring fat mass z-score per 1 standard deviation maternal BMI was −0.08 (95% CI: −0.56 to 0.41), with no strong statistical evidence that this differed from the observational ordinary least squares analyses (p = 0.17).
Conclusions
Neither our parental comparisons nor the use of FTO genotype as an instrumental variable, suggest that greater maternal BMI during offspring development has a marked effect on offspring fat mass at age 9–11 y. Developmental overnutrition related to greater maternal BMI is unlikely to have driven the recent obesity epidemic.
Using parental-offspring associations and theFTO gene as an instrumental variable for maternal adiposity, Debbie Lawlor and colleagues found that greater maternal BMI during offspring development does not appear to have a marked effect on offspring fat mass at age 9-11.
Editors' Summary
Background.
Since the 1970s, the proportion of children and adults who are overweight or obese (people who have an unhealthy amount of body fat) has increased sharply in many countries. In the US, 1 in 3 adults is now obese; in the mid-1970s it was only 1 in 7. Similarly, the proportion of overweight children has risen from 1 in 20 to 1 in 5. An adult is considered to be overweight if their body mass index (BMI)—their weight in kilograms divided by their height in meters squared—is between 25 and 30, and obese if it is more than 30. For children, the healthy BMI depends on their age and gender. Compared to people with a healthy weight (a BMI between 18.5 and 25), overweight or obese individuals have an increased lifetime risk of developing diabetes and other adverse health conditions, sometimes becoming ill while they are still young. People become unhealthily fat when they consume food and drink that contains more energy than they need for their daily activities. It should, therefore, be possible to avoid becoming obese by having a healthy diet and exercising regularly.
Why Was This Study Done?
Some researchers think that “developmental overnutrition” may have caused the recent increase in waistline measurements. In other words, if a mother is overweight during pregnancy, high sugar and fat levels in her body might permanently affect her growing baby's appetite control and metabolism, and so her offspring might be at risk of becoming obese in later life. If this hypothesis is true, each generation will tend to be fatter than the previous one and it will be very hard to halt the obesity epidemic simply by encouraging people to eat less and exercise more. In this study, the researchers have used two approaches to test the developmental overnutrition hypothesis. First, they have asked whether offspring fat mass is more strongly related to maternal BMI than to paternal BMI; it should be if the hypothesis is true. Second, they have asked whether a genetic indicator of maternal fatness—the “A” variant of the FTO gene—is related to offspring fat mass. A statistical association between maternal FTO genotype (genetic make-up) and offspring fat mass would support the developmental nutrition hypothesis.
What Did the Researchers Do and Find?
In 1991–1992, the Avon Longitudinal Study of Parents and Children (ALSPAC) enrolled about 14,000 pregnant women and now examines their offspring at regular intervals. The researchers first used statistical methods to look for associations between the self-reported prepregnancy BMI of the parents of about 4,000 children and the children's fat mass at ages 9–11 years measured using a technique called dual energy X-ray absorptiometry. Both maternal and paternal BMI were positively associated with offspring fat mass (that is, fatter parents had fatter children) but the effect of maternal BMI was greater than the effect of paternal BMI. When the researchers examined maternal FTO genotypes and offspring fat mass (after allowing for the offspring's FTO genotype, which would directly affect their fat mass), there was no statistical evidence to suggest that differences in offspring fat mass were related to the maternal FTO genotype.
What Do These Findings Mean?
Although the findings from first approach provide some support for the development overnutrition hypothesis, the effect of maternal BMI on offspring fat mass is too weak to explain the recent obesity epidemic. Developmental overnutrition could, however, be responsible for the much slower increase in obesity that began a century ago. The findings from the second approach provide no support for the developmental overnutrition hypothesis, although these results have wide error margins and need confirming in a larger study. The researchers also note that the effects of developmental overnutrition on offspring fat mass, although weak at age 9–11, might become more important at later ages. Nevertheless, for now, it seems unlikely that developmental overnutrition has been a major driver of the recent obesity epidemic. Interventions that aim to improve people's diet and to increase their physical activity levels could therefore slow or even halt the epidemic.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050033.
See a related PLoS Medicine Perspective article
The MedlinePlus encyclopedia has a page on obesity (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on all aspects of obesity (in English and Spanish)
The UK National Health Service's health Web site (NHS Direct) provides information about obesity
The International Obesity Taskforce provides information about preventing obesity and on childhood obesity
The UK Foods Standards Agency, the United States Department of Agriculture, and Shaping America's Health all provide useful advice about healthy eating for adults and children
The ALSPAC Web site provides information about the Avon Longitudinal Study of Parents and Children and its results so far
doi:10.1371/journal.pmed.0050033
PMCID: PMC2265763  PMID: 18336062
23.  Prevalence and Predictors of Overweight and Insulin Resistance in Offspring of Mothers With Gestational Diabetes Mellitus 
Diabetes Care  2010;33(8):1845-1849.
OBJECTIVE
Gestational diabetes mellitus (GDM) is associated with high birth weight in the offspring. This may lead to overweight and insulin resistance during childhood. The aim of the study was to assess the impact of GDM on overweight risk and insulin resistance in offspring.
RESEARCH DESIGN AND METHODS
BMI measurements were collected at age 2, 8, and 11 years from 232 offspring of mothers with GDM (OGDM) and compared with those from 757 offspring of mothers with type 1 diabetes (OT1D) and 431 offspring of nondiabetic mothers (ONDM) born between 1989 and 2000. Insulin resistance (homeostasis model assessment of insulin resistance [HOMA-IR]) was determined at age 8 and 11 years in 751 children (74 OGDM). Overweight was defined as BMI percentile ≥90; insulin resistance was defined by HOMA-IR.
RESULTS
Overweight prevalence was increased in OGDM compared with OT1D and to ONDM throughout childhood (age 11 years 31.1, 15.8, and 15.5%; P = 0.005). Maternal obesity was an important predictor of overweight risk in children (age 11 years odds ratio 7.0 [95% CI 1.8–27.7]; P = 0.006); birth size and maternal smoking during pregnancy were inconsistently associated with and treatment of GDM during pregnancy did not affect overweight risk. HOMA-IR was increased in OGDM compared with offspring of ONDM mothers (P = 0.01, adjusted for sex and age) and was associated with the child's BMI (P = 0.004).
CONCLUSIONS
Overweight and insulin resistance in children is increased in OGDM compared with OT1D or ONDM. The finding that overweight risk is associated mainly with maternal obesity suggests that familial predisposition contributes to childhood growth in these offspring.
doi:10.2337/dc10-0139
PMCID: PMC2909075  PMID: 20435793
24.  Association of Prenatal and Childhood Blood Lead Concentrations with Criminal Arrests in Early Adulthood 
PLoS Medicine  2008;5(5):e101.
Background
Childhood lead exposure is a purported risk factor for antisocial behavior, but prior studies either relied on indirect measures of exposure or did not follow participants into adulthood to examine the relationship between lead exposure and criminal activity in young adults. The objective of this study was to determine if prenatal and childhood blood lead concentrations are associated with arrests for criminal offenses.
Methods and Findings
Pregnant women were recruited from four prenatal clinics in Cincinnati, Ohio if they resided in areas of the city with a high concentration of older, lead-contaminated housing. We studied 250 individuals, 19 to 24 y of age, out of 376 children who were recruited at birth between 1979 and 1984. Prenatal maternal blood lead concentrations were measured during the first or early second trimester of pregnancy. Childhood blood lead concentrations were measured on a quarterly and biannual basis through 6.5 y. Study participants were examined at an inner-city pediatric clinic and the Cincinnati Children's Hospital Medical Center in Cincinnati, Ohio. Total arrests and arrests for offenses involving violence were collected from official Hamilton County, Ohio criminal justice records. Main outcomes were the covariate-adjusted rate ratios (RR) for total arrests and arrests for violent crimes associated with each 5 μg/dl (0.24 μmol/l) increase in blood lead concentration. Adjusted total arrest rates were greater for each 5 μg/dl (0.24 μmol/l) increase in blood lead concentration: RR = 1.40 (95% confidence interval [CI] 1.07–1.85) for prenatal blood lead, 1.07 (95% CI 0.88–1.29) for average childhood blood lead, and 1.27 (95% CI 1.03–1.57) for 6-year blood lead. Adjusted arrest rates for violent crimes were also greater for each 5 μg/dl increase in blood lead: RR = 1.34 (95% CI 0.88–2.03) for prenatal blood lead, 1.30 (95% CI 1.03–1.64) for average childhood blood lead, and 1.48 (95% CI 1.15–1.89) for 6-year blood lead.
Conclusions
Prenatal and postnatal blood lead concentrations are associated with higher rates of total arrests and/or arrests for offenses involving violence. This is the first prospective study to demonstrate an association between developmental exposure to lead and adult criminal behavior.
Kim Dietrich and colleagues find an association between developmental exposure to lead and adult criminal behavior.
Editors' Summary
Background.
Violent crime is an increasing problem in many countries, but why are some people more aggressive than others? Being male has been identified as a risk factor for violent criminal behavior in several studies, as have exposure to tobacco smoke before birth, having antisocial parents, and belonging to a poor family. Another potential risk factor for antisocial behavior as an adult is exposure to lead during childhood, although few studies have looked directly at whether childhood lead exposure is linked with criminal behavior in adulthood. Lead is a toxic metal that damages the nervous system when ingested or inhaled. It is present throughout the environment because of its widespread use in the past in paint, solder for water pipes, and gasoline. In 1978, 13.5 million US children had a blood lead level above 10 μg/dl, the current US Centers for Disease Control and Prevention blood lead level of concern (the average US blood lead level is 2 μg/dl). Lead paint and solder were banned in 1978 and 1986, respectively, by the US federal government; leaded gasoline was finally phased out in 1996. By 2002, only 310,000 US children had a blood lead level above 10 μg/dl. However, children exposed to lower levels of lead than this—through ingesting flakes or dust residues of old lead paint, for example—can have poor intellectual development and behavioral problems including aggression.
Why Was This Study Done?
Although some studies have suggested that childhood lead exposure is associated with later criminal behavior, these studies have often relied on indirect measurements of childhood lead exposure such as bone lead levels in young adults or a history of lead poisoning. Other studies that have measured childhood lead exposure directly have not followed their participants into adulthood. In this new study, the researchers investigate the association between actual measurements of prenatal and childhood blood lead concentrations and criminal arrests in early adulthood to get a clearer idea about whether early lead exposure is associated with subsequent violent behavior.
What Did the Researchers Do and Find?
Between 1979 and 1984, the researchers recruited pregnant women living in poor areas of Cincinnati, which had a high concentration of older, lead-contaminated housing, into the Cincinnati Lead Study. They measured the women's blood lead concentrations during pregnancy as an indication of their offspring's prenatal lead exposure and the children's blood lead levels regularly until they were six and half years old. They then obtained information from the local criminal justice records on how many times each of the 250 offspring had been arrested between becoming 18 years old and the end of October 2005. The researchers found that increased blood lead levels before birth and during early childhood were associated with higher rates of arrest for any reason and for violent crimes. For example, for every 5 μg/dl increase in blood lead levels at six years of age, the risk of being arrested for a violent crime as a young adult increased by almost 50% (the “relative risk” was 1.48).
What Do These Findings Mean?
These findings provide strong evidence that early lead exposure is a risk factor for criminal behavior, including violent crime, in adulthood. One possibility, which the authors were unable to assess in this study, is that lead exposure impairs intelligence, which in turn makes it more likely that a criminal offender will be caught (i.e., arrested). The authors discuss a number of limitations in their study—for example, they probably did not capture all criminal behavior (since most criminal behavior does not lead to arrest). Although both environmental lead levels and crime rates have dropped over the last 30 years in the US, the overall reduction was not uniform—inner-city children remain particularly vulnerable to lead exposure. The findings therefore suggest that a further reduction in childhood lead exposure might be an important and achievable way to reduce violent crime.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050101.
A PLoS Medicine Perspective article by David Bellinger further discusses this study and a related paper on childhood lead exposure and brain volume reduction in adulthood
Study researcher Kim Dietrich can be heard talking about “The Lethal Legacy of Lead”, a brief MP3 about lead exposure and violent crime
Toxtown, an interactive site from the US National Library of Medicine, provides information on environmental health concerns including exposure to lead (in English and Spanish)
The US Environmental Protection Agency provides information on lead in paint, dust, and soil and on protecting children from lead poisoning (in English and Spanish)
MedlinePlus provides a list of links to information on lead poisoning (in English and Spanish)
The US Centers for Disease Control and Prevention provides information about its Childhood Lead Poisoning Prevention Program
The UK Health Protection Agency also provides information about lead and its health hazards
doi:10.1371/journal.pmed.0050101
PMCID: PMC2689664  PMID: 18507497
25.  The Impact of Tobacco Smoke Exposure on Wheezing and Overweight in 4–6-Year-Old Children 
BioMed Research International  2014;2014:240757.
Aim. To investigate the association between maternal smoking during pregnancy, second-hand tobacco smoke (STS) exposure, education level, and preschool children's wheezing and overweight. Methods. This cohort study used data of the KANC cohort—1,489 4–6-year-old children from Kaunas city, Lithuania. Multivariate logistic regression was employed to study the influence of prenatal and postnatal STS exposure on the prevalence of wheezing and overweight, controlling for potential confounders. Results. Children exposed to maternal smoking during pregnancy had a slightly increased prevalence of wheezing and overweight. Postnatal exposure to STS was associated with a statistically significantly increased risk of wheezing and overweight in children born to mothers with lower education levels (OR 2.12; 95% CI 1.04–4.35 and 3.57; 95% CI 1.76–7.21, accordingly). Conclusions. The present study findings suggest that both maternal smoking during pregnancy and STS increase the risk of childhood wheezing and overweight, whereas lower maternal education might have a synergetic effect. Targeted interventions must to take this into account and address household smoking.
doi:10.1155/2014/240757
PMCID: PMC4109218  PMID: 25110663

Results 1-25 (1255868)